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a b s t r a c t 

The paper develops a method for the numerical simulation of a free-surface flow of incompressible vis- 

cous fluid around a streamlined body. The body is a rigid stationary construction partially submerged in 

the fluid. The application we are interested in the paper is a flow around a surface mounted offshore oil 

platform. The numerical method builds on a hybrid finite volume / finite difference discretization using 

adaptive octree cubic meshes. The mesh is dynamically refined towards the free surface and the construc- 

tion. Special care is taken to devise a discretization for the case of curvilinear boundaries and interfaces 

immersed in the octree Cartesian background computational mesh. To demonstrate the accuracy of the 

method, we show the results for two benchmark problems: the sloshing 3D container and the channel 

laminar flow passing the 3D cylinder of circular cross-section. Further, we simulate numerically a flow 

with surface waves around an offshore oil platform for the realistic set of geophysical data. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Free surface flows passing partially submerged objects are com-

mon in nature and engineering applications. The examples in-

clude water flows around bridge piers, ship bodies, water plants,

or costal constructions. A mathematical model of such phenom-

ena includes fluid dynamics equations and an evolution equation

for the free surface. These equations can be posed in a domain of

complex geometry. Handling the equations and the geometry nu-

merically in an efficient and accurate way constitutes the major

challenge for a CFD method applied to simulate free surface flows

passing submerged obstacles. Depending on the applications, the

fluid and free surface equations can be coupled to other mathe-

matical models of transport, elasticity, etc. Thus, a reliable fast and

accurate solver is desirable. 

The previous studies of free surface flows passing submerged

bodies include the simulation of Euler flows around hydrofoils
� Supported by Russian Science Foundation through the grant 14-11-00434. 
∗ Corresponding author. 

E-mail address: molshan@math.uh.edu (M.A. Olshanskii). 

t  

f  

g  

[  

http://dx.doi.org/10.1016/j.compfluid.2017.02.007 

0045-7930/© 2017 Elsevier Ltd. All rights reserved. 
17] , a boundary element method with the Lagrangian treatment

f free surface evolution [21] , a non-body conformal grid finite dif-

erence method for compressible flows [15] , a stabilized finite ele-

ent method for fluid equations in ALE form [34] , and other FEM-

ased ALE techniques for fluid-structure interaction described in

2] . The variants of the immersed boundary method [30,37] for the

ree surface flows were discussed in [26,50] . Analytical and semi-

nalytical solutions of the free surface flows around specific sub-

erged bodies were studied in [7,47] . 

The method developed in this paper is based on a hybrid

iscretization using octree Cartesian background meshes. Octree

eshes enjoy a growing reliance in scientific computing commu-

ity due to the simple Cartesian structure and embedded hierar-

hy, which makes mesh adaptation, reconstruction and data ac-

ess fast and easy. In particular, octree meshes can be dynamically

dapted towards the free surface. The adaptation can be also based

n various error indicators. Fast remeshing with octree grids makes

hem a natural choice for the simulation of moving interfaces and

ree surface flows, see, e.g., [14,27,28,32,40,44] , as well as more

eneral non-Newtonian and high-speed Newtonian flows, see, e.g.,

4,6,20,35,39,51] . The Cartesian structure of octree meshes requires,

http://dx.doi.org/10.1016/j.compfluid.2017.02.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.02.007&domain=pdf
http://dx.doi.org/10.13039/501100006769
mailto:molshan@math.uh.edu
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p

owever, a special technique for handling curvilinear boundaries

nd interfaces, since the mesh itself provides only the first order

eometric accuracy in this case. 

Using octree grids for the simulation of flows over partially sub-

erged bodies gives the advantage of better local resolution of the

ree surface and fluid interaction with the body. For the more ac-

urate treatment of the equations near the curvilinear boundary of

he construction, we immerse the rigid object in the background

esh and construct the second order approximation of the fluid

nd free surface equations in the cut cells. The level-set method is

sed to recover the evolution of the free surface. Other important

ngredients of our approach are the semi-Lagrangian characteristic

ethod for the level-set equations on the dynamic octree meshes

rom [46] , and the splitting method for the fluid equations on the

ctree meshes from [35] with filtering. In that paper, the method

as studied for enclosed incompressible viscous flows in cavities

nd over bluff bodies. 

Compared to well-studied higher-order finite volume and finite

ifference discretizations on uniform grids, the schemes that ex-

loit adaptivity properties of octree meshes often pay the price

f lower accuracy and higher numerical dissipation. This happens

ue to the presence of hanging nodes on irregular interfaces and

on-uniform mesh size, which require interpolation of unknowns

nd make impossible certain cancellations of discretization errors.

uch error cancellations take place for uniform grid due to the

tencil symmetry. To overcome this loss of accuracy, we operate

ith a suitable sets of nodes and least-square minimizing inter-

olants. Further, we validate our approach by performing a series

f numerical experiments. First, we compute a channel flow past

 3D circular cylinder. Second, we simulate the sloshing of water

n a 3D tank subject to periodic horizontal excitation. The criti-

al statistics, which are drag, lift coefficients for the first test and

ater levels for the second test, are compared against reference

ata found in the literature. The success of the numerical method

or both benchmark problems demonstrates its ability to accurately

imulate incompressible viscous free-surface flows and flows pass-

ng streamlined bodies with curvilinear boundaries. Therefore, we

pply the method to simulate the water flow with surface waves

round an offshore oil platform rigidly mounted in the Kara sea

ffshore. The platform is a reconstruction of a currently operating

nit. The sea waves runup reproduces the realistic weather sce-

ario in the region of the Kara sea offshore. The statistics of inter-

st are water levels at the platform and forces experienced by the

onstruction. 

The rest of the paper is organized as follows. Section 2 reviews

he mathematical model. Section 3.1 presents the splitting method

or the numerical time integration. Section 3.2 discusses the de-

ails of the discretization on the gradely refined octree meshes. In

ection 3.3 we devise the numerical treatment of the curvilinear

oundaries embedded in the background mesh. Section 4 collects

he results of numerical experiments. 

. Mathematical model 

Consider a Newtonian incompressible fluid flow in a bounded

ime-dependent domain �(t) ∈ R 

3 for t ∈ (0, T ]. The fluid dynam-

cs is governed by the incompressible Navier–Stokes equations 

 

 

 

ρ

(
∂u 

∂t 
+ (u · ∇) u 

)
− div σ(u , p) = g 

∇ · u = 0 

in �(t) , t ∈ (0 , T ] , 

(1) 

here σ(u , p) = ν[ ∇u + (∇u ) T ] − p I is the stress tensor of the

uid, u is the velocity vector field, p is the kinematic pressure, g

s the external force (e.g., gravity), ρ is the density, and ν is the
inematic viscosity. At the initial time t = 0 the domain and the

elocity field are known: 

(0) = �0 , u | t=0 = u 0 , ∇ · u 0 = 0 . (2)

e assume that ∂�(t) = �D ∪ �(t) ∪ �out ∪ �in , where �D is the

tatic boundary(walls), �( t ) is the free surface of fluid, �in , �out 

re inflow and outflow parts of the boundary, respectively. Note,

hat �D , �in , �out may vary in time, in general. We assume the free

urface �( t ) passively evolves with the normal velocity of fluid, i.e.,

he following kinematic condition is valid 

 � = u · n on �(t) , (3)

here n is the normal vector for �( t ) and v � is the normal velocity

f �( t ). Since the free surface flows we interested in this paper

ave large Weber numbers, we ignore the capillary forces and the

oundary condition on �( t ) reads 

(u , p) n = 0 on �(t) . (4)

On the static part of the flow boundary, we assume the velocity

eld satisfies either no-slip boundary condition 

 = 0 on �D , (5) 

r no-penetration and free-slip boundary conditions: 

 · n = 0 and 

∂(u · t i ) 

∂n 

= 0 , i = 1 , 2 , on �D , (6)

here t i and n are tangential and normal vectors on �D . We

hall use the generic notation Bu | �D 
to denote boundary condi-

ions (5) or (6) on �D . We assume that u is given on �in and

(u , p) n = 0 on �out . 

For computational purposes, we shall employ the implicit def-

nition of the free surface evolution with the help of an indicator

unction. Let �( t ) be given as the zero level of a globally defined

ipschitz continuous level set function ϕ( t , x ) such that 

(t, x ) = 

{ 

< 0 if x ∈ �(t) 

> 0 if x ∈ R 

3 \ �(t) 
= 0 if x ∈ �(t) 

for all t ∈ [0 , T ] . 

he initial condition (2) defines ϕ(0, x ). The kinematic condition

3) implies that for t > 0 the level set function can be found as

he solution to the transport equation [36] : 

∂ϕ 

∂t 
+ ̃

 u · ∇ϕ = 0 in R 

3 × (0 , T ] , (7)

here ˜ u is any (divergence-free) smooth velocity field such that
 

 = u on �( t ). 

A numerical method studied in this paper solves the system

f equations, boundary and initial conditions (1) –(7) . The implicit

efinition of �( t ) as zero level of a globally defined function ϕ
eads to numerical algorithms which can easily handle complex

opological changes of the free surface. The level set function pro-

ides an easy access to useful geometric characteristics of �( t ). For

nstance, the unit outward normal to �( t ) is n = ∇ ϕ/ |∇ ϕ| , and the

urface curvature is κ = ∇ · n . From the numerical point of view, it

s often beneficial if the level set function possesses the signed dis-

ance property, i.e. it satisfies the Eikonal equation 

∇ϕ| = 1 . (8) 

. Numerical method 

The section describes the key ingredients of our numerical ap-

roach. 
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Fig. 1. An octree mesh (left) and its representation as a tree (right). 
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3.1. Numerical time integration 

We consider a semi-implicit spitting method based on the

semi-Lagrangian approach for the level-set function evolution and

a hybrid finite volume / finite difference solvers for the convection-

diffusion equations and the Poisson equation for pressure. The al-

gorithm is built on the well-known splitting procedure due to

Chorin, Yanenko, Pironneau and others, see, for example, [9,38] .

For the sake of presentation simplicity, in this section we ignore

the spatial discretization. Important implementation details and

the spatial discretization will be addressed in the next section. 

We adopt the notation u 

n , p n , ϕn for approximations to the ve-

locity field, the pressure, and the level set function at t = t n . Func-

tion ϕn implicitly defines an approximation to fluid domain at time

 = t n through �n := { x ∈ R 

3 : ϕ 

n (x ) < 0 } . 
Initial conditions define u 

0 = u (t 0 ) and ϕ 

0 = ϕ(t 0 ) . For n =
0 , 1 , . . . and given u 

n , ϕn such that div u 

n = 0 , we find u 

n +1 , p n +1 ,

ϕ 

n +1 in several steps: 

The semi-Lagrangian step: �n → �n +1 . Consider the closest-

point extension of the velocity at the boundary to the exterior

of fluid domain: u 

n | �n 
→ u 

n | 
R 3 

. In practice, the extension is per-

formed to a bulk computational domain, rather than R 

3 . For every

y ∈ R 

3 , solve the characteristic equation backward in time 

∂x (τ ) 

∂τ
= ̃

 u 

n (x (τ )) , x (t n +1 ) = y , for τ ∈ [ t n +1 , t n ] . (9)

The mapping X : y → x ( t n ) defines an isomorphism on R 

3 . Now, set

ϕ 

n +1 (y ) = ϕ 

n (X (y )) . (10)

For the numerical integration of (9) we apply the trapezoidal rule

x (t n + 


t 

2 

) = x 0 − 
t 

2 

u (x 0 , t n ) , x (t n ) = x 0 − 
t ̃  u 

n + 1 2 , (11)

with 
t = t n − t n +1 . Since the velocity field is not given a priori ,

but recovered numerically at times t k , k = 0 , . . . , n, the linear ex-

trapolation is used: 

 u 

n + 1 2 = ( 1 + η) u ( x ( t n + 
t/ 2 ) , t n ) − ηu ( x ( t n + 
t/ 2 ) , t n −1 ) , 

η = 

t n +1 − t n 

t n − t n −1 

. 

To improve the accuracy of the semi-Lagrangian step, we apply the

back-and-forth error compensation and correction (BFECC) tech-

nique from [11,12] : The same method is applied to integrate nu-

merically the level-set equation forward in time to obtain an ap-

proximation to the error at time t n . Further, the backward integra-

tion is performed one more time, but with the corrected level-set

function values at time t n . A tricubic interpolation is used to pre-

scribe a value to ϕn at X ( y ). The interpolation is not monotone;

therefore, a limiter is introduced to reduce oscillations. For smooth

solutions, the method demonstrated second order of convergence

for dynamically reconstructed meshes. Further details of the semi-

Lagrangian BFECC method with a limiter on the octree grids can

be found in [46] . 

After the completion of the semi-Lagrangian step, we perform

the re-initialization of the level set function to satisfy equation (8) .

For this purpose, we use an algorithm from [31] based on the

marching cubes method for free surface triangulation and a higher

order closest point method. The numerical integration of (9) may

also cause a divergence (loss or gain) of the fluid volume. So we

perform the volume correction with the help of the procedure de-

scribed in [31] . We note that the use of the BFECC method makes

the re-initialization and volume correction steps less critical com-

pared to the standard linear semi-Lagrangian method, but still they

are necessary for long-time simulations. 

Remeshing . Given the new fluid domain, we update and adapt

the grid to account for the new position of the free surface. The
daptation is based on the information about the distance to the

ree surface provided by ϕ 

n +1 . 

Re-interpolation . After remeshing we re-interpolate all discrete

ariables to the new grid. The re-interpolated velocity field is de-

ned on the bulk computational domain (due to the extension pro-

edure at the beginning of the level-set part). 

Next we handle viscous and inertia terms and project the veloc-

ty into (discretely) divergence-free functions subspace and recover

he new pressure. We denote �1 = �D ∪ �in , �2 = �(t n +1 ) ∪ �out . 

The convection-diffusion step : Solve for ˜ u 

n +1 in �n +1 : 

 

 

 

α˜ u n +1 + βu n + γ u n −1 

� t n + (u 

n + ξ (u 

n −u 

n −1 )) · ∇ ̃

 u 

n +1 −ν
˜ u 

n +1 = −∇p n ,

˜ u 

n +1 | �in 
= u in , B ̃

 u 

n +1 | �D 
= 0 , ( ∇ ̃

 u 

n +1 + ∇ ̃

 u 

n +1 
T 

) n 

∣∣∣
�2 

= 0 . 

(12)

ere ξ = � t n / � t n −1 , α = 1 + ξ/ (ξ + 1) , β = −(ξ + 1) , γ =
2 / (ξ + 1) . 

The projection step : Project ˜ u 

n +1 on the divergence-free space to

ecover u 

n +1 : 
 

 

 

α(u 

n +1 − ˜ u 

n +1 ) / � t n − ∇q = 0 , 

div u 

n +1 = 0 , 

n · u 

n +1 | �1 
= 0 , q | �2 

= 0 . 

(13)

he problem (13) is reduced to the Poisson problem for q : 
 

 

 

 

 

−
q = α/ � t n div ̃  u 

n +1 , 

q | �2 
= 0 , 

∂q 

∂n 

∣∣∣∣
�1 

= 0 . 
(14)

inally, update the pressure: 

p n +1 = p n − q + νdiv ̃  u 

n +1 . (15)

he ‘extra’ divergence term in the pressure correction step (15) is

sed to reduce numerical boundary layers in the pressure, see,

.g., [16,41] . In this paper we do not address the problem of build-

ng a higher order accurate (with respect to the time step) stable

ressure projection method for the case of open boundary condi-

ions, cf. [16,24,35] . 

.2. Spatial discretization 

For the spatial discretization we use octree cubic meshes, which

llow fast dynamic mesh adaptation based on geometric or error

ndicators. 

Consider a graded octree mesh with cubic cells, see Fig. 1 . An

ctree mesh is graded if the size of cells sharing (a part of) an edge

r a face can differ in size only by the factor of two. This restric-

ion simplifies support of mesh connectivity and the construction

f discrete differential operators. We use the staggered location of

elocity and pressure unknowns. The pressure degrees of freedom

re assigned to cells centers and velocity variables are located at
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Fig. 2. Left: u h ( y ) is defined by a linear interpolation based on the fan triangulation with the center in x V , i.e. interpolation of u h ( x V ), u h ( x 1 ), u h ( x 10 ) in this example. Right: 

the shaded region is the control volume V ′ associated with face F shared by cells of different sizes. 
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ells faces in such a way that every face stores normal velocity flux.

f a face is shared by cells from different grid levels, then velocity

egrees of freedom are assigned to the faces centers of fine grid

ells (in the case of graded octree mesh, the corresponding face of

he coarse grid cell holds 4 unknowns). 

First, we describe how the advection and diffusion terms are

reated in the interior of the computational domain. Several au-

hors, e.g., [28,49] , adopted semi-Lagrangian method to handle

he time derivative and the inertia terms in finite difference dis-

retizations of the momentum equations on the octree meshes. In

35] we found that semi-Lagrangian method on octree meshes can

e either excessively diffusive or prone to instabilities for flows

assing submerged objects. As an alternative, we consider a higher

rder upwind finite volume scheme on the graded octree meshes,

hich is both stable and accurate. Further details and the verifica-

ion of the formal accuracy order of method can be found in the-

is [45] . For the completeness of the presentation we describe the

ethod below. 

In several places further in the text we need an approximation

f the grid velocity function a in an arbitrary point of the compu-

ational domain. For a given point y in the computational domain

e evaluate a ( y ) as follows. Assume y belongs to a cell V and we

re interested in interpolating the x -component of velocity to y , i.e.

 x ( y ). Consider a plane P such that y ∈ P and P is orthogonal to

he Ox axis. Let x V ∈ P be the orthogonal projection of the center

f V on P and x k , k = 1 , . . . , m, m ≤ 12, are the projections of cen-

ers of all cells sharing a face with V . The values a x ( x V ) and a x ( x k )

an be defined by a linear interpolation of the velocity values at

odes where a x is collocated. Once a x ( x V ) and a x ( x k ), k = 1 , . . . , m,

re computed, we consider the triangle fan based on x V and x k ,

 = 1 , . . . , m, as shown in Fig. 2 (left). Now a x ( y ) is defined by a

inear interpolation between the values of a x in the vertices of the

riangle, which contains y . The proposed interpolation procedure is

aster and produces smaller stencil compared to a straightforward

east squares fitting of a polynomial to velocity values in a set of

odes. 

For the incompressible fluid we treat the inertia terms in the

conservative’ form u · ∇u = div (u � u ) , where the vector div op-

rator applies row-wise. Eq. (12) of the splitting method linearizes

he nonlinear terms, so that we need to approximate div ( u �a ) for

 given nodal velocity a = (a x , a y , a z ) T and unknown nodal velocity

 = (u, v , w ) T . Below we discuss the FV discretization of div ( u a ).

ther two components of div ( u �a ) are treated similarly. 

Consider the velocity component u at the x -node x F , which is

he barycenter of the face F . If F is shared by the cells of different
 t  
izes, we define the control volume V 

′ as shown in Fig. 2 (right). If

 is shared by the cells of the same size, then V 

′ is defined in the

bvious way by merging two half-cells. Let F(V ′ ) denote the set of

ll faces for V 

′ . We have 

iv (u a )(x F ) ≈ | V 

′ | −1 
∑ 

F ′ ∈F(V ′ ) 
| F ′ | (a · n )(x F ′ ) u (x F ′ ) . (16)

e need to define advective fluxes at the barycenters x F ′ of faces

 

′ ∈ F(V ′ ) . 
First, we discuss the approximation of the advective flux at F ′ ∈

(V ′ ) orthogonal to F . Consider F ′ orthogonal to Oy so that a · n =
 y . If two cells sharing F have the same size, then (a · n )(x F ′ ) is

he simple averaging of a y values from the two neighboring nodes.

therwise a y (x F ′ ) is computed by the interpolation procedure de-

cribed above. To define u (x F ′ ) , we take four ‘reference’ points

 x −1 , x 1 , x 2 , x 0 := x F ) as shown in Fig. 3 (left). Note that x −1 , x 1 ,

nd x 2 are not necessarily grid nodes. Values u −1 , u 1 , and u 2 in

hese nodes are then defined based on the following interpolation

rocedure. 

If the reference point belongs to a cell smaller than the cell of

 0 (points x 1 and x 2 in the figure), then the linear interpolation

etween the two barycenters of adjunct faces is used. If the node

elongs to a cell larger than the cell of x 0 (point x −1 in the figure),

hen one apply the same interpolation procedure as we used above

o define the values of a . The only difference is that instead of the

inear interpolation using the fan triangulation for x V we use the

eighted least-square method to fit the velocity values u ( x V ) and

 ( x k ) by the second order polynomial Q 2 , and further set u (x −1 ) :=
 2 (x −1 ) . 

If a y ( x F ) > 0, the u -values in reference points x −1 , x 0 , x 1 are

sed to approximate the flux. Otherwise, the u -values in the refer-

nce points x 0 , x 1 , x 2 are needed. Assume a y ( x F ) < 0, we set 

 (x F ′ ) = D 

−1 
[
u 0 (hH 

2 − h 

2 H) + u 1 (rH 

2 + r 2 H) − u 2 (hr 2 + h 

2 r) 

+ λ
x 2 (u 0 (H − h ) − u 1 (H + r) + u 2 (r + h )) 
]
, (17) 

here D = (r + h )(H − r)(H + r) . A family of formally second order

pwind discretization is parameterized by λ ∈ R . We found that

= 0 (defining the QUICK scheme [25] on uniform meshes) pro-

uces the most accurate results on octree meshes and we use this

alue for numerical experiments. 

Now, consider the approximation of the advective flux at F ′ ∈
(V ′ ) parallel to F , hence a · n = a x . 

After prescribing a x (x F ′ ) value with the help of the linear in-

erpolation at the corresponding faces of the control volume, we
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Fig. 3. Left: reference points for the upwind approximation of advection. This illustration is for the derivative tangential to a face F , where the velocity degree of freedom is 

located. Right: reference points for the diffusion flux approximation. 
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define u (x F ′ ) using (17) . The only differences with the treatment

of the face F ′ orthogonal to Oy are the following: a x is defined in

x (no interpolation required), and the reference points x −1 , x 1 , x 2 
are always lying on cells x -faces (although not necessarily in the

centers and one has to do the interpolation). 

Next, we explain how the discretization of viscous terms is

computed. Consider a node x holding the velocity component u

and lying on a face F and define a cubic control volume V 

′ such

that x is the center of V 

′ and F is a middle cross section of V 

′ . Note

that the control volumes for x -nodes do not overlap, but for locally

refined mesh they do not necessarily cover the whole bulk domain.

Hence the dicretization of the viscous terms is a finite difference

method, rather than a finite volume method. We have 

(
h u )(x ) ≈ | V 

′ | −1 
∑ 

F ′ ∈F(V ′ ) 
| F ′ | (∇ h u · n )(y F ′ ) . (18)

To approximate the diffusion flux at the center y F ′ of F ′ ∈ F(V ′ ) ,
we take four reference points ( x −1 , x 0 , x 1 , x 2 ) as shown in

Fig. 3 (right). Velocity values u −1 , u 0 , u 1 , and u 2 are assigned to

reference points same way as for the advective terms described

above. Using the notation from Fig. 3 , the formal third order ap-

proximation of the diffusion flux density ( ∇u · n ) can be written

out as 

(∇u · n ) ≈ D 

−1 
[
(h 

2 H 

3 + h 

3 R 

2 − H 

3 R 

2 + h 

2 R 

3 − H 

2 R 

3 − h 

3 H 

2 ) u 0 

+ (H 

3 R 

2 + r 3 R 

2 + H 

2 R 

3 − r 2 R 

3 − H 

3 r 2 − H 

2 r 3 ) u 1 

+ (h 

3 r 2 + h 

2 r 3 − h 

3 R 

2 − r 3 R 

2 − h 

2 R 

3 + r 2 R 

3 ) u −1 

+ (h 

3 H 

2 − h 

2 H 

3 − h 

3 r 2 + H 

3 r 2 − h 

2 r 3 + H 

2 r 3 ) u 2 

]
, 

(19)

with D = (H − h )(h + r)(H + r)(h + R )(H + R )(R − r) . If the refer-

ence point in x 2 is not available, we use the point x −2 . 

To enforce incompressibility condition, we approximate div u in

the center x V of a grid cell V . We define the grid divergence oper-

ator by 

( div h u h )(x V ) = | V | −1 
∑ 

F ∈F(V ) 

| F | (u h · n )(x F ) . (20)

Thanks to the staggered location of velocity nodes, the fluxes

( u h · n )( x F ) are well-defined. 

One way to introduce the discrete gradient is to define it as

the adjoint of the discrete divergence. We found that an approx-

imation of ∇ h based on the formal Taylor expansions gives more

accurate results. For every internal face we assign the correspond-

ing component of ∇ h p as follows. Since the octree mesh is graded,

there can be only two geometric cases. If a face is shared by two

equal-size cells, then the central difference approximation is used.

Otherwise, for the approximation of p x at the face center node y

one considers the centers of five surrounding cells x 1 , . . . , x 5 and

expand the pressure value p ( x i ) with respect to p ( y ): 

p(x ) = p(y ) + ∇p(y ) · (x − y ) + O (| x − y | 2 ) . 
i i i 
eglecting the second-order terms, we obtain the following over-

etermined system: 
 

 

 

 

 

1 −
/ 2 
/ 4 
/ 4 

1 
/ 4 0 0 

1 
/ 4 
/ 2 0 

1 
/ 4 0 
/ 2 

1 
/ 4 
/ 2 
/ 2 

⎞ ⎟ ⎟ ⎟ ⎠ 

⎛ ⎜ ⎜ ⎝ 

p(y ) 

p x (y ) 

p y (y ) 

p z (y ) 

⎞ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎜ ⎝ 

p(x 1 ) 

p(x 2 ) 

p(x 3 ) 

p(x 4 ) 

p(x 5 ) 

⎞ ⎟ ⎟ ⎟ ⎠ 

, (21)

here 
 ≡ 
x . The least squares solution of (21) gives the stencil

or the x -component of the gradient: 

p x (y ) ≈ 1 

3

(p 2 + p 3 + p 4 + p 5 − 4 p 1 ) . (22)

he superposition of the discrete gradient and divergence oper-

tors generally leads to the non-symmetric matrix for the pres-

ure problem. However, the corresponding linear algebraic sys-

ems are solved efficiently by a Krylov subspace method with a

wo-parameter threshold ILU preconditioner [22,23] . We note that

n general non-symmetric FV approximations of diffusion equa-

ions may lead to the lack of coercivity and hence to stability is-

ues, cf. [10] , although symmetric and coercive approximations can

roduce unstable solutions as well, cf. Fig. 4 in [10] . The previ-

us studies, e.g., [28,32,35,39] , show that using the present non-

ymmetric approximations of the pressure Poisson equation does

ot disrupt the stability of projection methods. 

It was noted in [35] for octree staggered grids, that the discrete

elmholtz decomposition, which essentially constitutes the projec-

ion step of the splitting scheme, is unstable due to oscillatory spu-

ious velocity modes tailored to course-to-fine grid interfaces. If the

iscosity is sufficiently large, then such modes are suppressed, oth-

rwise they propagate and destroy the accuracy of numerical solu-

ion. Following that paper we apply a technique, which eliminates

he spurious modes and improves the accuracy of numerical solu-

ion significantly. 

The constructed spatial discretization is hybrid: a finite volume

ethod was used to handle the incompressibility constraint and

nertia terms, while a finite difference method was applied to dif-

usion terms and pressure gradient. To solve the velocity equation

n each time step, we use BiCGStab(2) [43] iteration with a two-

arameter threshold ILU preconditioner [22,23] . This combination

f the Krylov subspace method and the preconditioner resulted in

 robust and efficient solver. 

.3. Boundary conditions and curvilinear boundaries 

The discretization method in Section 3.2 assumes that velocity

alues in all nodes forming flux stencils are given. When all the

ubic volumes in the stencil are internal, then all corresponding

elocity values are treated as active degrees of freedom. Close-to-

oundary cells require special treatment. Below we introduce such

 treatment when a curvilinear boundary is immersed in the back-

round octree mesh. 

For the computational purposes, the static boundary is defined

ith the help of a signed distance function ϕs . We assume that
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Fig. 4. Internal (blue), boundary (red) and inactive (white) nodes near the curvilin- 

ear boundary. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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t bdr 1  
he static boundary consists of several smooth components. Each

omponent is described by its own ϕs (domains of definition of the

evel set functions may overlap). This is similar to the description

f the free surface, but ϕs is defined by the domain geometry and

oes not vary in time. We assume that ϕs < 0 in the fluid domain

, and ϕs > 0 in the exterior, so the boundary is given as the

ero isosurface of function ϕs . Denote by T h the background octree

esh, the collection of cubic volumes forming the tessellation of

he bulk computational domain. For each V ∈ T h , p V denotes the

arycenter of V . We divide T h into the sets of internal, boundary

nd external cells: 

 int := { V ∈ T h : ϕ s (p V ) ≤ −h thr } , 
 bdr := { V ∈ T h : ∃ K ∈ T int , s.t. V ∩ K � = ∅} , 
 ext := T h \ (T int ∪ T bdr ) , 

here h thr = h V / 10 is a threshold parameter. Based on this split-

ing we also divide all velocity nodes on T h into three groups. De-

ote by N h the collection of all velocity nodes from the bulk com-

utational mesh. The nodes on the boundary of the bulk domain

re not active. Any other node x ∈ N h has exactly two cells V 1 x and

 

2 
x such that x ∈ V̄ 1 x ∩ V̄ 2 x . Now we divide N h into the sets of inter-

al, boundary and external nodes: 

 int := { x ∈ N h : V 

1 
x ∈ T int and V 

2 
x ∈ T int } , 

 bdr := { x ∈ N h : V 

1 
x ∈ T bdr or V 

2 
x ∈ T bdr } , 

 ext := N h \ (N int ∪ N bdr ) . 

he velocity degrees of freedom are assigned to the internal nodes

nd boundary nodes, i.e. those from N int ∪ N bdr . There is a differ-

nce, however, how the method works for the nodes from N int and

 bdr : For each node from N int we have a set of algebraic equa-

ions derived in the previous section, while each node from N bdr 

eceives an auxiliary equation based on boundary conditions. The

odes from N ext are not active. This subdivision of velocity nodes

nto three groups based on the position of the immersed boundary

s illustrated in Fig. 4 (the figure shows a 2D mesh and only nodes

or the horizontal velocity component). 

Now we derive equations for the nodes from N bdr . For the

irichlet boundary condition u = u b on the immersed boundary,

his is done componentwise as follows. For each boundary node

 either interpolation or extrapolation procedure is performed de-

ending on the sign of ϕs ( x ). 

For ϕ 1 = ϕ s (x 1 ) > 0 (the node x 1 is outside the domain �) we

pply extrapolation, cf. Fig. 5 (left): 

 (x 1 ) = 

d 1 + ϕ 1 

d 1 
u b (x 

b 
1 ) −

ϕ 1 

d 1 
u (x 

v 
1 ) , (23)

here x b 
1 

is the closest boundary point to x 1 , d 1 = max (ϕ 1 , h V 1 )

s an outstep to the internal domain, and x v 
1 

is a virtual node be-

onging to line passing through x 1 and x b , and | x 1 − x v | = d 1 . The

1 1 
elocity value is interpolated to x v 1 from internal velocity degrees

f freedom. 

For ϕ 2 = ϕ s (x 2 ) < 0 (the node x 2 is inside the domain �) we

et 

 (x 2 ) = 

d 2 
d 2 − ϕ 2 

u b (x 

b 
2 ) −

ϕ 2 

d 2 − ϕ 2 

u (x 

v 
2 ) , (24)

here x b 
2 

is the closest boundary point to x 2 , d 2 = max (−ϕ 2 , h V 2 )

s an outstep to the external domain and x v 
2 

is a virtual node be-

onging to line (x 2 , x 
b 
2 
) , | x 2 − x v 2 | = d 2 . Again the velocity value is

nterpolated to x v 
2 

from internal velocity degrees of freedom. 

For the free-slip boundary condition we use the approach sim-

lar to the no-slip condition. Consider the boundary node x 1 and

he virtual point x v 
1 

with all velocity components u (x v 
1 
) interpo-

ated in it, see Fig. 5 (right). First, we write down the set of equa-

ions for x 1 assuming for a moment that all three components of

 are defined in x 1 . Thus, we seek for u ( x 1 ) such that interpolated

or extrapolated) boundary value u (x b 
1 
) has the normal component

anishing and tangential components equal to those in the internal

irtual node. This yields the following equations 
 

 

 

u (x 

b 
1 ) = 

d 1 
ϕ 1 + d 1 u (x 1 ) + 

ϕ 1 
ϕ 1 + d 1 u (x 

v 
1 ) , 

u (x 

b 
1 ) · n = 0 , 

u (x 

b 
1 ) − (u (x 

b 
1 ) · n ) n = u (x 

v 
1 ) − (u (x 

v 
1 ) · n ) n , 

here n is the unit normal vector for the boundary in point x b 
1 
. 

Substituting the first and the second equations in the third one,

e get the equation for u ( x 1 ): 

 (x 1 ) = u (x 

v 
1 ) −

ϕ 1 + d 1 
ϕ 1 

(u (x 

v 
1 ) · n ) n . (25)

he final equation tailored to the node x 1 follows by extracting

nly one equality from (25) . This equality corresponds to the com-

onent of u located at x 1 . 

The boundary condition (4) on the free surface and �out is de-

omposed into the homogeneous Neumann boundary condition for

he auxiliary velocity in the convection-diffusion step (12) and the

omogeneous Dirichlet boundary condition for the pressure cor-

ection variable q in (15) . For the pressure Dirichlet condition the

issing values at the barycenters of boundary cells are recovered

y the same technique as Dirichlet velocity values for the boundary

ith the no-slip condition. Therefore, the pressure field is known

n all close-to-free-boundary cells and the pressure update (15) is

ell defined in cells from T int , which did not belong to T int at time

 n . The Neumann velocity boundary condition is enforced in the

ame way as the slip-condition on �D . Of course, no-penetration

ondition does not apply in this case. 

Note that boundary nodes receive velocity values implicitly

hrough Eqs. (23) , (24) , or (25) . These equations are added to the

lobal system of algebraic equations. To obtain a complete system,

e need to discretize the momentum and continuity equations in

ll cut cells. To this end, we first extend the density and viscosity

oefficients by the same constant values from the cut cells to the

hole cubic cells. Next, we apply the “full-cell” expressions in (16),

18) , and (20) to define discrete operators for the cut cells. Due to

he linear extrapolation of boundary conditions, the resulting dif-

erences approximate the required differential operators. 

Poisson equation for the pressure correction q of the projection

tep involves degrees of freedom at pressure nodes, i.e. at barycen-

ers of cells from T h . We solve for the pressure degrees of freedom

nly for cells from T int . Thus, the discrete gradient is well defined

t all velocity nodes from N int with the help of the pressure correc-

ion values at T int . The discrete gradient at the nodes from N bdr for

2 is also well defined with the help of internal degrees of free-

om and zero Dirichlet values for the pressure correction in the

ree-boundary cells. To assign the gradient of the pressure correc-

ion to the nodes from N for � , we proceed as follows: From
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Fig. 5. Left: extrapolation of velocity values at the boundary node x 1 and interapolation at the boundary node x 2 near the curvilinear boundary; Right: extrapolation of the 

velocity values at the boundary node x 1 for the free-slip boundary condition. 
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(13) we get u 

n +1 = 

˜ u 

n +1 + � t n /α∇q . The variable ˜ u 

n +1 receives its

values in all nodes from N bdr during the predictor step (12) of the

splitting algorithm. Further we substitute the equality in the cor-

responding equations from (23) –(25) for u 

n +1 and this yields the

equation for ∇q in the boundary nodes. Further we build the pres-

sure Laplace operator as the superposition of the gradient (22) and

divergence (20) grid operators. 

Remark 1. A rigorous stability analysis of the hybrid method is an

open question. We note that stability of the semi-discrete scheme

from Section 3.1 (only discretization in time) for free-surface flows

was studied in [31] . The scheme was shown to conserve global

momentum and angular momentum, and based on that an energy

inequality was shown to hold. Thorough numerical studies of the

stability and numerical dissipation of the method for the case of

enclosed flows (no free boundary) and fitted boundary conditions

(no curvilinear boundaries) was done in [35] . In that paper, the

method was shown stable for a vast range of flows (from laminar

to developed turbulent); it was shown to have lower numerical dif-

fusion compared to some alternative approaches on octree meshes.

The numerical results of the present paper suggest that this stabil-

ity property extends to flow problems with free boundaries and

streamlined bodies. 

4. Numerical experiments 

Our first series of numerical experiments aims to assess the sta-

bility of the presented method, its lower dissipation and ability to

handle free surface evolution accurately. To this end, we consider

several standard benchmark problems. 

The first two benchmark tests deal with laminar flows around

a 3D cylinder of circular cross-section at Re = 20 and varying

Reynolds number. This problem does not require a dynamic adap-

tation of the octree mesh. Our goal here is to check the accuracy of

the scheme in a domain with curved boundary by comparing com-

puted drag and lift coefficients with those found in the literature.

These statistics are known to be sensitive to excessive numerical

dissipation of a numerical method. 

The lateral sloshing tank benchmark verifies the ability of the

scheme to reproduce complex dynamics of fluid free surface. The

correctly recovered free surface evolution after the termination of

excitation forces is another indicator of the scheme reliability and

low numerical dissipation. Dynamic mesh adaptation is very help-

ful in this problem. 

After validation of the numerical scheme, we apply it to simu-

late a water flow with surface waves around an oil platform rigidly

mounted in the Kara sea offshore. 

4.1. Flow around cylinder of circular cross-section 

The first numerical test is the laminar 3D channel flow around

a cylinder of circular cross-section. The problem was suggested as
 benchmark by Schäfer and Turek in [42] and further studied in,

.g., [5,6,19] . 

The flow domain is shown in Fig. 6 . The no-slip and no-

enetration boundary condition u = 0 is prescribed on the channel

alls and the cylinder surface. For the outflow boundary condi-

ions we put the normal component of the stress tensor equal zero

n �out . The parabolic velocity profile is set on the inflow bound-

ry: 

 = (0 , 0 , 16 ̃

 U xy (H − x )(H − y ) /H 

4 ) T on �in , 

ith H = 0 . 41 and a peak velocity ˜ U . The Reynolds number, Re =
−1 D ̃

 U , is defined based on the cylinder width D = 0 . 1 . The viscos-

ty coefficient ν is set to 10 −3 . We consider two benchmark tests

rom [42] : 

• Problem Z1: Steady flow with Re = 20 ( ̃  U = 0 . 45 ); 
• Problem Z3: Unsteady flow with varying Reynolds number for˜ U = 2 . 25 sin (πt/ 8) . 

The initial condition for both problems is u = 0 for t = 0 . 

The following statistics are of interest: 

• The difference 
p = p(x 2 ) − p(x 1 ) between the pressure values

in points x 1 = { 0 . 2 , 0 . 205 , 0 . 55 } and x 2 = { 0 . 2 , 0 . 205 , 0 . 45 } . 
• The drag coefficient given by an integral over the surface of the

cylinder S : 

C drag = 

2 

DH ̃

 U 

2 

∫ 
S 

(
ν
∂(u · t ) 

∂n 

n x − pn z 

)
ds. (26)

Here n = (n x , n y , n z ) T is the normal vector to the cylin-

der surface pointing to � and t = (−n z , 0 , n x ) 
T is a tangent

vector. 
• The lift coefficient given by an integral over the surface of the

cylinder: 

C lift = − 2 

DH ̃

 U 

2 

∫ 
S 

(
ν
∂(u · t ) 

∂n 

n z + pn x 

)
ds. (27)

The octree mesh is refined locally towards the channel walls

we set h wall = �/ 256 except the coarsest mesh where h wall =
/ 128 , � = 2 . 5 m is the length of the computational domain) and

he circular cylinder ( h min in this experiment denotes the mesh

ize near the cylinder). The cutaway of the mesh with h min = �/ 64

nd h max = �/ 1024 is shown in Fig. 7 . 

To compute the drag and lift coefficients, we replace the surface

ntegrals in (26) and (27) by integration over the whole domain

6,19] : Assume u = (u, v , w ) T and p is the Navier–Stokes solution

n a fixed domain �, then applying the integration by parts one



K.D. Nikitin et al. / Computers and Fluids 148 (2017) 56–68 63 

Fig. 6. Computational domain for flow around cylinder of circular cross-section. 

Fig. 7. The cutaway of the grid at y = 0 . 205 for h max = �/ 64 and h min = �/ 1024 . 
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Table 1 

The number of velocity and pressure d.o.f. 

for different meshes for problem Z1. 

h min h max u d.o.f. p d.o.f. 

� /128 � /64 175 ,126 65 ,002 

� /256 � /64 855 ,529 304 ,395 

� /512 � /64 925 ,177 338 ,997 

� /1024 � /64 1346577 524 ,983 

e  

r  

U  

a

a  

o  

d  

t

 

T  

a  

m  

m  

8  

s  
hecks the following identities: 

C drag = ̃

 C 
∫ 
�

[(
∂w 

∂t 
+ ( u · ∇ ) w 

)
ϕ + ν∇w · ∇ϕ − p∂ z ϕ 

]
d x 

C lift = ̃

 C 
∫ 
�

[(
∂u 

∂t 
+ ( u · ∇ ) u 

)
ϕ + ν∇u · ∇ϕ − p∂ x ϕ 

]
d x , 

(28) 

 

 = 

2 

DH ̃  U 2 
, for any ϕ ∈ H 

1 ( �) such that ϕ| S = 1 and ϕ| ∂�/S = 0 . The

ccuracy of evaluation of (28) for a numerical solution depends on

he regularity of ϕ. In our numerical scheme ϕ is defined in pres-

ure nodes as the discrete harmonic function solving div h ∇ h ϕ = 0 .

he derivatives in (28) are approximated with the second order of

ccuracy. Using the volume based formulas (28) gives more accu-

ate values of drag and lift coefficients compared to (26) and (27) ,

f the Navier–Stokes solution is sufficiently smooth, see [6] . 

The numerical solutions to problem Z1 were computed on a se-

uence of locally refined meshes, see Table 1 for the information

f the corresponding discrete space dimensions. Note that we re-

ne the mesh sequence towards the cylinder and keep it coarser

n the wake. Such refinement is known to be crucial for accurate

omputation of the statistics of interest, see, for example [6,35] . 

The reference [42] collects several DNS results based on various

nite element, finite volume discretizations of the Navier–Stokes
quations and the Lattice Boltzmann method. One can find there

eference intervals where the statistics of interest should converge.

sing a higher order finite element method and locally refined

daptive meshes, more accurate reference values of C drag and C lift 
re found in [6] for problem Z1. For a sequence of locally refined

ctree meshes, Table 2 demonstrates the convergence of computed

rag and lift coefficients, and pressure drop value to reference in-

ervals. 

For problem Z3 less accurate reference data is available.

able 3 summarizes the results computed by the present method

nd those available in the literature [1,42] . The values of

ax C drag , max C lift and min C lift are the maximum drag and maxi-

um/minimum lift coefficients over the whole time interval t ∈ [0,

], the pressure drop 
p is computed at t = 8 . The most sensitive

tatistics are C and 
p . Table 3 shows their convergence to the
lift 
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Fig. 8. Computed drag (left) and lift (right) coefficients dependence on time versus reference data from [1] . 

Table 2 

Problem Z1: convergence of drag, lift, and pressure drop to ref- 

erence intervals. 

h min h max C drag C lift 
p 

� /128 � /64 3 .07235 −0.019821 0 .13840 

� /256 � /64 6 .20151 0 .00778 0 .15961 

� /512 � /64 6 .15078 0 .00962 0 .16298 

� /1024 � /64 6 .14193 0 .00990 0 .16636 

Braack & Richter 6 .18533 0 .009401 

Schäfer & Turek 6 .05–6.25 0 .008–0.01 0 .165–0.175 
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Table 4 

Dimensional and non-dimensional parameters in the sloshing 

benchmark. 

Value Dimensional Non-dimensional 

Lengths D = 0 . 3 m 

˜ D = 1 . 0 

H = 0 . 1 m 

˜ H = 0 . 3333 

W = 0 . 8 m 

˜ W = 2 . 6667 

Frequency f = 0 . 89 s −1 ˜ f = 1 . 0 

Acceleration g = 9 . 81 ms −2 ˜ g = 1 . 0 

Viscosity ν = 1 . 0 × 10 −6 m 

2 s −1 ˜ ν = 1 . 943 × 10 −6 
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reference intervals. The value of the maximum drag coefficient on

the finest mesh is slightly (3%) less than the reference one. 

In Fig. 8 we compare the computed curves C drag ( t ), C lift ( t ) with

reference data from [1] . The computed coefficients fit the reference

data reasonably well. For a better fitting, a stronger mesh refine-

ment is needed which exceeds our computing capabilities. 

4.2. Sloshing tank 

The sloshing of fluid in a tank is a benchmark problem for nu-

merical free surface flow solvers and a problem of independent

interest, see, e.g., [3,8,13,18,33,48] . The setup of the sloshing tank

problem is given in [3,18] . A volume of water fills a rectangu-

lar tank as illustrated in Fig. 9 . The initial bulk dimensions are

 = 0 . 8 m , H = 0 . 1 m and D = 0 . 3 m . The container walls �bottom

and �side impose slip and no-penetration conditions for the fluid.

The fluid is exposed to external forces: a constant gravitational ac-

celeration of magnitude g = 9 . 81 ms −2 and a sinusoidal horizon-

tal excitation Ag sin ωt with A = 0 . 01 and ω = 2 π f, f = 0 . 89 Hz .

The problem is non-dimensionalized following [18] . The full set

of dimensional and non-dimensional parameters is summarized in

Table 4 . 

The sloshing motion is initiated as soon as the horizontal exci-

tation is applied. After the initial ten periods the excitation is ter-

minated. The excitation frequency is designed to induce the first

mode of wave motion in the x direction, i.e., the motion with a
Table 3 

Problem Z3: maximum drag, maximum/minimum li

intervals. Time steps subject to 
t k = 5 h min / max 
x 

| u (x

h min h max max C drag max C l

� /256 � /128 3 .74685 0 .0019

� /512 � /128 3 .22627 0 .0032

� /1024 � /128 3 .13382 0 .0032

Bayraktar & Mierka & Turek 3 .29–3.33 0 .0 027

Schäfer & Turek 3 .2–3.3 0 .0 02–
avelength approximately equal the doubled width of the tank W .

he time histories for the height of the wave at the two oppo-

ite tank walls orthogonal to the x -axis are shown in Fig. 9 (right).

hese data were computed for the 2D setting of the problem in

18] . These results are believed to correspond well to physical ob-

ervations [33] . 

The octree FV method recovers correctly time dependence of

he water level at the midline of the left wall ( x = −D/ 2 ), see

ig. 10 (left). For the first ten periods of excitation the measured

ave height matches the heights reported in [18] with the devia-

ions less than 4%. Numerical dissipation is low enough to avoid

mplitude dumping after termination of the excitations even on

elatively coarse meshes. The mesh convergence of the free sur-

ace contact line evolution on the wall at x = −D/ 2 is demon-

trated in Fig. 10 (right). The meshes are refined dynamically to the

ank walls up to the meshsize h wall and to the free surface up to

he meshsize h min , the coarsest cell size is fixed h max = �/ 8 , here

 = W . At the “Remeshing” step of the splitting method we refine

ll cubic cells intersected by the zero level set of ϕ(t n +1 ) so that

ll these cells have the width h min . All other cells except bound-

ry cells are marked for coarsening. The coarsening is performed

n such a way that the octree remains balanced (two neighboring

ells may differ in size at most by a factor of two) and the max-

mum cell width in the fluid domain is h max . The following com-

inations of the mesh refinements were used: h wall = h min = �/ 64 ,
ft, and pressure drop (at t = 8 ) and reference 

 , t k ) | . 
ift min C lift 
p(t = 8) 

0 −0.01474 −0.09740 

9 −0.01197 −0.12083 

5 −0.01011 −0.11933 

–0.0 033 −0.010– −0.012 

0.0 04 −0.14– −0.12 
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Fig. 9. Left: problem setup for sloshing tank test. Right: wave height at the mid-lines of two opposite tank walls from [18] . 

Fig. 10. Computed water level at the midline of the left wall ( x = −D/ 2 ). Left plot shows the evolution computed with the h wall = �/ 64 , h min = �/ 256 . Right plot demonstrates 

the mesh-convergence of the results. 
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 wall = h min = �/ 128 , h wall = �/ 32 , h min = �/ 128 , and h wall = �/ 64 ,

 min = �/ 256 . For this problem we use adaptive time step, 
t k =
in { 0 . 0187 , h min / max 

x 
| u (x , t k ) |} . 

Fig. 11 demonstrates the same pattern of the free surface evolu-

ion computed by the octree 3D code and the reference 2D results.

.3. Free surface flow passing rigidly mounted offshore oil platform 

To define the initial and boundary conditions for the simulation

f sea waves passing a rigidly mounted obstacle, we consider sim-

le, yet efficient, model of open sea waves introduced in [29] for

he purpose of breaking waves animation. The model is based on

he third order Stokes wave which is defined as follows. 

One starts by defining the first order Stokes wave in terms of x -

nd z -components of the free surface velocity u, w and the water

evel η: 

η(x, t) = A cos (kx − ωt) 

u (x, z, t) = Aωe −kz cos (kx − ωt) 

 (x, z, t) = Aωe −kz sin (kx − ωt) . (29) 

ere z = 0 is the mean water level, ω = 

2 π
T is the wave frequency,

 is the wave period, k = 

2 π
λ

is the wave number, λ is the wave

ength. 
Further one introduces the third order Stokes wave by the su-

erposition of several first order Stokes waves (29) : 

η(x, t) = 

1 

k 
(ε cos (kx − ωt) + 

1 

2 

ε2 cos (2 kx − ωt) 

+ 

3 

8 

ε3 cos (3 kx − ωt)) 

u (x, z, t) = 

ω 

k 
(e −kz ε cos (kx − ωt) + 

1 

2 

e −2 kz ε2 cos (2 kx − ωt) 

+ 

3 

8 

e −3 kz ε3 cos (3 kx − ωt)) 

 (x, z, t) = 

ω 

k 
(e −kz ε sin (kx − ωt) + 

1 

2 

e −2 kz ε2 sin (2 kx − ωt) 

+ 

3 

8 

e −3 kz ε3 sin (3 kx − ωt)) . (30) 

ith the help of (30) we define the water level η2 D (x, y, t) =
(x, t) and the bulk velocity 

 wave (x, y, z, t) = (u (x, z, t) , 0 , w (x, z, t)) T for z ≤ η2 D (x, y, t) . 

e use u wave ( x, y, z , 0) to prescribe the initial condition of our

imulation. 

The bulk computational domain is the 440 m × 110 m × 110 m

ox. Box walls are orthogonal to the coordinate axes. The sea depth

s 55 m. The inlet boundary is orthogonal to x -axis and has the

inimal x -coordinate. The outlet boundary is opposite to the in-

et boundary. On the inlet and outlet boundaries we impose the
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Fig. 11. Free surface mid-lines evolution : the computed results for 28 equally distributed time moments over one period (left) and for the purpose of comparison the 

reference results from [18] (right). 

Fig. 12. A reconstruction of an operating offshore unit. 
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Fig. 13. Octree mesh for wave runup simulation: interior fluid cells (red), free surface ce

ences to color in this figure legend, the reader is referred to the web version of this artic
irichlet boundary condition using the Stokes wave, u wave ( x , t ), x

 �in ∪ �out . On other sides of the virtual box (except the top one)

nd the obstacle boundary we prescribe the no-penetration and

ree slip boundary condition. 

The partially submerged object of interest is a rigidly mounted

ffshore oil platform. The platform shape is given by the recon-

truction (with the help of a surface triangulation) of a currently

perating unit, see Fig. 12 . 

The sea waves runup models the realistic weather scenario in

he Kara sea offshore region. In particular, A = 3 m and T = 4 s cor-

espond to a moderate storm, whereas A = 11 . 5 m and T = 8 . 4 s

efine the largest waves recorded in this region over the time of

bservations. In this paper we study the case of the largest sea

aves with wave length λ = 110 m. The practical statistics of in-

erest are the highest water levels at the platform and forces expe-

ienced by the construction. 

In Fig. 13 we show the computational octree mesh, where dif-

erent colors mark different type of cells: interior fluid, free sur-

ace, and solid boundary. We use the same dynamic adaptation

trategy as in the previous experiment with the sloshing tank. In
lls (yellow), and immersed boundary cells (green). (For interpretation of the refer- 

le.) 
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Fig. 14. Maximum observed water level, central cross-section of the computational domain. 

Fig. 15. A field of normal stresses projection at x -direction. 
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ig. 14 we show the maximum water level observed in the simu-

ation at the central cross-section of the computational domain. 

In Fig. 15 we present the maximum dynamic load experienced

y the oilrig piers in the x-direction. The dynamic load is com-

uted by taking the x-projection of the normal stresses at the sur-

ace, i.e. the subintegral expression in (26) . 

. Conclusions 

We built a hybrid finite volume / finite difference scheme for

he simulation of free-surface flows in complex geometries. The

omputational efficiency was achieved by using octree Cartesian

eshes, while geometry was handled through the immersing of

oth free and static boundaries in the background mesh. The major

hallenges were to construct compact stencil discretizations on the

radely refined meshes with low numerical dissipation and to en-

orce various velocity and pressure boundary conditions on curvi-

inear parts of �. For a number of test examples, we demonstrated

hat the developed methods are particular suitable for the simula-

ion of viscous free-surface flows over submerged or partially sub-

erged objects. 
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