Computers and Fluids 148 (2017) 56-68

journal homepage: www.elsevier.com/locate/compfluid

Contents lists available at ScienceDirect

Computers and Fluids

An adaptive numerical method for free surface flows passing rigidly

mounted obstacles™

® CrossMark

Kirill D. Nikitin?, Maxim A. Olshanskii®*, Kirill M. Terekhov®¢, Yuri V. Vassilevski?,

Ruslan M. Yanbarisov¢

3 Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia and Keldysh Institute of Applied Mathematics of the Russian

Academy of Sciences, Moscow, Russia
b Department of Mathematics, University of Houston, Houston, TX, USA

¢School of Earth, Energy & Environmental Sciences, Stanford University, Stanford, CA, USA

d Moscow Institute of Physics and Technology, Dolgoprudny, Russia

ARTICLE INFO ABSTRACT

Article history:

Received 23 November 2016
Revised 7 February 2017
Accepted 9 February 2017
Available online 11 February 2017

Keywords:

Free surface

Incompressible flow

Mesh adaptation

Navier-Stokes

Octree meshes

Curvilinear boundaries

Sloshing container

3D Cylinder of circular cross-section
Flow around oil platform

The paper develops a method for the numerical simulation of a free-surface flow of incompressible vis-
cous fluid around a streamlined body. The body is a rigid stationary construction partially submerged in
the fluid. The application we are interested in the paper is a flow around a surface mounted offshore oil
platform. The numerical method builds on a hybrid finite volume | finite difference discretization using
adaptive octree cubic meshes. The mesh is dynamically refined towards the free surface and the construc-
tion. Special care is taken to devise a discretization for the case of curvilinear boundaries and interfaces
immersed in the octree Cartesian background computational mesh. To demonstrate the accuracy of the
method, we show the results for two benchmark problems: the sloshing 3D container and the channel
laminar flow passing the 3D cylinder of circular cross-section. Further, we simulate numerically a flow
with surface waves around an offshore oil platform for the realistic set of geophysical data.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Free surface flows passing partially submerged objects are com-
mon in nature and engineering applications. The examples in-
clude water flows around bridge piers, ship bodies, water plants,
or costal constructions. A mathematical model of such phenom-
ena includes fluid dynamics equations and an evolution equation
for the free surface. These equations can be posed in a domain of
complex geometry. Handling the equations and the geometry nu-
merically in an efficient and accurate way constitutes the major
challenge for a CFD method applied to simulate free surface flows
passing submerged obstacles. Depending on the applications, the
fluid and free surface equations can be coupled to other mathe-
matical models of transport, elasticity, etc. Thus, a reliable fast and
accurate solver is desirable.

The previous studies of free surface flows passing submerged
bodies include the simulation of Euler flows around hydrofoils

* Supported by Russian Science Foundation through the grant 14-11-00434.
* Corresponding author.
E-mail address: molshan@math.uh.edu (M.A. Olshanskii).

http://dx.doi.org/10.1016/j.compfluid.2017.02.007
0045-7930/© 2017 Elsevier Ltd. All rights reserved.

[17], a boundary element method with the Lagrangian treatment
of free surface evolution [21], a non-body conformal grid finite dif-
ference method for compressible flows [15], a stabilized finite ele-
ment method for fluid equations in ALE form [34], and other FEM-
based ALE techniques for fluid-structure interaction described in
[2]. The variants of the immersed boundary method [30,37] for the
free surface flows were discussed in [26,50]. Analytical and semi-
analytical solutions of the free surface flows around specific sub-
merged bodies were studied in [7,47].

The method developed in this paper is based on a hybrid
discretization using octree Cartesian background meshes. Octree
meshes enjoy a growing reliance in scientific computing commu-
nity due to the simple Cartesian structure and embedded hierar-
chy, which makes mesh adaptation, reconstruction and data ac-
cess fast and easy. In particular, octree meshes can be dynamically
adapted towards the free surface. The adaptation can be also based
on various error indicators. Fast remeshing with octree grids makes
them a natural choice for the simulation of moving interfaces and
free surface flows, see, e.g., [14,27,28,32,40,44], as well as more
general non-Newtonian and high-speed Newtonian flows, see, e.g.,
[4,6,20,35,39,51]. The Cartesian structure of octree meshes requires,
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however, a special technique for handling curvilinear boundaries
and interfaces, since the mesh itself provides only the first order
geometric accuracy in this case.

Using octree grids for the simulation of flows over partially sub-
merged bodies gives the advantage of better local resolution of the
free surface and fluid interaction with the body. For the more ac-
curate treatment of the equations near the curvilinear boundary of
the construction, we immerse the rigid object in the background
mesh and construct the second order approximation of the fluid
and free surface equations in the cut cells. The level-set method is
used to recover the evolution of the free surface. Other important
ingredients of our approach are the semi-Lagrangian characteristic
method for the level-set equations on the dynamic octree meshes
from [46], and the splitting method for the fluid equations on the
octree meshes from [35] with filtering. In that paper, the method
was studied for enclosed incompressible viscous flows in cavities
and over bluff bodies.

Compared to well-studied higher-order finite volume and finite
difference discretizations on uniform grids, the schemes that ex-
ploit adaptivity properties of octree meshes often pay the price
of lower accuracy and higher numerical dissipation. This happens
due to the presence of hanging nodes on irregular interfaces and
non-uniform mesh size, which require interpolation of unknowns
and make impossible certain cancellations of discretization errors.
Such error cancellations take place for uniform grid due to the
stencil symmetry. To overcome this loss of accuracy, we operate
with a suitable sets of nodes and least-square minimizing inter-
polants. Further, we validate our approach by performing a series
of numerical experiments. First, we compute a channel flow past
a 3D circular cylinder. Second, we simulate the sloshing of water
in a 3D tank subject to periodic horizontal excitation. The criti-
cal statistics, which are drag, lift coefficients for the first test and
water levels for the second test, are compared against reference
data found in the literature. The success of the numerical method
for both benchmark problems demonstrates its ability to accurately
simulate incompressible viscous free-surface flows and flows pass-
ing streamlined bodies with curvilinear boundaries. Therefore, we
apply the method to simulate the water flow with surface waves
around an offshore oil platform rigidly mounted in the Kara sea
offshore. The platform is a reconstruction of a currently operating
unit. The sea waves runup reproduces the realistic weather sce-
nario in the region of the Kara sea offshore. The statistics of inter-
est are water levels at the platform and forces experienced by the
construction.

The rest of the paper is organized as follows. Section 2 reviews
the mathematical model. Section 3.1 presents the splitting method
for the numerical time integration. Section 3.2 discusses the de-
tails of the discretization on the gradely refined octree meshes. In
Section 3.3 we devise the numerical treatment of the curvilinear
boundaries embedded in the background mesh. Section 4 collects
the results of numerical experiments.

2. Mathematical model
Consider a Newtonian incompressible fluid flow in a bounded

time-dependent domain Q(t) € R3 for t e (0, T]. The fluid dynam-
ics is governed by the incompressible Navier-Stokes equations

p(%ltl-l—(wV)u) —dive(u,p) =g
V.u=0

in Q(t), t e (0,T],

(1)

where o (u, p) = v[Vu+ (Vu)T] — pI is the stress tensor of the
fluid, u is the velocity vector field, p is the kinematic pressure, g
is the external force (e.g., gravity), p is the density, and v is the

kinematic viscosity. At the initial time t = 0 the domain and the
velocity field are known:
2(0) = o,

ulio=ug, V. .uy=0. (2)

We assume that dQ(t) = Tp UT(t) UT oyt UTy,, where I' is the
static boundary(walls), I'(t) is the free surface of fluid, I';,, Tout
are inflow and outflow parts of the boundary, respectively. Note,
that I'p, ['j,, [our may vary in time, in general. We assume the free
surface I'(t) passively evolves with the normal velocity of fluid, i.e.,
the following kinematic condition is valid

vr=u-n on [(t), (3)

where n is the normal vector for I'(t) and vy is the normal velocity
of I'(t). Since the free surface flows we interested in this paper
have large Weber numbers, we ignore the capillary forces and the
boundary condition on I'(t) reads

o(u,ppn=0 on I'(t). (4)

On the static part of the flow boundary, we assume the velocity
field satisfies either no-slip boundary condition

u=0 onp, (5)
or no-penetration and free-slip boundary conditions:

8(u‘t,~) .
on

where t; and n are tangential and normal vectors on I'p. We
shall use the generic notation Bu|p, to denote boundary condi-
tions (5) or (6) on I'p. We assume that u is given on I';, and
o(u,p)n=0 on [yy.

For computational purposes, we shall employ the implicit def-
inition of the free surface evolution with the help of an indicator
function. Let I'(t) be given as the zero level of a globally defined
Lipschitz continuous level set function ¢(t, X) such that

<0 ifxeQ(t)
pt,x)=14{>0 ifxeR®\Q(t)
=0 ifxel(t)

u-n=0 and 0,i=1,2, onI)p, (6)

for all t € [0, T].

The initial condition (2) defines ¢(0, x). The kinematic condition
(3) implies that for t > O the level set function can be found as
the solution to the transport equation [36]:

%—‘fﬁi.vwzo in R3 x (0, TJ, (7)
where U is any (divergence-free) smooth velocity field such that
u=uon [(t).

A numerical method studied in this paper solves the system
of equations, boundary and initial conditions (1)-(7). The implicit
definition of T'(t) as zero level of a globally defined function ¢
leads to numerical algorithms which can easily handle complex
topological changes of the free surface. The level set function pro-
vides an easy access to useful geometric characteristics of I'(t). For
instance, the unit outward normal to I'(t) is n = V¢/| V]|, and the
surface curvature is k = V - n. From the numerical point of view, it
is often beneficial if the level set function possesses the signed dis-
tance property, i.e. it satisfies the Eikonal equation

Vol =1. (8)
3. Numerical method

The section describes the key ingredients of our numerical ap-
proach.
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3.1. Numerical time integration

We consider a semi-implicit spitting method based on the
semi-Lagrangian approach for the level-set function evolution and
a hybrid finite volume | finite difference solvers for the convection-
diffusion equations and the Poisson equation for pressure. The al-
gorithm is built on the well-known splitting procedure due to
Chorin, Yanenko, Pironneau and others, see, for example, [9,38].
For the sake of presentation simplicity, in this section we ignore
the spatial discretization. Important implementation details and
the spatial discretization will be addressed in the next section.

We adopt the notation u", p", ¢ for approximations to the ve-
locity field, the pressure, and the level set function at t = t;. Func-
tion ¢™" implicitly defines an approximation to fluid domain at time
t =t through Q :={x e R3 : ¢"(X) < 0}.

Initial conditions define u® =u(ty) and ¢° = ¢(ty). For n=
0,1,... and given u", ¢" such that divu” = 0, we find u™1, pm*+1,
"1 in several steps:

The semi-Lagrangian step: 2 — 2,,1. Consider the closest-
point extension of the velocity at the boundary to the exterior
of fluid domain: u"|p, — u"|,3. In practice, the extension is per-
formed to a bulk computational domain, rather than R3. For every
y € R3, solve the characteristic equation backward in time

8x(r) o
S = W x(0)),

The mapping X: y — X(t,) defines an isomorphism on R3. Now, set

P"H(Y) = 9" (X)) (10)
For the numerical integration of (9) we apply the trapezoidal rule

for T € [tps1, ta]. (9)

X(trs1) =Y.

Xt + 50 =%~ Slut, ), x(6) =% - A (1)

with At =t; —t,,q. Since the velocity field is not given a priori,
but recovered numerically at times t;, k=0,...,n, the linear ex-
trapolation is used:

U = (14 Uty + At/2), tn) — NUX(tn + At/2), tr_1),
_ tn+] —tn
th — b1 '
To improve the accuracy of the semi-Lagrangian step, we apply the
back-and-forth error compensation and correction (BFECC) tech-
nique from [11,12]: The same method is applied to integrate nu-
merically the level-set equation forward in time to obtain an ap-
proximation to the error at time t,. Further, the backward integra-
tion is performed one more time, but with the corrected level-set
function values at time t;. A tricubic interpolation is used to pre-
scribe a value to @" at X(y). The interpolation is not monotone;
therefore, a limiter is introduced to reduce oscillations. For smooth
solutions, the method demonstrated second order of convergence
for dynamically reconstructed meshes. Further details of the semi-
Lagrangian BFECC method with a limiter on the octree grids can
be found in [46].

After the completion of the semi-Lagrangian step, we perform
the re-initialization of the level set function to satisfy equation (8).
For this purpose, we use an algorithm from [31] based on the
marching cubes method for free surface triangulation and a higher
order closest point method. The numerical integration of (9) may
also cause a divergence (loss or gain) of the fluid volume. So we
perform the volume correction with the help of the procedure de-
scribed in [31]. We note that the use of the BFECC method makes
the re-initialization and volume correction steps less critical com-
pared to the standard linear semi-Lagrangian method, but still they
are necessary for long-time simulations.

Remeshing. Given the new fluid domain, we update and adapt
the grid to account for the new position of the free surface. The

’o/g@&%

Fig. 1. An octree mesh (left) and its representation as a tree (right).

adaptation is based on the information about the distance to the
free surface provided by "1

Re-interpolation. After remeshing we re-interpolate all discrete
variables to the new grid. The re-interpolated velocity field is de-
fined on the bulk computational domain (due to the extension pro-
cedure at the beginning of the level-set part).

Next we handle viscous and inertia terms and project the veloc-
ity into (discretely) divergence-free functions subspace and recover
the new pressure. We denote I'y = I'p U T, I'y = I'(t341) U Dout.

The convection-diffusion step: Solve for un+1 in €, 1:

WA | (4§ (- 1)) - VT Auri= Y,

Aty
— —T
(Vurtl  Vut! )n| =0.
I

utlp =wy,, Buttl|p =0,

(12)
Here & = Aty/At, 4, B=-(E+1), y=
E2/(E+1). L
The projection step: Project u™+! on the divergence-free space to
recover u™t1;

a=1+&/(&+1),

a (! —un) Aty — Vg =0,
divu™! =0, (13)
Il-lln+1|[‘] =0, q|1'*2=0.

The problem (13) is reduced to the Poisson problem for g:

_Aq = a/Atydivurt,

aq (14)
q|I‘2 —O, % - —O

Finally, update the pressure:
Pl = p" — q + vdivun+l, (15)
The ‘extra’ divergence term in the pressure correction step (15) is
used to reduce numerical boundary layers in the pressure, see,
e.g., [16,41]. In this paper we do not address the problem of build-
ing a higher order accurate (with respect to the time step) stable
pressure projection method for the case of open boundary condi-
tions, cf. [16,24,35].

3.2. Spatial discretization

For the spatial discretization we use octree cubic meshes, which
allow fast dynamic mesh adaptation based on geometric or error
indicators.

Consider a graded octree mesh with cubic cells, see Fig. 1. An
octree mesh is graded if the size of cells sharing (a part of) an edge
or a face can differ in size only by the factor of two. This restric-
tion simplifies support of mesh connectivity and the construction
of discrete differential operators. We use the staggered location of
velocity and pressure unknowns. The pressure degrees of freedom
are assigned to cells centers and velocity variables are located at
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Fig. 2. Left: uy(y) is defined by a linear interpolation based on the fan triangulation with the center in xy, i.e. interpolation of up(xy), up(X1), us(X10) in this example. Right:
the shaded region is the control volume V' associated with face F shared by cells of different sizes.

cells faces in such a way that every face stores normal velocity flux.
If a face is shared by cells from different grid levels, then velocity
degrees of freedom are assigned to the faces centers of fine grid
cells (in the case of graded octree mesh, the corresponding face of
the coarse grid cell holds 4 unknowns).

First, we describe how the advection and diffusion terms are
treated in the interior of the computational domain. Several au-
thors, e.g., [28,49], adopted semi-Lagrangian method to handle
the time derivative and the inertia terms in finite difference dis-
cretizations of the momentum equations on the octree meshes. In
[35] we found that semi-Lagrangian method on octree meshes can
be either excessively diffusive or prone to instabilities for flows
passing submerged objects. As an alternative, we consider a higher
order upwind finite volume scheme on the graded octree meshes,
which is both stable and accurate. Further details and the verifica-
tion of the formal accuracy order of method can be found in the-
sis [45]. For the completeness of the presentation we describe the
method below.

In several places further in the text we need an approximation
of the grid velocity function a in an arbitrary point of the compu-
tational domain. For a given point y in the computational domain
we evaluate a(y) as follows. Assume y belongs to a cell V and we
are interested in interpolating the x-component of velocity to y, i.e.
ax(y). Consider a plane P such that y € P and P is orthogonal to
the Ox axis. Let Xy € P be the orthogonal projection of the center
of Von P and Xy, k=1,...,m, m < 12, are the projections of cen-
ters of all cells sharing a face with V. The values ax(Xxy) and ax(x;)
can be defined by a linear interpolation of the velocity values at
nodes where ay is collocated. Once ax(Xy) and ax(xy), k=1,...,m,
are computed, we consider the triangle fan based on x; and x,
k=1,...,m, as shown in Fig. 2 (left). Now ax(y) is defined by a
linear interpolation between the values of ay in the vertices of the
triangle, which contains y. The proposed interpolation procedure is
faster and produces smaller stencil compared to a straightforward
least squares fitting of a polynomial to velocity values in a set of
nodes.

For the incompressible fluid we treat the inertia terms in the
‘conservative’ form u- Vu = div (u ® u), where the vector div op-
erator applies row-wise. Eq. (12) of the splitting method linearizes
the nonlinear terms, so that we need to approximate div(u®a) for
a given nodal velocity a = (ay, ay, a;)T and unknown nodal velocity
u= (u,v,w)T. Below we discuss the FV discretization of div(ua).
Other two components of div(u®a) are treated similarly.

Consider the velocity component u at the x-node xg, which is
the barycenter of the face F. If F is shared by the cells of different

sizes, we define the control volume V' as shown in Fig. 2 (right). If
F is shared by the cells of the same size, then V' is defined in the
obvious way by merging two half-cells. Let 7(V’) denote the set of
all faces for V'. We have

div (ua)(xp) ~ V|77 D [F/[@- m) (Xp)u(X). (16)
Fer(v')

We need to define advective fluxes at the barycenters Xy, of faces
F' e F(V').

First, we discuss the approximation of the advective flux at F' e
F (V') orthogonal to F. Consider F' orthogonal to Oy so that a-n =
ay. If two cells sharing F have the same size, then (a-n)(Xg) is
the simple averaging of ay values from the two neighboring nodes.
Otherwise ay (/) is computed by the interpolation procedure de-
scribed above. To define u(xy), we take four ‘reference’ points
(X_1, X1, X2, Xg := Xp) as shown in Fig. 3 (left). Note that x_;, X,
and X, are not necessarily grid nodes. Values u_q, uq, and u, in
these nodes are then defined based on the following interpolation
procedure.

If the reference point belongs to a cell smaller than the cell of
Xo (points X; and X, in the figure), then the linear interpolation
between the two barycenters of adjunct faces is used. If the node
belongs to a cell larger than the cell of Xy (point Xx_; in the figure),
then one apply the same interpolation procedure as we used above
to define the values of a. The only difference is that instead of the
linear interpolation using the fan triangulation for x, we use the
weighted least-square method to fit the velocity values u(xy) and
u(x,) by the second order polynomial Q,, and further set u(x_;) :=
Qa(x_1).

If ay(xF) > 0, the u-values in reference points X 1, Xo, X; are
used to approximate the flux. Otherwise, the u-values in the refer-
ence points X, X1, X are needed. Assume ay(Xg) < 0, we set

u(xp) =D" [uo(th — h?H) + uy (rH? + r?H) — uy (hr? + h?r)
+ AAX*(ug(H — h) —uy(H+71) +up(r + h))],  (17)

where D = (r +h)(H —r)(H + ). A family of formally second order
upwind discretization is parameterized by A € R. We found that
A =0 (defining the QUICK scheme [25] on uniform meshes) pro-
duces the most accurate results on octree meshes and we use this
value for numerical experiments.

Now, consider the approximation of the advective flux at F' €
F (V') parallel to F, hence a-n = ay.

After prescribing ax(Xp/) value with the help of the linear in-
terpolation at the corresponding faces of the control volume, we
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Fig. 3. Left: reference points for the upwind approximation of advection. This illustration is for the derivative tangential to a face F, where the velocity degree of freedom is

located. Right: reference points for the diffusion flux approximation.

define u(xg/) using (17). The only differences with the treatment
of the face F' orthogonal to Oy are the following: ay is defined in
X (no interpolation required), and the reference points x_1, Xy, X,
are always lying on cells x-faces (although not necessarily in the
centers and one has to do the interpolation).

Next, we explain how the discretization of viscous terms is
computed. Consider a node x holding the velocity component u
and lying on a face F and define a cubic control volume V' such
that x is the center of V' and F is a middle cross section of V'. Note
that the control volumes for x-nodes do not overlap, but for locally
refined mesh they do not necessarily cover the whole bulk domain.
Hence the dicretization of the viscous terms is a finite difference
method, rather than a finite volume method. We have

(A ) ~ V[0 [F'[(Vau - m) (Ye).

F'eF(V")

(18)

To approximate the diffusion flux at the center yp of F' € F(V'),
we take four reference points (X_i, Xg, X;, Xp) as shown in
Fig. 3 (right). Velocity values u_q, ug, uq, and u, are assigned to
reference points same way as for the advective terms described
above. Using the notation from Fig. 3, the formal third order ap-
proximation of the diffusion flux density (Vu - m) can be written
out as

(Vu-n) ~D7'[(R’H® + B’R* — H*R> + h°R® — H*R® — ®H?)uo
+ (H*R® + PR® + H?R® — r’R® — Hr* — H*r®)u,
+ (W2 + k% —W3R?2 = *R? — i*R® + r’R®)u_,4
+ (WPH? — R?H? — 32 + H3r2 — b1 + H2r)uy |,

(19)
with D= (H—-h)(h+r)(H+r)(h+R)(H+R)(R—r). If the refer-
ence point in X, is not available, we use the point x_,.

To enforce incompressibility condition, we approximate divu in

the center xy of a grid cell V. We define the grid divergence oper-
ator by

(divyuy) () = [VI™" D7 [F|(uy - 0) (X).

FeF(V)

(20)

Thanks to the staggered location of velocity nodes, the fluxes
(up, - m)(xg) are well-defined.

One way to introduce the discrete gradient is to define it as
the adjoint of the discrete divergence. We found that an approx-
imation of V| based on the formal Taylor expansions gives more
accurate results. For every internal face we assign the correspond-
ing component of Vyp as follows. Since the octree mesh is graded,
there can be only two geometric cases. If a face is shared by two
equal-size cells, then the central difference approximation is used.
Otherwise, for the approximation of py at the face center node y
one considers the centers of five surrounding cells Xy, ..., X5 and
expand the pressure value p(x;) with respect to p(y):

p(x) = p(y) + Vpy) - (X —y) + O(|x; — y|*).

Neglecting the second-order terms, we obtain the following over-
determined system:

1 —A2 A/A A4\ /) p(X1)
1 A/4 0 0 Px(¥) p(X2)
1 A4 A2 0 p(x3) |, (21)
1 amd 0 A2 ||PO] | px)
1 A4 A2 A2) \p(Y) p(Xs)

where A = Ax. The least squares solution of (21) gives the stencil
for the x-component of the gradient:

1
px(y) ~ ﬁ(pz+p3+p4+ps—4pl)- (22)

The superposition of the discrete gradient and divergence oper-
ators generally leads to the non-symmetric matrix for the pres-
sure problem. However, the corresponding linear algebraic sys-
tems are solved efficiently by a Krylov subspace method with a
two-parameter threshold ILU preconditioner [22,23]. We note that
in general non-symmetric FV approximations of diffusion equa-
tions may lead to the lack of coercivity and hence to stability is-
sues, cf. [10], although symmetric and coercive approximations can
produce unstable solutions as well, cf. Fig. 4 in [10]. The previ-
ous studies, e.g., [28,32,35,39], show that using the present non-
symmetric approximations of the pressure Poisson equation does
not disrupt the stability of projection methods.

It was noted in [35] for octree staggered grids, that the discrete
Helmholtz decomposition, which essentially constitutes the projec-
tion step of the splitting scheme, is unstable due to oscillatory spu-
rious velocity modes tailored to course-to-fine grid interfaces. If the
viscosity is sufficiently large, then such modes are suppressed, oth-
erwise they propagate and destroy the accuracy of numerical solu-
tion. Following that paper we apply a technique, which eliminates
the spurious modes and improves the accuracy of numerical solu-
tion significantly.

The constructed spatial discretization is hybrid: a finite volume
method was used to handle the incompressibility constraint and
inertia terms, while a finite difference method was applied to dif-
fusion terms and pressure gradient. To solve the velocity equation
on each time step, we use BiCGStab(2) [43] iteration with a two-
parameter threshold ILU preconditioner [22,23]. This combination
of the Krylov subspace method and the preconditioner resulted in
a robust and efficient solver.

3.3. Boundary conditions and curvilinear boundaries

The discretization method in Section 3.2 assumes that velocity
values in all nodes forming flux stencils are given. When all the
cubic volumes in the stencil are internal, then all corresponding
velocity values are treated as active degrees of freedom. Close-to-
boundary cells require special treatment. Below we introduce such
a treatment when a curvilinear boundary is immersed in the back-
ground octree mesh.

For the computational purposes, the static boundary is defined
with the help of a signed distance function ¢s. We assume that
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reader is referred to the web version of this article.)

the static boundary consists of several smooth components. Each
component is described by its own ¢ (domains of definition of the
level set functions may overlap). This is similar to the description
of the free surface, but @; is defined by the domain geometry and
does not vary in time. We assume that ¢s < 0 in the fluid domain
2, and ¢s; > 0 in the exterior, so the boundary is given as the
zero isosurface of function ¢s. Denote by 7} the background octree
mesh, the collection of cubic volumes forming the tessellation of
the bulk computational domain. For each V € 7;, py denotes the
barycenter of V. We divide 7} into the sets of internal, boundary
and external cells:

Tine :={V eTy : os(py) < _hthr}; B
Toar :={V €Ty : AK € Tine, s.t. VNK £ 0},
Text = 7;1 \ (717nt U Edr)v

where h;p, = hy/10 is a threshold parameter. Based on this split-
ting we also divide all velocity nodes on 7} into three groups. De-
note by A, the collection of all velocity nodes from the bulk com-
putational mesh. The nodes on the boundary of the bulk domain
are not active. Any other node x € A}, has exactly two cells V! and
V2 such that x € V! nV2. Now we divide A, into the sets of inter-
nal, boundary and external nodes:

-/\/int = {X e-/\/’h : Vx1 € Tint and sz € 7?rz[}s
Noar :={X € Ny : V€ Toar 08 V¢ € Tpar
Next 1= N \ WNine U Npar)-

The velocity degrees of freedom are assigned to the internal nodes
and boundary nodes, i.e. those from A, U Nyg,. There is a differ-
ence, however, how the method works for the nodes from Aj, and
Npgr: For each node from N, we have a set of algebraic equa-
tions derived in the previous section, while each node from N,
receives an auxiliary equation based on boundary conditions. The
nodes from Aex are not active. This subdivision of velocity nodes
into three groups based on the position of the immersed boundary
is illustrated in Fig. 4 (the figure shows a 2D mesh and only nodes
for the horizontal velocity component).

Now we derive equations for the nodes from A4 For the
Dirichlet boundary condition u=u; on the immersed boundary,
this is done componentwise as follows. For each boundary node
x either interpolation or extrapolation procedure is performed de-
pending on the sign of ¢g(x).

For ¢1 = ¢s(X1) > 0 (the node x; is outside the domain 2) we
apply extrapolation, cf. Fig. 5 (left):
+
uix) = L2y ety — L), (23)
dq d
where x’{ is the closest boundary point to X, d; = max (¢, hy,)

is an outstep to the internal domain, and xY is a virtual node be-
longing to line passing through x; and xb and |X; — x4| = dy. The

velocity value is interpolated to x] from internal velocity degrees
of freedom.

For ¢, = ¢s(X3) < 0 (the node x, is inside the domain 2) we
set

d
u) = = _2% 1y (x3) — —df%

u(xb), (24)
where xlz’ is the closest boundary point to Xp, dy = max(—¢s, hy,)
is an outstep to the external domain and x} is a virtual node be-
longing to line (xz,xg), |x, — X5 = dy. Again the velocity value is
interpolated to x} from internal velocity degrees of freedom.

For the free-slip boundary condition we use the approach sim-
ilar to the no-slip condition. Consider the boundary node x; and
the virtual point x} with all velocity components u(xy) interpo-
lated in it, see Fig. 5 (right). First, we write down the set of equa-
tions for x; assuming for a moment that all three components of
u are defined in X;. Thus, we seek for u(x;) such that interpolated
(or extrapolated) boundary value u(x’f) has the normal component
vanishing and tangential components equal to those in the internal
virtual node. This yields the following equations

ux}) = S u(xy),
u(x?) - n=0,
u(x}) — (uxb) n)n=u(x}) - (uxy) n)n,

u(xy) +

(21 +d

where n is the unit normal vector for the boundary in point x’l’.

Substituting the first and the second equations in the third one,

we get the equation for u(xq):
u(x) = () - 228 ) -mym, (25)
The final equation tailored to the node x; follows by extracting
only one equality from (25). This equality corresponds to the com-
ponent of u located at x;.

The boundary condition (4) on the free surface and 'y is de-
composed into the homogeneous Neumann boundary condition for
the auxiliary velocity in the convection-diffusion step (12) and the
homogeneous Dirichlet boundary condition for the pressure cor-
rection variable g in (15). For the pressure Dirichlet condition the
missing values at the barycenters of boundary cells are recovered
by the same technique as Dirichlet velocity values for the boundary
with the no-slip condition. Therefore, the pressure field is known
in all close-to-free-boundary cells and the pressure update (15) is
well defined in cells from 7;,,, which did not belong to 7, at time
tp. The Neumann velocity boundary condition is enforced in the
same way as the slip-condition on I'p. Of course, no-penetration
condition does not apply in this case.

Note that boundary nodes receive velocity values implicitly
through Eqgs. (23), (24), or (25). These equations are added to the
global system of algebraic equations. To obtain a complete system,
we need to discretize the momentum and continuity equations in
all cut cells. To this end, we first extend the density and viscosity
coefficients by the same constant values from the cut cells to the
whole cubic cells. Next, we apply the “full-cell” expressions in (16),
(18), and (20) to define discrete operators for the cut cells. Due to
the linear extrapolation of boundary conditions, the resulting dif-
ferences approximate the required differential operators.

Poisson equation for the pressure correction q of the projection
step involves degrees of freedom at pressure nodes, i.e. at barycen-
ters of cells from 7. We solve for the pressure degrees of freedom
only for cells from 7. Thus, the discrete gradient is well defined
at all velocity nodes from N;, with the help of the pressure correc-
tion values at T, The discrete gradient at the nodes from N, for
I’y is also well defined with the help of internal degrees of free-
dom and zero Dirichlet values for the pressure correction in the
free-boundary cells. To assign the gradient of the pressure correc-
tion to the nodes from N4 for I'y, we proceed as follows: From
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Fig. 5. Left: extrapolation of velocity values at the boundary node x; and interapolation at the boundary node X, near the curvilinear boundary; Right: extrapolation of the

velocity values at the boundary node x; for the free-slip boundary condition.

(13) we get u™! = u+1 + At,/aVq. The variable u™+1 receives its
values in all nodes from Ny, during the predictor step (12) of the
splitting algorithm. Further we substitute the equality in the cor-
responding equations from (23)-(25) for u™! and this yields the
equation for Vq in the boundary nodes. Further we build the pres-
sure Laplace operator as the superposition of the gradient (22) and
divergence (20) grid operators.

Remark 1. A rigorous stability analysis of the hybrid method is an
open question. We note that stability of the semi-discrete scheme
from Section 3.1 (only discretization in time) for free-surface flows
was studied in [31]. The scheme was shown to conserve global
momentum and angular momentum, and based on that an energy
inequality was shown to hold. Thorough numerical studies of the
stability and numerical dissipation of the method for the case of
enclosed flows (no free boundary) and fitted boundary conditions
(no curvilinear boundaries) was done in [35]. In that paper, the
method was shown stable for a vast range of flows (from laminar
to developed turbulent); it was shown to have lower numerical dif-
fusion compared to some alternative approaches on octree meshes.
The numerical results of the present paper suggest that this stabil-
ity property extends to flow problems with free boundaries and
streamlined bodies.

4. Numerical experiments

Our first series of numerical experiments aims to assess the sta-
bility of the presented method, its lower dissipation and ability to
handle free surface evolution accurately. To this end, we consider
several standard benchmark problems.

The first two benchmark tests deal with laminar flows around
a 3D cylinder of circular cross-section at Re = 20 and varying
Reynolds number. This problem does not require a dynamic adap-
tation of the octree mesh. Our goal here is to check the accuracy of
the scheme in a domain with curved boundary by comparing com-
puted drag and lift coefficients with those found in the literature.
These statistics are known to be sensitive to excessive numerical
dissipation of a numerical method.

The lateral sloshing tank benchmark verifies the ability of the
scheme to reproduce complex dynamics of fluid free surface. The
correctly recovered free surface evolution after the termination of
excitation forces is another indicator of the scheme reliability and
low numerical dissipation. Dynamic mesh adaptation is very help-
ful in this problem.

After validation of the numerical scheme, we apply it to simu-
late a water flow with surface waves around an oil platform rigidly
mounted in the Kara sea offshore.

4.1. Flow around cylinder of circular cross-section

The first numerical test is the laminar 3D channel flow around
a cylinder of circular cross-section. The problem was suggested as

a benchmark by Schafer and Turek in [42] and further studied in,
e.g. [5,6,19].

The flow domain is shown in Fig. 6. The no-slip and no-
penetration boundary condition u = 0 is prescribed on the channel
walls and the cylinder surface. For the outflow boundary condi-
tions we put the normal component of the stress tensor equal zero
on I'oy. The parabolic velocity profile is set on the inflow bound-
ary:

u = (0,0,16Uxy(H — x)(H — y)/HY)T on [,

with H=0.41 and a peak velocity U. The Reynolds number, Re =
v~1DU, is defined based on the cylinder width D = 0.1. The viscos-
ity coefficient v is set to 10-3. We consider two benchmark tests
from [42]:

e Problem Z1: Steady flow with Re = 20 (17 = 0.45);
e Problem Z3: Unsteady flow with varying Reynolds number for

U =2.25sin(rrt/8).

The initial condition for both problems is u =0 for t = 0.
The following statistics are of interest:

The difference Ap = p(x;) — p(X;) between the pressure values
in points x; = {0.2, 0.205, 0.55} and x, = {0.2, 0.205, 0.45}.

o The drag coefficient given by an integral over the surface of the
cylinder S:

2 d(u-t)
DHL~12/5<V n nx—pnz>ds. (26)

Here n=(nx,ny,nz)T is the normal vector to the cylin-
der surface pointing to € and t= (—n,, 0,nx)T is a tangent
vector.

The lift coefficient given by an integral over the surface of the
cylinder:

2 d(u-t)
Gife = — DR /S (v o et pnx> ds. (27)

The octree mesh is refined locally towards the channel walls
(we set hyq; =¢/256 except the coarsest mesh where h,,, =
¢/128, ¢ =2.5m is the length of the computational domain) and
the circular cylinder (h,;, in this experiment denotes the mesh
size near the cylinder). The cutaway of the mesh with h,;, = ¢/64
and hpgx = €/1024 is shown in Fig. 7.

To compute the drag and lift coefficients, we replace the surface
integrals in (26) and (27) by integration over the whole domain
[6,19]: Assume u = (u,v,w)T and p is the Navier-Stokes solution
in a fixed domain €2, then applying the integration by parts one

Cclrag =
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Fig. 7. The cutaway of the grid at y = 0.205 for hpe = ¢/64 and hy,;, = ¢/1024.

checks the following identities:
~ ow
Carag = C [ EJr(u-V)w ¢ +vVw. Ve — pd.p | dx

Gire =C [q [(gl: + (u- V)u)go +vVu.-Vg — pax(pi| dx,
(28)
C= 5oz for any ¢ € H'() such that ¢|s = 1 and ¢|3q;s = 0. The
accuracy of evaluation of (28) for a numerical solution depends on
the regularity of ¢. In our numerical scheme ¢ is defined in pres-
sure nodes as the discrete harmonic function solving div,V,¢ = 0.
The derivatives in (28) are approximated with the second order of
accuracy. Using the volume based formulas (28) gives more accu-
rate values of drag and lift coefficients compared to (26) and (27),

if the Navier-Stokes solution is sufficiently smooth, see [6].

The numerical solutions to problem Z1 were computed on a se-
quence of locally refined meshes, see Table 1 for the information
of the corresponding discrete space dimensions. Note that we re-
fine the mesh sequence towards the cylinder and keep it coarser
in the wake. Such refinement is known to be crucial for accurate
computation of the statistics of interest, see, for example [6,35].

The reference [42] collects several DNS results based on various
finite element, finite volume discretizations of the Navier-Stokes

Table 1
The number of velocity and pressure d.o.f.
for different meshes for problem Z1.

Rmin Rmax u d.o.f. p d.o.f.

2/128 ¢/64 175,126 65,002
£/256 ¢/64 855,529 304,395
¢/512 e/64 925177 338,997
2/1024  ¢/64 1346577 524,983

equations and the Lattice Boltzmann method. One can find there
reference intervals where the statistics of interest should converge.
Using a higher order finite element method and locally refined
adaptive meshes, more accurate reference values of Cy,g and G
are found in [6] for problem Z1. For a sequence of locally refined
octree meshes, Table 2 demonstrates the convergence of computed
drag and lift coefficients, and pressure drop value to reference in-
tervals.

For problem Z3 less accurate reference data is available.
Table 3 summarizes the results computed by the present method
and those available in the literature [1,42]. The values of
max Cyrag, Max Cjire and min G are the maximum drag and maxi-
mum/minimum lift coefficients over the whole time interval t € [0,
8], the pressure drop Ap is computed at t = 8. The most sensitive
statistics are Cj and Ap. Table 3 shows their convergence to the
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Table 2 Table 4
Problem Z1: convergence of drag, lift, and pressure drop to ref- Dimensional and non-dimensional parameters in the sloshing
erence intervals. benchmark.
Rimin Rmax Carag Giife Ap Value Dimensional Non-dimensional
2/128 ¢/64 3.07235 —0.019821 0.13840 Lengths D=03m D=1.0
£/256 0/64 6.20151 0.00778 0.15961 H=01m H=0.3333
¢/512 2/64 6.15078 0.00962 0.16298 W=08m W = 2.6667
¢/1024  ¢/64 6.14193 0.00990 0.16636 Frequency f=0.89 s f=10
: _ —2 5
Braack & Richter ~ 618533  0.009401 Cifizir:mon 8 j?‘%]j]‘;,s st gﬁjll‘% 43 x 105
Schifer & Turek  6.05-6.25  0.008-0.01  0.165-0.175 y - -

reference intervals. The value of the maximum drag coefficient on
the finest mesh is slightly (3%) less than the reference one.

In Fig. 8 we compare the computed curves Cypg(t), Giig(t) with
reference data from [1]. The computed coefficients fit the reference
data reasonably well. For a better fitting, a stronger mesh refine-
ment is needed which exceeds our computing capabilities.

4.2. Sloshing tank

The sloshing of fluid in a tank is a benchmark problem for nu-
merical free surface flow solvers and a problem of independent
interest, see, e.g., [3,8,13,18,33,48]. The setup of the sloshing tank
problem is given in [3,18]. A volume of water fills a rectangu-
lar tank as illustrated in Fig. 9. The initial bulk dimensions are
W =08 m, H=0.1 m and D = 0.3 m. The container walls I"p,¢rom
and [, impose slip and no-penetration conditions for the fluid.
The fluid is exposed to external forces: a constant gravitational ac-
celeration of magnitude g=9.81 ms=2 and a sinusoidal horizon-
tal excitation Agsinwt with A=0.01 and w =27 f, f =0.89 Hz.
The problem is non-dimensionalized following [18]. The full set
of dimensional and non-dimensional parameters is summarized in
Table 4.

The sloshing motion is initiated as soon as the horizontal exci-
tation is applied. After the initial ten periods the excitation is ter-
minated. The excitation frequency is designed to induce the first
mode of wave motion in the x direction, i.e., the motion with a

Table 3

wavelength approximately equal the doubled width of the tank W.
The time histories for the height of the wave at the two oppo-
site tank walls orthogonal to the x-axis are shown in Fig. 9 (right).
These data were computed for the 2D setting of the problem in
[18]. These results are believed to correspond well to physical ob-
servations [33].

The octree FV method recovers correctly time dependence of
the water level at the midline of the left wall (x = —D/2), see
Fig. 10 (left). For the first ten periods of excitation the measured
wave height matches the heights reported in [18] with the devia-
tions less than 4%. Numerical dissipation is low enough to avoid
amplitude dumping after termination of the excitations even on
relatively coarse meshes. The mesh convergence of the free sur-
face contact line evolution on the wall at x = —-D/2 is demon-
strated in Fig. 10 (right). The meshes are refined dynamically to the
tank walls up to the meshsize h,,,; and to the free surface up to
the meshsize h,;,, the coarsest cell size is fixed hmax = ¢/8, here
¢ =W. At the “Remeshing” step of the splitting method we refine
all cubic cells intersected by the zero level set of @(t"t1) so that
all these cells have the width h,;,. All other cells except bound-
ary cells are marked for coarsening. The coarsening is performed
in such a way that the octree remains balanced (two neighboring
cells may differ in size at most by a factor of two) and the max-
imum cell width in the fluid domain is hyax. The following com-
binations of the mesh refinements were used: h,; = hyi, = ¢/64,

Problem Z3: maximum drag, maximum/minimum lift, and pressure drop (at t = 8) and reference
intervals. Time steps subject to Aty = 5hy,;,/ max [u(x, t;)|.
X

himin himax max Cyrag max Giife min Gjig Ap(t=8)
£/256 £/128 3.74685 0.00190 —0.01474 —0.09740
¢/512 ¢/128 3.22627 0.00329 -0.01197 —0.12083
¢/1024 ¢[128 3.13382 0.00325 —0.01011 —0.11933
Bayraktar & Mierka & Turek 3.29-3.33 0.0027-0.0033 —0.010- —-0.012

Schifer & Turek 3.2-33 0.002-0.004 -0.14- -0.12
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Fig. 9. Left: problem setup for sloshing tank test. Right: wave height at the mid-lines of two opposite tank walls from [18].
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the mesh-convergence of the results.

hwait = hmin = €/128, hyqy = €/32, hyin = £/128, and hy,q = ¢/64,
hmin = €/256. For this problem we use adaptive time step, At =
min{0.0187, hyin/ max [u(x, t)}.

Fig. 11 demonstrates the same pattern of the free surface evolu-
tion computed by the octree 3D code and the reference 2D results.

4.3. Free surface flow passing rigidly mounted offshore oil platform

To define the initial and boundary conditions for the simulation
of sea waves passing a rigidly mounted obstacle, we consider sim-
ple, yet efficient, model of open sea waves introduced in [29] for
the purpose of breaking waves animation. The model is based on
the third order Stokes wave which is defined as follows.

One starts by defining the first order Stokes wave in terms of x-
and z-components of the free surface velocity u, w and the water
level 7n:

n(x,t) = Acos(kx — wt)
u(x,z,t) = Awe " cos(kx — wt)

w(x, z,t) = Awe " sin(kx — wt). (29)
2

Here z = 0 is the mean water level, @ = 5% is the wave frequency,

T is the wave period, k = ZT” is the wave number, A is the wave

length.

Further one introduces the third order Stokes wave by the su-
perposition of several first order Stokes waves (29):

nx,t) = %(e cos(kx — wt) + %62 cos(2kx — wt)

+ %63 cos(3kx — wt))

ux,z,t) = %(e*kze cos(kx — wt) + %e’z’“ez cos(2kx — wt)

—3kz

+ %e €3 cos(3kx — wt))

w

. 1
w(x,z,t) = T (e "¢ sin(kx — wt) + je*ZkZ

€2 sin(2kx — wt)

+ 36‘3"263 sin(3kx — wt)). (30)

With the help of (30) we define the water level np(x,y,t) =
n(x,t) and the bulk velocity

Upave (X, V.2, 1) = (u(x,2,1),0,w(x,z, t))T for z<mnpE. y.t).

We use uwave(X, y, z, 0) to prescribe the initial condition of our
simulation.

The bulk computational domain is the 440 m x 110 m x 110 m
box. Box walls are orthogonal to the coordinate axes. The sea depth
is 55 m. The inlet boundary is orthogonal to x-axis and has the
minimal x-coordinate. The outlet boundary is opposite to the in-
let boundary. On the inlet and outlet boundaries we impose the



66 K.D. Nikitin et al./Computers and Fluids 148 (2017) 56-68

1.5 .

15k ]

|

1

I

1

Z |

- 1.0

(=] . !

. ~ |

—— = o '

N N

|

05 d l }
Input Acc.= 0.01g ! f=0.89 Hz

|

o i | 1 0.0 .l
0 05 1 15 2 25 0.00 1.33 2.87

x x, /D

Fig. 11. Free surface mid-lines evolution : the computed results for 28 equally distributed time moments over one period (left) and for the purpose of comparison the
reference results from [18] (right).

Dirichlet boundary condition using the Stokes wave, uwaye(X, t), X
€ I'i UT our. On other sides of the virtual box (except the top one)
and the obstacle boundary we prescribe the no-penetration and
free slip boundary condition.

The partially submerged object of interest is a rigidly mounted
offshore oil platform. The platform shape is given by the recon-
struction (with the help of a surface triangulation) of a currently
operating unit, see Fig. 12.

The sea waves runup models the realistic weather scenario in
the Kara sea offshore region. In particular, A=3 m and T = 4 s cor-
respond to a moderate storm, whereas A=11.5 m and T=84 s
define the largest waves recorded in this region over the time of
observations. In this paper we study the case of the largest sea
waves with wave length A = 110 m. The practical statistics of in-
terest are the highest water levels at the platform and forces expe-
rienced by the construction.

In Fig. 13 we show the computational octree mesh, where dif-
ferent colors mark different type of cells: interior fluid, free sur-
face, and solid boundary. We use the same dynamic adaptation
strategy as in the previous experiment with the sloshing tank. In

Fig. 12. A reconstruction of an operating offshore unit.

Fig. 13. Octree mesh for wave runup simulation: interior fluid cells (red), free surface cells (yellow), and immersed boundary cells (green). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Maximum observed water level, central cross-section of the computational domain.
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Fig. 15. A field of normal stresses projection at x-direction.

Fig. 14 we show the maximum water level observed in the simu-
lation at the central cross-section of the computational domain.

In Fig. 15 we present the maximum dynamic load experienced
by the oilrig piers in the x-direction. The dynamic load is com-
puted by taking the x-projection of the normal stresses at the sur-
face, i.e. the subintegral expression in (26).

5. Conclusions

We built a hybrid finite volume |/ finite difference scheme for
the simulation of free-surface flows in complex geometries. The
computational efficiency was achieved by using octree Cartesian
meshes, while geometry was handled through the immersing of
both free and static boundaries in the background mesh. The major
challenges were to construct compact stencil discretizations on the
gradely refined meshes with low numerical dissipation and to en-
force various velocity and pressure boundary conditions on curvi-
linear parts of I". For a number of test examples, we demonstrated
that the developed methods are particular suitable for the simula-
tion of viscous free-surface flows over submerged or partially sub-
merged objects.
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