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Abstract

Numerical methods based on geometrical multiscale models of blood flows solve for averaged
flow statistics on a network of vessels while providing more detailed information about fluid
dynamics in a specific region of interest. In such an approach, a 3D model based on the
Navier-Stokes equations posed in a domain with rigid walls is often used to describe blood flow
dynamics in the refined region. While ignoring elasticity effects in 3D models is plausible in
certain applications and saves computational time significantly, coupling such models with 1D
flow models may result in non-physiological phenomena in the computed solutions. Thus, the
immediate coupling conditions based on continuity of normal stresses, flow rate, pressure, or
a combination of thereof do not account for the inconsistency between elasticity effects in the
1D model and the non-compliance of the 3D model. In this paper we introduce and study an
auxiliary absorbing 0D model, which is placed at the interface between 1D and 3D models. A
virtual device mimics the effect of the 3D model compliance and hence reduces pressure wave
reflection and instabilities caused by the inconsistency. The absorbing model is developed from
basic mechanical principles. As a result, parameters of the 0D model can be designed based on
hemodynamic data. We analyse the stability of the geometrical multiscale model and perform
several numerical experiments to assess its computational efficiency.

Keywords: geometrical multiscale modeling, 1D-0D-3D coupling, fluid flows, cardio-
vascular simulations, iterative methods

1 Introduction

Geometrical multiscale modelling became nowadays a standard approach in computational hemo-
dynamics [1, 2, 3, 4, 5, 6]. Multiscale models describe blood flow in a region of interest in necessary
details, while providing information about averaged flow statistics in other parts of the vascular
system by employing simplified 1D flow models. The multiscale approach is particularly useful to
describe complex vascular networks such as the circle of Willis [7, 8]. Since the vascular compliance
is the driving mechanism of pressure wave propagation, 1D vessels are typically treated as elastic.
The well known 1D Euler equations are used to simulate the flow and pulse propagation in a vascular
network. The 3D hemodynamics is described by the Navier-Stokes equations of viscous incompress-
ible fluid. This full system of dynamic and conservation equations is often solved numerically in
domains with rigid walls, since this considerably reduces the computational complexity of the prob-
lem. The major challenges of such multiscale approach are physiologically correct coupling of basic
1D and 3D models as well as the development of stable and efficient numerical algorithms.

A standard approach for coupling 1D and 3D fluid flow models is based on enforcing the continuity
of the following quantities at the interface between 1D and 3D domains: normal stress, flow rate, total
stress, pressure, vessel cross-section area, or a combination of these quantities, see, e.g., [9, 1, 10, 4, 5].
Applied to 1D-compliant–3D-rigid models, we call such an approach a hard coupling, since it does
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not account for the inconsistency between elastic effects in the 1D model and the non-compliance of
the 3D model. The hard coupling is prone to non-physiological backward pulse-waves generated at
the interface [7]. A soft coupling introduces an auxiliary absorbing model at the interface between
1D and 3D blood flow domains. The auxiliary model compensates for missing compliance in 3D
and intends to eliminate the spurious phenomena. Thus, in [7] a 0D electric circuit model was
suggested. Placed in-between blood flow models, it was found to reduce the spurious oscillations
significantly and to preserve the waveform of the cardiovascular signal reasonably well over the
coupling region. The success of that multiscale approach, however, requires a careful tuning of the
0D model parameters, which is done in numerical experiments.

In this report we introduce a 0D mechanical model. The model can be interpreted as placing a
(virtual) spherical balloon at the junction of two flow models. The balloon has a volume, and its
wall is elastic and has a mass. This virtual device is intended to simulate the effect of missing elastic
walls in the 3D model. We deduce governing equations and coupling conditions from transparent
mechanical principles. This gives several advantages; in particular, the auxiliary model parameters
can be derived from physiological data.

The material in the paper is organized as follows. In section 2 we first review the 3D and 1D
flow models and several coupling conditions well-known from the literature. After the introduction
of a 0D mechanical model in the same section, we explain how it is used for 1D-3D coupling. The
cumulative energy balance of the system is studied. Further, the choice of parameters for the model
is discussed. The discretization and algebraic solvers are introduced in section 3. A second order
time-stepping algorithm with independent time steps in 3D and 1D-0D domains is used to integrate
the system in time. To discretize the problem, we use a conforming inf-sup stable finite element
method for the incompressible Navier-Stoke equations and a monotone finite difference scheme for
1D equations. This results in a sequence of systems of non-linear algebraic equations to be solved.
We use a fixed-point method and iterate between subdomains and the coupling conditions. Finally,
in section 4 we experiment with the new multiscale model and compare soft and hard coupling
conditions.

2 The 1D-3D coupled model

This section reviews 3D, 1D, 0D fluid models and describes the coupling of the models.

2.1 The 3D model

We treat blood as a viscous incompressible Newtonian fluid. Assume that the fluid occupies a
bounded domain Ω ⊂ R3. We distinguish between the ‘open’ part of boundary, and the no-slip–no-
penetration part (rigid walls), Γ0. The open boundary is conventionally divided into the inflow Γin

and the outflow Γout parts. The open boundary conditions are defined by setting the normal stress
tensor equal to given vector functions φ and γ. These open boundary conditions are studied in [11].
Thus, the 3D model consists of the classical Navier-Stokes equations in pressure-velocity variables
with suitable boundary conditions:

ρ

(
∂u

∂t
+ (u · ∇)u

)
− ν∆u +∇p = 0

divu = 0

in Ω,

u = 0 on Γ0,

ν
∂u

∂n
− pn = φ on Γin ,

ν
∂u

∂n
− pn = γ on Γout.

(1)

Here n is the outward normal vector to ∂Ω, u is the vector field of fluid velocity, p is the pressure,
ν and ρ are given fluid viscosity and density constant coefficients. The system is also supplemented
with initial condition u = u0 (divu0 = 0) for t = 0 in Ω.
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We remark that the notion of ‘inflow’ and ‘outflow’ boundary is used here and further in the text
conventionally, since the inequalities u · n < 0 or u · n > 0 are not necessarily pointwise satisfied on
Γin or Γout, respectively.

2.2 The 1D model

A one-dimensional model of blood flow in a vessel is analogous to the model of viscous incompressible
fluid flow through a long elastic tube. It is derived from the 3D Navier-Stokes equations and
mass continuity equation assuming the small ratio of the diameter and the length of the tube, see,
e.g., [12, 13, 14]. Denote by x the coordinate along the centerline of the tube. Let ω(t, x) be the
normal cross-section of the tube at x. Denote by S(t, x) the area of ω(t, x) and by u(t,x) the axial
velocity. We introduce the mean axial velocity ū and pressure averaged over cross section ω(t, x):

ū(t, x) =
1

S(t, x)

∫
ω(t,x)

u(t,x)ds, p̄(t, x) =
1

S(t, x)

∫
ω(t,x)

p(t,x)ds.

We consider the model given by the following system of equations for unknowns S, ū, p̄:
∂S

∂t
+
∂(Sū)

∂x
= ϕ(t, x, S, ū)

∂ū

∂t
+
∂(ū2/2 + p̄/ρ)

∂x
= ψ(t, x, S, ū)

p̄ = pext + ρc20f(S)

for x ∈ [0, b]. (2)

Here pext is the external pressure, ϕ(t, x, S, ū) is a function modelling the source or the sink of the
fluid. Further, we assume ϕ = 0 and pext = 0, so from now p̄ has the meaning of the difference
between the fluid pressure and the external pressure. The term ψ(t, x, S, ū) accounts for external

forces, such as gravity or friction. Following [15], we set ψ = −16νūη(S̃)(S̃d2)−1, S̃ = Ŝ−1S. Here

ν is the viscosity coefficient, d is the pipe diameter, Ŝ is the reference area (in the hemodynamic

applications Ŝ is the cross-section area corresponding to zero transmural pressure) and η(S̃) is a
strictly positive function, see [9] for the paticular choice of η. The last equation in (2) relates the
pressure to the cross section area. The function f is defined by the elasticity model of the pipe
walls, c0 is the propogation speed of small disturbances in the vessel’s wall material. It accounts for
unstressed vessels elasticity in the 1D model. We use the model from [15]:

f(S̃) =

{
exp (S̃ − 1)− 1, S̃ > 1,

ln S̃, S̃ ≤ 1.
(3)

Other algebraic defining relations linking the mean pressure and the cross-section area are known
from the literature, see, e.g., [14]. They are equally well suited for the purpose of this paper and
require a minor modification of the analysis. More sophisticated 1D models posed on vessels networks
can be found, e.g., in [16, 8]

Initial conditions for (2) are set to be ū|t=0 = u0, S|t=0 = S0. System (2) is hyperbolic and can
be integrated along its characteristics. Two boundary conditions, one at x = 0 and one at x = b,
are enough to close the system.

2.3 The 1D-3D model: hard coupling

Assume the 1D flow model is coupled to a part of open boundary Γ ⊂ ∂Ω3D of the 3D flow model,
see the illustration in Figure 1. The continuity of the normal stress on Γ is one condition commonly
imposed at the interface: (

− ν ∂u
∂n

+ pn
)∣∣∣∣

Γ

= p̄|x=bn, (4)

where n is an outward normal vector for Ω3D. Condition (4) is natural for a weak formulation of
the Navier–Stokes equations written in convection or conservation forms. When prescribed on the
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Ω1D Ω3D

Γ

Figure 1: A simple multiscale 1D-3D model. Coupling conditions are prescribed for Γ and x = b.

Ω3D

u, p

Ω0D

V, p0D

Ω1D

u, S̄, p̄(S̄)

Γ

Figure 2: The schematic coupling of Ω1D, Ω0D and Ω3D domains.

inflow and outflow boundaries the boundary condition (4) corresponds to so-called ‘pressure drop’
problem, see [11].

The continuity of the flow rate is another standard condition at the interface:∫
Γ

u · n ds = −Sū|x=b. (5)

The pair of coupling conditions (4) and (5) ensures the mass conservation for the multiscale model.
At the same time, this choice is known to violate the energy balance of the system. Alternatively, (5)
can be combined with the continuity condition for the normal total stress [10]. Also the continuity of
the fluid flux and the energy flux combination can be prescribed to deal with energy inconsistency [9]:

p̄

∫
Γ

u · nds +
ρ

2

∫
Γ

|u|2(u · n)ds = −(p̄Sū+
ρ

2
Sū3)|x=b, (6)

leading to the correct energy balance and hence to the fundamental energy estimate, at the expense
of global mass conservation.

The hard coupling of a 1D-elastic and the 3D-rigid models is sufficiently effective as a downstream
coupling condition. However, it may produce reflected spurious pressure waves [14, 17], especially if
the interface is located upstream. The spurious oscillations may spoil the numerical solution making
it physiologically irrelevant. Therefore, one is prompted to look for more flexible (soft) coupling
conditions.

2.4 The 1D-0D-3D model: soft coupling

First we deduce a suitable absorbing 0D model. To this end, consider an elastic sphere Ω0D of
volume V = V (t) filled with a fluid (blood). At any time instance t ∈ [0, T ] assume a homogeneous
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pressure distribution in Ω0D. The variable p0D = p0D(t) has the meaning of the difference between
fluid and external pressures for the sphere and so p0D can be non-positive. The reference volume V0

for the sphere ‘at rest’ is prescribed for p0D = 0. The kinematics of the sphere under the action of
fluid pressure is described by the following ODE

I
d2V

dt2
+R0

dV

dt
+
V − V0

C
= p0D. (7)

Here the expansibility factor C and the resistance coefficient R0 characterize the elastic properties of
the sphere walls. The second order term accounts for the inertia effects. The coefficient I is positive,
if one prescribes a non-zero mass to the elastic walls of the sphere; otherwise one may set I = 0.
In [15], equation (7) was considered as a part of the dynamic heart model: each of four chambers
was represented by an elastic sphere. Here we use the hydraulic model as an auxiliary one for the
coupling of vessels networks.

Similar to [7], we place the 0D model at the interface of 1D and 3D models. The virtual absorbing
device modeled by (7) is supposed to mimic the effect of the 3D model compliance and so to reduce
pressure wave reflection and instabilities caused by the inconsistency of elastic-rigid coupling.

Now we couple the hydraulic model to 1D and 3D blood flow models. Since we treat the blood
as an incompressible fluid, the conservation of mass leads to the following equation for the rate of
volume change:

dV

dt
= Q1D −Q3D, (8)

where Q1D = Sū is the fluid flux at x = b and Q3D = −
∫

Γ
u · n ds is the fluid flux through Γ (from

Ω0D to Ω3D). Finally, we assume the Poiseuille law, which links the flow rate to the pressure drop:

p̄− p0D = R1D0DQ1D at x = b, (9)

p0D − p = R0D3DQ3D on Γ, (10)

where R1D0D and R0D3D are the resistance coefficients. Thus, equations (7)–(10) form the complete
set of coupling and absorbing conditions. Figure 2 illustrates the new geometrical multiscale model.

Remark 2.1 For R1D0D = R0D3D = I = R0 = 0 and C → 0 the relations (7)–(10) reduce to
the hard 1D-3D coupling based on the flow rate (5) and the continuity of pressure p = p̄. For the
particular case of I = R0 = 0 the model is formally equivalent (up to prescribing particular values to
other coefficient) to the electric circuit model with zero inductance from [7]. More important is that
the clear mechanical interpretation of the present multiscale model leads to the choice of parameters
based on physical properties of modeled fluids and materials. We also note from (7)–(10) that 1D and
3D quantities do not depend on the prescribed value of V0. Actually, the substitution V → V + V0

eliminates V0 from the system and one can consider V as the difference of initial and current volumes
of the sphere.

Remark 2.2 In practice, one may be interested in embedding the 3D domain in a 1D network of
blood vessels. In such a situation, coupling between 3D and 1D domains happens on both upstream
and downstream parts of the 3D domain. The downstream part of the 1D network may influence
the upstream coupling by generating additional resistance to the impulse propagation. The studies
in [7] show that it can be necessary to introduce the 0D model also on the downstream interface.
In the present paper we concentrate on upstream coupling, but also experiment with a 1D-0D-3D-
1D configuration, where 1D represents a single vessel. We plan to study the embedding of the 3D
domain in a 1D network in the future.

2.5 Energy balance

It is well known that the energy balance of the system depends on the interface conditions [1]. There
was a significant interest recently in the design of 1D-3D models coupling conditions such that the

5



whole system dissipates energy in the absence of external sources, see, e.g. [9, 10]. Below we study
how introducing of the 0D auxiliary model alters the energy balance of the system.

For the sufficiently smooth solution of the Navier-Stokes system (1), the following energy balance
holds:

d

dt
E3D(t) + ν‖∇u‖2 +

∫
Γin

(ρ
2
|u|2n− φ

)
· uds +

∫
Γout

(ρ
2
|u|2n− γ

)
· uds = 0,

with kinetic energy E3D(t) = ρ
2‖u‖

2. Here and in the rest of the paper, ‖ ·‖ denotes the L2(Ω) norm.
Since the 3D model is rigid the kinetic energy equals the total energy here.

The 1D model (2) leads to the following energy equality (we assume ϕ = 0):

d

dt
E1D(t)− ρ

∫ b

0

Sψ(t, x, S, ū) ūdt = − Sū(p̄+
ρ

2
ū2)
∣∣∣b
0
, (11)

with the energy functional

E1D(t) =
ρ

2

∫ b

0

Sū2dx +

∫ b

0

∫ S

Ŝ

f(s)dsdx.

For f(S) given in (3), the second term in the definition of E1D(t) corresponds to the free energy of the
elastic walls and is always positive, making E1D(t) positive for all t > 0. The choice of ψ(t, x, S, ū)
ensures that the second term on the left-hand side of (11) is positive as well.

For the potential and kinetic energy of the linear harmonic oscillator described by equation (7)
we have

Epot,0D(t) =
(V − V0)2

2C
, Ekin,0D(t) =

I

2

(
dV

dt

)2

.

Using (7)–(8) we compute for the rate of change of the total energy of the elastic sphere:

d

dt
E0D(t) =

dV

dt

(V − V0)

C
+ I

dV

dt

d2V

dt2
=
dV

dt

(
p0D − I

d2V

dt2
−R0

dV

dt

)
+ I

dV

dt

d2V

dt2

=
dV

dt

(
p0D −R0

dV

dt

)
= (Q1D −Q3D)p0D −R0(Q1D −Q3D)2.

From (9)–(10) we compute p0D = 1
2 (p̄ + p + R0D3DQ3D − R0D1DQ1D). Substituting this equalities

into expression above we get after straightforward calculations:

d

dt
E0D(t) = −1

4
(R0D3D +R0D1D + 4R0)(Q1D −Q3D)2 − 1

4
(R0D1D −R0D3D) (Q2

1D −Q2
3D)

+
1

2
(p̄+ p) (Q1D −Q3D).

To see more explicitly how the coupling conditions enter the energy balance, let us assume no
inflow or outflow through the open end of 1D model and the open boundary of the 3D model. For
further cancelations set the resistance coefficients equal: Rtotal = 2R0D1D = 2R0D3D. Using the
definition of fluxes, we get

d

dt
(E3D(t) + E1D(t) + E0D(t)) = −ν‖∇u‖2 +ρ

∫ b

0

Sψ(t, x, S, ū) ūdt− 1

4
(Rtotal +4R0)(Q1D−Q3D)2

−
∫

Γ

(
ρ

2
|u|2n− ν ∂u

∂n
+ pn

)
· uds−Q1D(p̄+

ρ

2
ū2) +

1

2
(p̄+ p) (Q1D −Q3D)

= −ν‖∇u‖2 + ρ

∫ b

0

Sψ(t, x, S, ū) ūdt− 1

4
(Rtotal + 4R0)(Q1D −Q3D)2

−
∫

Γ

ρ

2
|u|2(n · u)ds−Q1D

ρ

2
ū2 − 1

2
(p̄− p) (Q1D +Q3D).
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From (9)–(10) we get p̄− p = R0D3DQ3D +R0D1DQ1D = 1
2Rtotal(Q3D +Q1D). Substituting into the

expression above, we obtain the following balance for the cumulative energy of the system:

d

dt
(E3D(t) + E1D(t) + E0D(t)) = −ν‖∇u‖2 +ρ

∫ b

0

Sψ(t, x, S, ū) ūdt− 1

4
(Rtotal +4R0)(Q1D−Q3D)2

− 1

4
Rtotal(Q1D +Q3D)2 −

∫
Γ

ρ

2
|u|2(n · u)ds−Q1D

ρ

2
ū2 (12)

Energy balance for the hard coupling follows from (12) if one sets Rtotal = R0 = 0. We note that the
multiscale coupling introduces additional dissipation both through positive R0 and positive Rtotal.

2.6 The choice of parameters

Assume that the 0D model is introduced to mimic the compliance of a vessel segment of the ref-
erence length l; and the elasticity properties of the vessel can be approximated by the constitutive
equation (3). Following [18], the choice of resistance coefficients R1D0D and R0D3D can be done
based on the characteristic impedance of the 1D model

R1D0D +R0D3D =
ρc0

Ŝ
. (13)

Performing experiments, we found that the distribution of the resistance between R1D0D and R0D3D

does not influence the results in any significant way. The total resistance appears to be important.
Now we discuss how to choose another important parameter: the virtual elastic sphere expansi-

bility factor C. First, form equations (7) for I = R0 = 0 we get

1

C
=

∆p0D

∆V

Since the 0D model should account for the missing vessel compliance, the change in the volume of
the sphere can be assumed equal to the change of (averaged) cross-section times the reference length
of the rigid domain, ∆V = ∆(lS). For the change of 0D pressure we assume the same constitutive
equation (3) to be valid. Hence, we get

1

C
=

∆(ρc20f(S))

∆(lS)
=
ρc20
l

∂f(S)

∂S
.

One computes

∂f(S)

∂S
=

{
Ŝ−1 exp (SŜ−1 − 1), for S > Ŝ

S−1, for S ≤ Ŝ.
Assuming small deformations, it holds

∂f(S)

∂S
∼ Ŝ−1.

Thus for the case of small deformations we arrive at the expression for the expansibility factor

C =
lŜ

ρc20
. (14)

In numerical experiments we observed that coefficient C and the value of total resistance R1D0D+
R0D3D are important for a suitable performance of the coupled system. We experimented with
several values of R0 > 0, but did not see a notable difference in results, at least with coefficients
R1D0D, R0D3D and C chosen based on the above formulae. Numerical results presented in section 4
were computed with R0 = 0. We are considering zero inertia (I = 0) of the 0D model walls. This
parameter choice makes the coupling conditions formally equivalent to those from [7]. It is the choice
of other parameters (and numerical method), which differs the present approach. It is possible that
applied to a different hemodynamic problems, other than studied section 4, one would benefit from
another (non-zero) choice of R0 and I. We shall look for and study such problems elsewhere.
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3 Discretization and algebraic solver

In this section we explain our time-stepping algorithm and an iterative domain decomposition
method.

For the hyperbolic equations in 1D domain, the time step is constrained by the Courant condition
and in our application ∆t1D turns out to be close to 10−5. Using the same time step for computing
the 3D model is prohibitory expensive. Hence, we use different ∆t1D and ∆t3D for 1D and 3D
parts of multiscale model respectively. Typically it holds ∆t1D � ∆t3D. We note that using an
unconditionally stable implicit scheme is possible for 1D equations. However, this leads to large
coupled systems in the case of 1D graph of vessels. Thus we consider important to couple 3D solver
with 1D explicit method.

We associate the n-th time step in 1D with the N -th time step in 3D if it holds (n− 1)∆t1D <
N∆t3D ≤ n∆t1D. Assume that the numerical solution is known for Tk = k∆t3D, k = 1, ..., N in
Ω3D and Ω0D, and for tk = k∆t1D, k = 1, ..., n in Ω1D. We compute numerical solutions of the
coupled model at TN+1 in Ω3D and Ω0D and for tk, k = n + 1, ..., n + m in Ω1D (m is such that
(n+m−1)∆t1D < (N+1)∆t3D ≤ (n+m)∆t1D). This is done with the help of the iterative domain
decomposition algorithm below.

3.1 Iterative domain-decomposition method

Index i will refer to inner iterations. The inner tolerance is ε > 0, the maximum number of iterations
is denoted by Niter, and χ ∈ (0, 1] , ω ∈ (0, 1] are the relaxation parameters. We shall use the notation
pi3D ∈ R for the ith iterate to the value prescribed on Γ as a boundary condition for the 3D problem.

We initialize Q0
3D(TN+1) = Q3D(TN ), V 0(TN+1) = V (TN ), Q1

1D(TN+1) = Q3D(TN ) and iterate
for i = 0, 1, 2, . . . , while |pi+1

3D (TN+1)− pi3D(TN+1)| > ε and i < Niter:

Step 1. Using (8), calculate the fluid flux at the downstream end of the interval Ω1D:

Qi+1
1D (TN+1) = (1− ω)Qi1D(TN+1) + ω

[
Qi3D(TN+1) +

(dV
dt

)i
(TN+1)

]
.

Step 2. Integrate 1D problem (2) for t ∈ [TN , TN+1], with a given fluid flux or velocity as an
upstream condition at x = a and the downstream condition given by

Q1D(tk)i+1 = h(Q1D(TN ), Qi+1
1D (TN+1), tk), k = n+ 1, ..., n+m, at x = b,

where h(b(t1), b(t2), t3) interpolates values b(t1), b(t2) at time t3. Hence we also obtain
p̄i+1(TN+1)|x=b.

Step 3. Since we assume the inertia coefficient I equals zero, equations (7), (8), (9) lead to

V i+1(TN+1) = V0 + C
(
p̄i(TN+1)|x=b − (R1D0D +R0)Qi+1

1D (TN+1) +R0Q
i
3D(TN+1)

)
.

Now the time derivative of V can be approximated. In our implementation we compute(dV
dt

)i+1

(TN+1) =
3V i+1(TN+1)− 4V (TN ) + V (TN−1)

2∆t3D
. (15)

Step 4. Substituting (8) and (9) in (10) we deduce for the pressure on Γ:

pi+1
3D (TN+1) = (1− χ)pi3D(TN+1)

+ χ

(
p̄i+1(TN+1)|x=b − (R1D0D +R0D3D)Qi+1

1D (TN+1) +R0D3D

(dV
dt

)i+1

(TN+1)

)
.
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Step 5. Solve the linearized 3D Navier-Stokes problem in Ω3D for uN+1 ≈ u(TN+1) and pN+1 ≈
p(TN+1):

3uN+1 − 4uN + uN−1

24t
+ (2uN − uN−1) · ∇uN+1 − ν∆uN+1 +∇pN+1 = fN+1,

divuN+1 = 0,

uN+1|Γ0
= 0,

(
− ν ∂u

N+1

∂n
+ pN+1 n

)
|Γin

= pi+1
3D (TN+1),(

− ν ∂u
N+1

∂n
+ pN+1 n

)
|Γout = ψ(TN+1)n.

(16)

Step 6. Finally, calculate the 3D fluid flux:

Qi+1
3D (TN+1) =

∫
Γ

uN+1 · nds.

We note that instead of (10) we enforce in (16) the condition

(p0D − p−R0D3DQ3D)n = −ν ∂u
∂n

on Γ,

which reduces to (10) only for vanishing viscosity. Although ν > 0 in the model we use, the
above condition is somewhat more convenient for a variational formulation of the 3D problem, since
corresponds to the ‘do-nothing’ condition [11].

3.2 Spatial discretization

For the numerical integration of the 1D model equations, we use the grid-characteristic method [19].
The first order scheme applied to the characteristic form of (2) is conservative, monotone and
contains essential dissipative terms for handling non-smooth solutions, see [15, 20]. For the 3D
model, one has to solve on every time step the linearized Navier-Stokes equations, also known as the
Oseen problem: 

βu− ν∆u + (w · ∇)u +∇p = f

divu = 0
in Ω3D,

u|Γ0 = 0, (ν
∂u

∂n
− pn)|Γin∪Γout = φ

(17)

where u = uN+1, p = pN+1, f = (2∆t)−1(4un − un−1), w = (2un − un−1), β = 3(2∆t)−1, and the
boundary value φ is defined from the 0D model and outflow condition.

To discretize the Oseen problem (17), we consider a conforming finite element method. We
assume a regular subdivision of Ω into tetrahedra. Denote the finite element velocity and pressure
spaces by Vh ⊂ H1(Ω3D)3 and Qh ⊂ L2(Ω3D), respectively. In numerical experiments we use the
Taylor-Hood P2-P1 elements. Let V0

h be the subspace of Vh of all FE velocity functions vanishing
at Γin ∩ Γ0. The discrete problem reads: Find uh ∈ Vh, uh|Γin

= uhin, and ph ∈ Qh satisfying∫
Ω

(βuh · vh + ν∇uh : ∇vh + (w · ∇uh) · vh − ph divvh + qh divuh) dx

=

∫
Ω

f · vh dx +

∫
Γin∪Γout

φ · vh ds ∀ vh ∈ V0
h, qh ∈ Qh. (18)

The resulting discrete Oseen system is solved by a preconditioned BiCGstab method with relative
tolerance in residual of 10−6. For preconditioning we use the two-parameter threshold ILU factoriza-
tion from [21]. This linear algebraic problem is solved on every iteration of the domain-decomposition
method.
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4 Numerical experiments

We start with verifying the formal accuracy of our discretization and the performance of algebraic
solvers. For this purpose we first experiment with a known analytical solution. Further, we run
several tests with a smooth and a discontinuous waveforms posed on the inlet of the 1D model. This
tests were suggested in [7] for the purpose of assessing the quality of multiscale coupling conditions.
Finally, we study the performance of the geometrical multiscale model for the simulation of a blood
flow in a digitally reconstructed right coronary artery.

4.1 Experiment with analytical solution

The purpose of this experiment is to test the performance of the numerical solver for the 1D-0D-
3D model in terms of discretization accuracy and iterative methods convergence. Hence, in this
experiment we do not compare the 1D-0D-3D model with the 1D-3D model. For this experiment we
take Ω3D = {x ∈ R3 |x ∈ (−1, 1), y2 +z2 < 1}. The circular cross sections are the inflow and outflow
boundaries. Domain Ω1D is an interval of length 5; it is coupled to Γin = {x ∈ Ω3D |x = −1}. The
analytical solution is given by

S = Ŝeα(cos (β2πt)−1), u = αe−α(cos (β2πt)−1)(1− ecos (β2πt)−1), p̄ = c20α(cos (β2πt)− 1),

V = α(cos (β2πt)− 1) +
α

c20
(e− cos (β2πt)+1 − 1), V̇ = β2π sin (β2πt)α(

e− cos (β2πt)+1

c20
− 1),

u =

(
2

π
(Ŝα(1− ecos (β2πt)−1)− β2π sin (β2πt)α(

e− cos (βπt)+1

c20
− 1))(1− y2 − z2), 0, 0

)T
,

p = c20α(cos (β2πt)− 1)− β2π

Ŝ
α sin (β2πt)αe− cos (β2πt)+1(

e− cos (β2πt)+1

c20
− 1) + 10(−1− x),

with α = 0.11 and β = 10. To match 1D, 0D, and 3D models in this example, we set the model

coefficients as follows R1D0D = −R0D3D = − e
− cos (2πt)+1

Ŝ
(R1D0D < 0 is not likely to occur in

physiologically meaningful models, but here is set negative to obtain analytical solution), C = 1
c20

.

The flow problems parameters are Ŝ = π cm2, ρ = 1 g cm−3, c0 = 350 cm s−1, ν = 0.04 cm2s−1.
The solution satisfies all coupling conditions from section 2.4. The right-hand sides ϕ, ψ and f were
set accordingly. Thus, we built a synthetic solution to the 1D-0D-3D coupled problem. We shall
study the convergence of a discrete solution to this synthetic solution.

The 3D domain was triangulated using the global refinement of an initial mesh. This resulted
in the sequence of meshes (further denoted by mesh 1, mesh 2, and mesh 3), with the number of
tetrahedra Ntet = 1272, 8403, and 63384, respectively. Since we use the first order scheme for the
1D problem, the mesh size and the time step for the 1D model was divided by 4 at each level of 3D
refinement, i.e., (∆x)1D = 5/16, 5/64, 5/256 cm and ∆t1D = 10−5, 2.5× 10−6, 6.125× 10−7 s (for all
other experiments we use ∆t1D = 10−5). The time step for the 3D model was halved for every level of
spacial refinement, so we use ∆t3D = 0.008, 0.004, 0.002 s with mesh 1, mesh 2, mesh 3, respectively.
In computations, boundary and initial conditions are taken from the known exact solution. Soft
coupling conditions with parameters as defined above are used on the interface between 1D and 3D.

The natural norms for measuring error in Ω3D are C((0, T );L2(Ω3D)) and L2((0, T );H1(Ω3D))
for velocity and L2((0, T );L2(Ω3D)) for pressure. These norms and, additionally, L2((0, T );L2(Ω3D))
for velocity error are shown in Tables 1. Table 2 shows error norms in Ω1D. Time integrals in the
definition of the norms were computed approximately using a quadrature rule, e.g, we compute∫ T

0

‖∇(u− uh)‖2L2dt ≈ ∆t

N∑
n=1

‖∇(u(n∆t)− unh)‖2L2(Ω3D), N = T (∆t)−1.

In Table 1 and further in this section, Nglob denotes the average number of domain-decomposition
iterations, see section 3.1, and Nlin denotes the average number of the preconditioned BiCGstab
iterations for the Oseen problem on every outer iteration; χ is the parameter of relaxation. The
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relaxation parameter ω is equal to 1 in this series of experiments. Values of relaxation parameter χ
from the Table 1 are optimal. They provide the minimal number of the average global iterations.
The dependence of the number of global iterations on the choice of the relaxation parameter χ is
illustrated in Table 3. Since this test intends to verify the formal accuracy of the solver for the case
of 1D-0D-3D solver rather than to compare different coupling strategies, we do not show results with
hard coupling for this test.

4.2 Sinusoidal pulse wave

In this test we take Ω1D to model a vessel with radius 1 cm and length 5 cm; likewise Ω3D is a
cylinder with radius 1 cm and length 5 cm; for the elastic sphere Ω0D the reference cross section
area and the length, i.e. Ŝ and l in (14), are taken π cm2 and 0.1 cm, respectively. A uniform
tetrahedral mesh consisting of 19681 elements is build in Ω3D. A sinusoidal waveform for the flow
rate is prescribed at the inlet:

Qin = 0.1 sin

(
2π

0.3
t

)
.

Flow parameters are taken to be ρ = 1 g · cm−3, ν = 0.04 cm2 · s−1. On the outflow boundary
of Ω3D we set γ = 0, and the initial condition represents fluid at rest. Numerical solutions are
computed with three different values of the 1D model elasticity parameter: c0 = 350, 700 or 1050
cm/s. Parameters of 0D model are prescribed following the analysis in section 2.6, resulting in the
values shown in Table 4.

We compare numerical results for the following models:

• 1D-3D flow model: The continuity of the normal stress and fluid flux on the coupling interface
is enforced (hard coupling).

• 1D-0D-3D flow model: Coupling parameters as in Table 4 (soft coupling).

• 1D flow model: The computational domain is a vessel of 10cm with non-reflective outflow
conditions as defined in [22].

Ideally one would like to compare all computed results to the full 3D FSI solution. In the absence
of this data, we consider a vessel of length 10 cm and non-reflective outflow condition [22]. In this
problem we do not observe backward waves like in case of rigid walls.

Figure 3 shows time plots for the flow rate and cross-section area at the 1D-3D model interface
and compares them with the reference graph. From the results it is clear that the multiscale model
with soft coupling provides much more accurate solution with significantly reduced oscillations. As
should be expected (assuming that the 3D model replaces a compliant vessel with same elasticity
properties as modeled by the 1D system), increasing the stiffness of the 1D model leads to the better
matching of the 1D-0D-3D model solutions and the referent solution.

From numerical experiments it occurs that the accuracy of the soft coupling is most dependent
on a suitable choice of the total resistance Rtotal = R1D0D + R0D3D. Experimenting with various
distribution of Rtotal between R1D0D and R0D3D demonstrated less than 1% difference in the results
for flow rate and p3D on the interface. Hence further, we set R0D3D = 0 and vary R1D0D. To illustrate
this and to assess the optimality of the choice based on (13), we experimented with different values
of the total resistance and monitor the error between the computed solutions and the reference
solution. Thus, Figure 4 shows the L2 norm of the error in the cross-section area and the flow rate
at the interface. It is remarkable that the choice of the total resistance given by (13) is (almost)
optimal with respect to both error indicators. The conclusion appears to be true for all c0 ∈
{350cm/s, 700cm/s, 1050cm/s} .

4.3 Step pulse wave

We perform a series of experiments using the same flow models and parameters as above, but with
a difference inflow waveform:

Qin =

{
0.1 for t ≤ 0.1,

0 for t > 0.1.
(19)
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Figure 3: Time plots of the cross-section area and flow rate at x = b computed with different
models: 1)1D-3D (hard coupling), 2) 1D-0D-3D (soft coupling) and 3) reference. Results are shown
for several 1D elasticity parameters: Plots a),b) are for c0 = 350 cm/s, plots c),d) are for c0 = 700
cm/s, and plots e),f) are for c0 = 1050 cm/s.
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Figure 4: Error L2 norms for a) cross-section area (S) in cm2 and b) flow rate (Q) in cm3 · s−1

depending on the choice of R1D0D (measured in g·cm−4·s−1) in the 1D-0D-3D model for c0 =
350, 700, 1050 cm/s. Circles mark results obtained with the choice of R1D0D according to (13).

Figure 5: Step pulse wave experiment: Two upper figures show error L2 norms for a) cross-section
area (S) in cm2 and b) flow rate (Q) in cm3 · s−1 depending on the choice of R1D0D (measured in
g·cm−4·s−1) in the 1D-0D-3D model for c0 = 350, 700, 1050 cm/s. Circles mark results obtained
with the choice of R1D0D according to (13). Figures c)–d) show time evolution of the flow rate at
x = b computed with different models: 1)1D-3D (hard coupling), 2) 1D-0D-3D (soft coupling) and
3) reference. Results are shown for several 1D elasticity parameters: plot c) is for c0 = 700 cm/s,
and plot d) is for c0 = 1050 cm/s.
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Figure 6: Time evolution of the flow rate in the step pulse wave experiment with c0 = 700 cm/s
in Figures a)–b) and c0 = 1050 cm/s in Figures c)–d). Figures a) and c) show the 1D flow rate
before 0D model on the upstream 3D boundary, while Figures b) and d) show the flow rate at the
downstream 3D boundary. Each figure shows graphs of the flow rate computed for different values
of the elasticity parameter C in the 0D model.

Figure 5 shows time plots for the flow rate at the 1D-3D model interface and compares them
with the reference graph. Similar to the previous series of experiments with smooth waveform, the
results show that the multiscale model with soft coupling provides much more accurate solution.
Handling the discontinuity of the incoming wave is challenging for coupling conditions. Although
oscillations are present in 1D-0D-3D model numerical solution, the solution captures the larger scale
pattern, while the hard coupling results in the lost of this principle information. Again, the choice
of the total resistance given by (13) is close to optimal with respect to error in both flow rate and
cross-section area for all c0 ∈ {350cm/s, 700cm/s, 1050cm/s}.

Further we experiment with the same inflow waveform, but different values of the expansibility
parameter C in the 0D model. The choice of the first relaxation parameter ω = 1 does not lead to
convergent iteration for larger values of C. Table 5 shows the number of average global iterations
depending on the values of C and ω with fixed χ = 0.4. The “-” sign indicates no convergence.

Additionally, we couple to the downstream part of the 3D domain a simple 1D domain represent-
ing a single vessel of length 5 cm. For downstream coupling we used boundary conditions (4)-(5)
and the splitting numerical algorithm described in [9]. The effect of choosing larger expansibility
parameters is illustrated in Figure 6. The plots in Figure 6 show the 1D flow rates before 0D model
and at the downstream 3D boundary. The increasing of C by a factor of 10 compared to the one
given by (14) with l = 0.1 leads to quite similar results, while the values large by a factor of 100
significantly smear the computed solution and increase the time shift compared to the reference
profile.
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Figure 7: Multiscale 1D-0D-3D model of the right coronary artery.

4.4 Flow in a right coronary artery

Finally, we study the performance of the new geometrical multiscale model for the simulation of a
blood flow in a right coronary artery. The 3D part of the artery is treated as rigid, so in this model
example the variation of exterior pressure due to the cardiac muscle contraction is ignored. The
geometry of the 3D flow domain was recovered from a real patient coronary CT angiography. The
ANI3D package [23] was used to generate the tetrahedral mesh (see Figure 7). The diameter of the
inlet cross-section is about 0.27 cm and the whole domain can be embedded in a parallelogram with
sides 6.5 cm× 6.8 cm× 5 cm. The mesh consists of 120 191 tetrahedra leading to the discrete system
for the 3D flow problem with 623 883 of unknowns. Other 3D model parameters are ν = 0.04 cm2/s,
ρ = 1 g/cm. The 1D domain Ω1D represents single vessel with length 1 cm, diameter 0.27 cm. The
speed of small disturbance propagation in the wall of a coronary artery was found 1312 cm/s [24].
This defines the elasticity c0 parameter in our 1D model. The inlet velocity waveform is shown in
Figure 8; it was suggested in [25] on the basis of clinical measurements, see also [26]. This waveform
is used to define the flow rate at the left boundary of the 1D model. The Neumann boundary
condition −ν(∇u) · n + pn = 0 was imposed on all outflow boundaries of the 3D domain. One
cardiac cycle period was 0.735 s.

Parameters of the 0D model were computed from (13), (14) as follows: C = 3.5·10−9 cm4· s2· g−1

(length of vessel represented by 0D model is assumed to be 0.13 cm, equal to radius of the 1D vessel),
R1D0D + R0D3D = 17894 g· s−1· cm−4. For the linear solver we used the preconditioned BiCGstab
method and the two-parameter ILU(τ1,τ2) preconditioner, with τ1 = 0.03, τ2 = 7τ2

1 , see [21] for
more details; χ = 0.5 was taken in the domain–decomposition iterations. The time step in the 1D
model was equal to 10−5 s and in the 3D model (∆t)3D = 2.5 · 10−3 s. This results in the average
numbers of 10 outer and 150 inner iterations per 3D time step.

The results of computations are shown in Figures 8 and 9. When the 1D-0D-3D multiscale model
is used, both the flow rate and the vessel cross-section area on the interface follow the waveform
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Figure 8: Upper-left: The velocity (flow rate) waveform on the inflow of Ω1D. Upper-right: Flow
rate computed on the interface (with soft coupling) over few cycles. Bottom-left: Vessel cross-section
area computed on the interface (with soft coupling) over few cycles. Bottom-right: The difference
in computed cross-section areas with soft (solid line) vs hard (dotted line) couplings.
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prescribed on the inlet with minor oscillations. For the hard 1D-3D coupling the oscillations on the
1D-3D interface are somewhat more pronounced. For this experiment we do not have a reference
solution. Velocity and pressure fields computed in the 3D part of the model both look reasonable,
see Figure 9.

Figure 9: Top picture shows selected steamlines colored by the velocity absolute value (cm/s) at
time 1.6s; Bottom picture shows the pressure distribution (g cm−1 s−2) at time 1.6s

5 Conclusions

To suppress numerical oscillations resulting from coupling 1D compliant and 3D rigid blood flow
models, we introduce a 0D model on the 1D–3D interface. This auxiliary system of ODEs models
the kinematics of an elastic sphere under small deformations. The studies show that the model acts
as an absorbing device and, to a certain extent, mimics the missing compliance of the 3D model.
The system of ODEs depends on several parameters. The paper demonstrated that these parameters
can be chosen based on simple mechanical principles and the choice appears to be close to optimal.
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Numerical experiments show that for a smooth waveform the multiscale model is able to preserve
the flow rate and cross-section area at the interface with a high level of accuracy. For the waveform
with discontinuity, oscillations are not removed completely, but the principle information is correctly
preserved. We use a domain-decomposition approach to iterate between subproblems for the coupled
solution. The convergence of the iterations was found sensitive to the value of the parameter C in
the 0D problem. Further research is required to search for a more robust iterative algorithm. At
the same time, a Krylov subspace method with a special ILU type preconditioner was very efficient
to solve linearized 3D flow problem in such geometries like a reconstructed right coronary artery.
Treating walls of the 3D model rigid is crucial for gaining this 3D solver efficiency.
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3D
mesh 1 mesh 2 mesh 3

max
t∈[0,T ]

‖u− uh‖L2 8.00E-002 2.02E-002 (1.98) 4.50E-003 (2.17)

(
∫ T

0
‖∇(u− uh)‖2dt)

1
2 3.90E-001 1.05E-001 (1.89) 2.77E-002 (1.92)

(
∫ T

0
‖u− uh‖2dt)

1
2 8.10E-002 2.10E-002 (1.94) 5.32E-003 (1.98)

(
∫ T

0
‖p− ph‖2dt)

1
2 1.11E-003 2.72E-004 (2.03) 6.79E-005 (2.01)

Nglob 11.2 14.5 40.5
Nlin 8.2 15.4 30.4
χ 0.4 0.4 0.3

Table 1: Error norms in Ω3D for the test with the analytical solution. Error reduction orders are
given in brackets.

1D
mesh 1 mesh 2 mesh 3

(
∫ T

0
‖u− uh‖2dt)

1
2 1.11E-000 2.59E-001 (2.10) 6.66E-002 (1.96)

(
∫ T

0
‖S − Sh‖2dt)

1
2 3.48E-004 7.03E-005 (2.31) 1.86E-005 (1.92)

Table 2: Error norms in Ω1D for the test with the analytical solution. Error reduction orders are
given in brackets.

χ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
mesh 1 - - 58.3 26.5 16.7 12.8 11.2 15.4 24.4 48.9
mesh 2 43.3 41.4 27.5 21.0 17.4 14.9 14.5 21.2 32.7 64.4
mesh 3 - - 79.5 72.2 65.4 58.1 48.2 40.5 41.6 76.0

Table 3: Average number of global iterations Nglob depending on the relaxation parameter χ for the
test with the analytical solution for a sequence of refining meshes.

c0, cm/s C, g−1·cm4·s2 R1D0D +R0D3D, g·cm−4·s−1

350 2.5E-6 111.5
700 6.3E-7 223
1050 2.9E-7 334

Table 4: Parameters of 0D model depending on the elasticity of 1D vessel.
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10 100

ω
C=2.5E-5 C=6.3E-6 C=2.9E-6 C=2.5E-4 C=6.3E-5 C=2.9E-5
c = 350cm/s c = 700cm/s c = 1050cm/s c = 350cm/s c = 700cm/s c = 1050cm/s

0.9 - - 34.7 - - -
0.7 - 20.2 14.4 - - -
0.5 27.1 17.3 13.4 - - -
0.3 20.9 16.0 17.6 - - -
0.1 28.7 33.3 29.9 - 23.2 22.6
0.09 - 23.4 23.2
0.07 29.3 24.3 23.2
0.05 23.9 25.5 24.1
0.03 25.9 30.2 37.6
0.01 48.3 84.04 98.0

Table 5: Average number of global iteration depending on the relaxation parameter ω for C increased
10 or 100 times, and c = 350, 700, 1050 cm/s.
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