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What is Supercomputer

ARM v8.2-A CPU
3.072TFlops

CP-PACS/2048
2.048TFlops (No. 1 at 1996) 

Fugaku

513.9PFlops (No.1 2020)

103 Kf

106 Mf

109 Gf

1012 Tf

1015 Pf

Difficult to define - it’s a moving target
◼ In 1980s:
✓ a “supercomputer” was performing 100 Mega FLOPS
✓ FLOPS: FLoating point Operations Per Second
◼ Today:
✓ a single CPU performs a few Tetra FLOPS
✓ a “supercomputer” performs tens of Peta FLOPS

A supercomputer is basically an extremely powerful computer. 



History of the Supercomputer

The CDC 6600, the world’s first supercomputer

The CDC 6600 was the flagship of the 6000 series of
mainframe computer systems manufactured by
Control Data Corporation. Generally considered to be
the first successful supercomputer, it outperformed the
industry's prior recordholder, the IBM 7030 Stretch, by
a factor of three. With performance of up to 3 mega
FLOPS, the CDC 6600 was the world's fastest
computer from 1964 to 1969, when it relinquished
that status to its successor, the CDC 7600.

CDC 6600, 1965, 1 MFLOPS



ILLIAC IV, 1972, 1 GFLOPS

The ILLIAC IV, the most infamous computer

The ILLIAC IV was an important disaster. Only one
model was ever built. It cost four times as much as
initial estimates, and was finished years late. That’s
the disaster part, but the important? Well, the
ILLIAC IV was the first computer to be built with
parallel architecture. This means it had multiple
processors working together, it was seen as a way
to get around the technological limitations of
processing power at the time.

History of the Supercomputer



Cray 1, 1976,133 MFLOPS

The Cray-1

The Cray-1 was the first supercomputer to successfully
implement the vector processor design. The Cray-1 was a
supercomputer designed, manufactured and marketed by Cray
Research. Announced in 1975, the first Cray-1 system was
installed at Los Alamos National Laboratory in 1976. Eventually,
over 100 Cray-1s were sold, making it one of the most
successful supercomputers in history. It is perhaps best known
for its unique shape, a relatively small C-shaped cabinet with a
ring of benches around the outside covering the power supplies
and the cooling system.

History of the Supercomputer



Intel ASCI Red , 1997

1.0 TFLOPS

Intel ASCI Red

ASCI Red was the first computer built under the
Accelerated Strategic Computing Initiative, the
supercomputing initiative of the United States
government created to help the maintenance of
the United States nuclear arsenal after the 1992
moratorium on nuclear testing.

History of the Supercomputer



IBM Roadrunner, 2009

1.7 PFLOPS

IBM Roadrunner

Roadrunner was a supercomputer built by IBM for the Los
Alamos National Laboratory in New Mexico, USA. The
US$100-million Roadrunner was designed for a peak
performance of 1.7 petaflops. It achieved 1.026 petaflops
on May 25, 2008, to become the world's first TOP500
LINPACK sustained 1.0 petaflops system.

History of the Supercomputer



RIKEN K Computer, 2011

10 PFLOPS

RIKEN K Computer

The K computer was a supercomputer manufactured
by Fujitsu, installed at the Riken Advanced Institute for
Computational Science campus in Kobe, Japan. The K
computer was based on a distributed memory
architecture with over 80,000 compute nodes. It was
used for a variety of applications, including climate
research, disaster prevention and medical research.
The K computer's operating system was based on the
Linux kernel, with additional drivers designed to make
use of the computer's hardware.

History of the Supercomputer



Sunway TaihuLight, 2016

125 PFLOPS

Sunway TaihuLight

The Sunway TaihuLight is a Chinese supercomputer which,
as of November 2018, is ranked third in the TOP500 list,
with a LINPACK benchmark rating of 93 petaflops. The
name is translated as divine power, the light of Taihu Lake.
This is nearly three times as fast as the previous Tianhe-2,
which ran at 34 petaflops. As of June 2017, it is ranked as
the 16th most energy-efficient supercomputer in the
Green500, with an efficiency of 6.051 GFlops/watt. It was
designed by the National Research Center of Parallel
Computer Engineering & Technology and is located at the
National Supercomputing Center in Wuxi in the city of
Wuxi, in Jiangsu province, China.

History of the Supercomputer



Fugaku, 2020

513.9PFlops

Fugaku

The supercomputer, a CPU-only project utilizing the
ARM architecture, is currently running 152,064
nodes with each compute node featuring a Fujitsu-
designed A64FX 48 core processor and 32GB of
HBM2 memory bringing the total to 7,299,072 cores
and 4,866,048 GB of memory. Each compute node
has a Tofu interconnect (28 Gbps x 2 lanes x 10 ports)
providing up to 560 Gbps of inter-node bandwidth.
There are also 16 PCI-E 3.0 lanes for connecting to
GPUs, FPGAs, or other accelerator cards or I/O.

History of the Supercomputer



The latest top 10 supercomputer in the world
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What is Parallel Computing? (1)

• Traditionally, software has been written for serial computation: 

✓ To be run on a single computer having a single Central Processing Unit (CPU); 

✓ A problem is broken into a discrete series of instructions. 

✓ Instructions are executed one after another. 

✓ Only one instruction may execute at any moment in time. 



What is Parallel Computing? (2)

• In the simplest sense, parallel computing is the simultaneous use of multiple 
compute resources to solve a computational problem. 

✓ To be run using multiple CPUs 

✓ A problem is broken into discrete parts that can be solved concurrently 

✓ Each part is further broken down to a series of instructions 

• Instructions from each part execute simultaneously on different CPUs 
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Why Use Parallel Computing?

• Save Time and/or Money
✓ In theory, throwing more resources at a 

task will shorten its time to completion, 
with potential cost savings

✓ Parallel computers can be built from cheap, 
commodity components

• Solve Larger/More Complex Problems
✓ Many problems are so large and/or 

complex that it is impractical or impossible 
to solve them on a single computer

• Make Better Use of Underlying Parallel 
Hardware
✓ Modern computers, even laptops, are 

parallel in architecture with multiple 
processors/cores



Opportunities and Challenges

• Opportunities
✓ The computer is very powerful now (500 PFlop/s)
✓ The performance increases very fast (1000 PFlop/s in 2020)
• Challenges
✓ Massively Parallel (Sunway TaihuLight has 10 millioncores)
✓ Hybrid architecture (CPU+GPU, CPU+MIC, CPU+XXX)



State of the Art in HPC

• Simulations of Cloud 
Cavitation Collapse
• Switzerland, 2013
• IBM Sequoia
• 1.6M cores
• 11 Pflops

• Atmospheric Dynamics
• China, 2016
• Sunway TaihuLight
• 10M
• 7.95 PFLops

• Flow in Earth’s Mantle
• USA, 2015
• Sequoia
• 1.5M
• 687 TFlops

• folding kinetics of 
protein
• USA, 2014
• Anton 2
• 33792 cores

• Dark matter simulation
• Japan, 2012
• K computer
• 82944 nodes
• 4.45 Pflops

Gordon-Bell performance prize:

• Earthquake Simulation
• China, 2017
• Sunway TaihuLight
• 10M
• 18.9 PFLops

• Genetic Architectures and Climate 
Analytics
• USA, 2018
• Summit
• 2.4M
• 189 PFLops

• Simulation Maps Heat in 
Transistors
• Switzerland, 2019
• Summit
• 2.4M
• 90.89 PFLops
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c/o Douglas Ball, Boeing

What Parallel Computing Can do?



High-Speed Wing
Design

Cab Design

Engine/Airframe 
Integration

Inlet Design

Inlet Certification

Exhaust
System Design

Cabin
Noise

Community Noise

Wing-Body
Fairing Design

Vertical Tail and 
Aft Body Design

Design For
Stability &

Control

High-Lift Wing 
Design

APU Inlet
And Ducting

ECS Inlet 
Design

APU and Propulsion
Fire Suppression

Nacelle Design

Thrust Reverser
Design

Design for FOD
Prevention

Aeroelastics

Much CFD penetration.
Opportunities exist for higher

accuracy and expanded complexity

Some CFD penetration.
Opportunities exist for large increases 

in design process speed and 
application

Icing

Air Data 
System 

Location

Connexion 
Antenna

Vortex Generator 
Placement

Planform 
Design

Buffet 
Boundary

Wake Vortex Alleviation
Reynolds Number Corrections 

for Loads and S&C

Flutter

Control Failure 
Analysis

Wind Tunnel Corrections

Design For
Loads

Wing Tip Design

Wing 
Controls

Avionics Cooling

Interior 
Air 

Quality

Engine Bay Thermal Analysis

CFD penetration opportunity

What Parallel Computing Can do?



What Parallel Computing Can do?



Cerebral blood flow simulations 

What Parallel Computing Can do?

Arm and coronary coupling blood flow 

simulations

Lung blood flow simulations 

Aorta abdominal blood flow 

simulation Blood flow simulation of the whole body artery



What Parallel Computing Can do?



443m

What Parallel Computing Can do?



Nanshan Futian

Figure: The wind simulation results of Shenzhen with over 150,000 buildings

What Parallel Computing Can do?
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• MPI = “Message Passing Interface”

• Message Passing means

• Each process is a standalone sequential program.

• All data is private to each process.

• Communication is performed via library function calls.

• The underlying language is standard: Fortran, C, (F90, C++)...

• MPI is SPMD (Single Program Multiple Data).

myrank=0

data

program

myrank=1

data

program

myrank=2

data

program

myrank=
(size-1)

data

program

communication network

What is MPI?



Platform (1)



Platform (2)



Shared memory

Cluster

DISK

Platform (3)



• A portable implementation of MPI developed at Argonne National 
Labs (ANL) (USA)
• mpicc, mpicxx, mpif90: compiler.
• mpirun, mpiexec: portable scripts for launching parallel processes.
• installation

• download: http://www.mpich.org/

• tar -xzvf mpich-x.x.x.tgz

• cd mpich-x.x.x

• ./configure --prefix=/public/home/leixu/software/mpich3.1.3

• make

• make install

• vim ~/.bashrc

• export PATH=/public/home/leixu/software/mpich3.1.3/bin/:$PATH

• source ~/.bashrc

• Another open-source popular implementation of MPI is OpenMPI
(previously known as LAM-MPI).

MPICH

http://www.mpich.org/


• Messages are packets of data moving between processes

• Necessary information for the message passing system:
– sending process – receiving process i.e., the ranks

– source location – destination location

– source data type – destination data type

– source data size – destination buffer size

data

program

communication network

Message passing
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1 #include <stdio.h>
2 #include <mpi.h>
3

4 int main(int argc, char **argv) {
5 int ierror, rank, size;
6 MPI_Init(&argc, &argv);
7 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
8 MPI_Comm_size(MPI_COMM_WORLD, &size);
9 printf("Hello world. I am %d out of %d.\n",rank, size);
10 MPI_Finalize();

11 return 0;
12 }

⚫ All programs start with MPI_Init() and end with MPI_Finalize().

⚫ MPI_Comm_size() returns the total number size of processes involved in
this parallel run. MPI_Comm_rank() returns through rank, the id of the
process in this parallel run (0<=myrank<size).

Hello world in C (1)



Communicator  MPI_COMM_WORLD 
• All processes of an MPI program are members of the 

default communicator MPI_COMM_WORLD.

• MPI_COMM_WORLD is a predefined handle in mpi.h and 
mpif.h.

• Each process has its own rank in a communicator:
– starting with 0

– ending with (size-1) 

0
1

5

2

4 3
6

MPI_COMM_WORLD

Hello world in C (2)



⚫ At the moment of launching the program in parallel (we will see how it is 
done below) a copy of the program starts execution in each of the 
selected nodes. In the figure it runs on 3 nodes.

⚫ Each process obtains a unique id (usually called rank, myrank.)

⚫ Oversubscription: In general we can have more than one process per
processor (but it may not be useful, though).

process "hello" 
in 10.0.0.1

process "hello" 
in 10.0.0.2

process "hello" 
in 10.0.0.3

Hello world in C (3)



⚫ If we compile and execute hello, then when running we obtain the
normal output.

1. [rlchen@chen-x280]$ mpicc -o hello hello.c
2. [rlchen@chen-x280]$  ./hello 
3. Hello world. I am 0 out of 1.

⚫ In order to run it on several nodes we generate a machine.dat file, with the 
processors names one per line.

1. [rlchen@chen-x280]$  cat ./machine.dat
2. node1
3. node2
4. [rlchen@chen-x280]$  mpirun -np 3 -machinefile ./machine.dat ./hello 

⚫ The mpirun script, which is part of the MPICH distribution, launches a copy of 

hello in the processor where mpirun has been called and two processes in the 

nodes corresponding to the first two lines of machine.dat.

Hello world in C (4)



1 // ……
2 int main(int argc, char **argv) {
3 int ierror, rank, size;
4 MPI_Init(&argc, &argv);
5 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
6 MPI_Comm_size(MPI_COMM_WORLD, &size);
7 // ……

8 If (0 == rank) {

9 /* master code */

10 } else {

11 /* slave code */

12 }

13 // ……

14 MPI_Finalize();

15 return 0;

16 }

Master/Slave strategy with SPMD (in C)



⚫C:

1. int ierr = MPI_Xxxxx(parameter, ....); 

2. MPI_Xxxxx(parameter, ....);

⚫Fortan:
1. CALL MPI_XXXX(parameter, ...., ierr);

MPI function call format



⚫Error codes are rarely used.

⚫Proper usage is like this:

1 ierror = MPI_Xxxx(parameter, …);

2 if (ierror != MPI_SUCCESS) {

3 /* deal with failure */

4 abort();

5 }

Error codes



Moderately complex programs can be written with just 6 functions:

⚫MPI_Init: It’s used once at initialization.

⚫MPI_Comm_size: Identify how many processes participate in this 

parallel run. 

⚫MPI_Comm_rank : Identify the id of my process in the parallel run.

⚫MPI_Finalize : Last function to be called. Ends MPI.

⚫MPI_Send : Sends a message to another process (point to point).

⚫MPI_Recv : Receives a message sent by other process.

MPI is small - MPI is large
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MPI Data Type C/C++ Data Type

MPI_CHAR char

MPI_SHORT short int

MPI_INT int

MPI_LONG long

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

Operating system



⚫Template:

MPI_Send(address, length, type, destination, tag, communicator)

⚫C:

ierr = MPI_Send(&sum, 1, MPI_FLOAT, 0, mtag1, MPI_COMM_WORLD); 

⚫Fortran (note extra parameter): 

call MPI_SEND(sum, 1, MPI_REAL, 0, mtag1, MPI_COMM_WORLD, ierr);

Send a message (1)



1 int buff[100];

2 // Fill buff …

3 for (int j = 0; j < 100; j++) buff[j] = j;

4 ierr = MPI_Send(buff, 100, MPI_INT, 0, mtag1, MPI_COMM_WORLD);

5 int sum;

6 ierr = MPI_Send(&sum, 1, MPI_INT, 0, mtag2, MPI_COMM_WORLD);

7 ierr = MPI_Send(buff + 40, 20, MPI_INT, 0, mtag3, MPI_COMM_WORLD);

8 /* Error! Region sent extends, beyond the end of buff */

9 ierr = MPI_Send(buff + 80, 40, MPI_INT, 0, mtag4, MPI_COMM_WORLD);  

Send a message (2)



⚫Template:

MPI_Recv(address, length, type, source, tag, communicator, status)

⚫C:

ierr = MPI_Recv(&result, 1, MPI_FLOAT, MPI_ANY_SOURCE, mtag1,

MPI_COMM_WORLD, &status); 

⚫Fortran (note extra parameter): 

call MPI_RECV(result, 1, MPI_REAL, MPI_ANY_SOURCE, mtag1, 

MPI_COMM_WORLD, status, ierr);

Receive a message (1)



⚫(address, length) reception buffer

⚫type standard MPI type:

1. C: MPI_FLOAT, MPI_DOUBLE, MPI_INT, MPI_CHAR

2. Fortran: MPI_REAL, MPI_DOUBLE_PRECISION, MPI_INTEGER,

MPI_CHARACTER

⚫ (source, tag, communicator):  selects message

⚫status: Allows inspection of the data effectively received (e.g. 

length)

Receive a message (2)



OK if N1 >= N0

Receive a message (3)



⚫ tag: message indentifier

⚫ communicator : Process group, for instance MPI_COMM_WORLD

⚫ Status: source, tag, and length of the received message

⚫Wildcards: MPI_ANY_SOURCE, MPI_ANY_TAG

Receive a message (4)



• Envelope information is returned 
from MPI_RECV in status.

• C: status.MPI_SOURCE
status.MPI_TAG
count via MPI_Get_count()

• Fortran:status(MPI_SOURCE)
status(MPI_TAG)
count via MPI_GET_COUNT()

item-1

item-2

item-3 „count“

item-4 elements

...

item-n

To: 

destination rank

From: source rank

tag

Communication Envelope

Receive a message (5)



Each send must be balanced by a receive in the corresponding node recv

1 if (myid==0) {

2 for(i = 1; i < numprocs; i++)

3 MPI_Recv(&result, 1, MPI_FLOAT, MPI_ANY_SOURCE, mtag1, MPI_COMM_WORLD, &status);

4 } else {

5 MPI_Send(&sum, 1, MPI_FLOAT, 0, mtag1, MPI_COMM_WORLD);

6 }

Point-to-point communication



When a posted receive matches the “envelope” of the message:
envelope = source/destination, tag, communicator

⚫size(receive buffer) < size(data sent) → error

⚫size(receive buffer) ≥ size(data sent) → OK

⚫types don’t match→ error

When a message is received?



Synchronous Sends

ok

beep

• The sender gets an information that the message is 
received.

• Analogue to the beep or okay-sheet of a fax. 

Dead-lock (1)



1. MPI_Send(buff, length, MPI_FLOAT, !myrank, tag, MPI_COMM_WORLD);

2. MPI_Recv(buff, length, MPI_FLOAT, !myrank, tag, MPI_COMM_WORLD, &status);

!myrank: Common C language to represent the other process. (1 → 0, 0→ 1). 

Also 1-myrank or (myrank? 0 : 1)

MPI_Send and MPI_Recv are blocking, This means that code execution 

doesn’t advance until the sending/reception is completed.

Dead-lock (2)



1 if (!myrank) {

2 MPI_Send(buff, length, MPI_FLOAT, !myrank, tag, MPI_COMM_WORLD);

3 MPI_Recv(buff, length, MPI_FLOAT, !myrank, tag, MPI_COMM_WORLD, &status);

4 } else {

5 MPI_Recv(buff, length, MPI_FLOAT, !myrank, tag, MPI_COMM_WORLD, &status);

6 MPI_Send(buff, length, MPI_FLOAT, !myrank, tag, MPI_COMM_WORLD);

7 }

Correct calling order (1)



The previous code erroneously 

overwrites the reception buffer. 

We need a temporal buffer .

1 if (!myrank) {

2 MPI_Send(buff, length, MPI_FLOAT, !myrank, tag,            

MPI_COMM_WORLD);

3 MPI_Recv(buff, length, MPI_FLOAT, !myrank, tag,   

MPI_COMM_WORLD, &status);

4 } else {

5 float *tmp =new float[length];

6 memcpy(tmp, buff, length * sizeof(float));

7 MPI_Recv(buff, length, MPI_FLOAT, !myrank,

tag, MPI_COMM_WORLD, &status);

8 MPI_Send(tmp, length, MPI_FLOAT, !myrank, tag,   

MPI_COMM_WORLD);

Correct calling order (2)



MPI_Sendrecv: sends and receives at the same time.

1 float *tmp = new float[length];

2 int MPI_Sendrecv(buff, length, MPI_FLOAT, !myrank, stag, tmp, length, MPI_FLOAT, !myrank, rtag, MPI_COMM_WORLD, 

&status)

3 memcpy(buff, tmp, length * sizeof(float));

4 delete[] tmp;

MPI_Sendrecv(void *sendbuf, int sendcount, 

MPI_Datatype sendtype, 

int dest, int sendtag, 

void *recvbuf, int recvcount, 

MPI_Datatype recvtype, 

int source,  int recvtag, 

MPI_Comm comm,  

MPI_Status status);

Correct calling order (3)



Non-Blocking Operations
• Non-blocking operations return immediately 

and allow the process to perform other work.

ok

beep

Correct calling order (4)



⚫Template:

MPI_Isend(sbuf, count, datatype, dest, tag, comm, request); 

⚫C:

ierr = MPI_Isend(&sum, 1, MPI FLOAT, 0, mtag1, MPI_COMM_WORLD , 

request); 

MPI_Irecv(rbuf, count, datatype, source, tag, comm, request);

⚫C:

ierr = MPI_Irecv(&result, 1, MPI_FLOAT, 1, mtag1, MPI_COMM_WORLD, 

request); 

Correct calling order (5)



Use non-blocking send/receive

1 MPI_Request request;

2 MPI_Isend(. . . ., request);

3 MPI_Recv(. . . .);

4 while(1) {

5 MPI_Test(request, flag, status);

6 if(flag) break;

⚫ The code is the same for the two processes.

⚫ Needs auxiliary buffer (not shown here)

Use non-blocking send/receive

1 MPI_Request request;

2 MPI_Isend(. . . ., request);

3 MPI_Recv(. . . .);

4 MPI_Wait(request, status);

Correct calling order (6)
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• A one-to-many 
communication.

Message broadcast (1)



Template:

MPI_Bcast(address, length, type, source, comm) 

C:

ierr = MPI_Bcast(&a, 1, MPI_INT, 0, MPI_COMM_WORLD); 

Fortran:

call MPI_Bcast(a, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

Message broadcast (2)



1 if (!myrank) {

2 for (int j = 1; j < numprocs; j++)    MPI_Send(buff, . . ., j);

3 } else {

4 MPI_Recv(buff, . . ., 0, . . .);

5 }

MPI_Bcast() is conceptually equivalent to a series of Sends/Receives, but it may be much more 

efficient.

Message broadcast (3)



Message broadcast (4)



Efficient implementation of MPI_Bcast() with Send/Receives.

1. At every moment we are in process myrank and we have an interval [n1,n2) such that 

myrank is in [n1,n2). Remember that [n1,n2)={j such that n1 <= j < n2} .

2. Initially n1=0, n2=NP (number of processors).

3. In each step n1 sends to middle=(n1+n2)/2 and this will receive.

4. In the next step we update the range to [n1,middle) if myrank < middle or else [middle,n2).

5. The process ends when n2-n1==1

Message broadcast (5)



Pseudocode:

1 int n1 = 0, n2 = numprocs;

2 while (1) {

3 int middle = (n1 + n2) / 2;

4 if (myrank == n1) MPI_Send(buff, . . ., middle, . . .);

5 else if (myrank == middle)    MPI_Recv(buff, . . ., n1, . . .);

6 if (myrank < middle)    n2 = middle; 

7 else n1 = middle;

Message broadcast (6)



These routines are collective (in contrast to the point-to-point MPI_Send()

and MPI_Recv()). All processors in the communicator must call the function,

and normally the collective call imposes an implicit barrier in the code

execution.

int MPI_Barrier(MPI_Comm comm)

Collective calls



all here?

MPI_Barrier()
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• Combine data from several processes to 
produce a single result.

Global reduction (1)



⚫ Template:

MPI_Reduce(s_address, r_address, length, type, operation, destination, comm)

⚫ C:

ierr = MPI_Reduce(&a, &s, 1, MPI_FLOAT, MPI SUM, 0, MPI_COMM_WORLD);

⚫ Fortran:

call MPI_REDUCE(a, s, 1, MPI_REAL, MPI_SUM, 0, MPI COMM WORLD, ierr)

Global reduction (2)



Reduction functions apply a binary associative operation to a set of values.

Typically,

⚫ MPI_SUM sum

⚫ MPI_MAX maximum

⚫ MPI_MIN minimum

⚫ MPI_PROD product

⚫ MPI_AND boolean

⚫ MPI_OR boolean

It is not specified the order in which the binary operations are done, so that it

is very important that the function must be associative.

MPI associative global operations (1)



If the result of the reduction is needed in all processors, then we must use

MPI_Allreduce(s_address, r_address, length, type, operation, comm)

This is conceptually equivalent to a MPI_Reduce() followed by a MPI_Bcast(). 

Warning: MPI_Bcast() and MPI_Reduce() are collective functions. All 

processors must call them!!

MPI associative global operations (2)
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Computing Pi by numerical integration



Using the midpoint rule

numprocs = number of processors

n = Number of intervals (may be a multiple of numprocs or not)

h = 1/n= interval width

Numerical integration (1)



1 // Inicialization (rank,size) . . .

2 while (1) {

3 // Master (rank==0) read number of intervals ‘n’ . . .

4 // Broadcast ‘n’ to computing nodes . . .

5 if (n==0) break;

6 // Compute ‘mypi’ (local contribution to ‘pi’) . . .

7 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

8 // Master reports error between computed pi and exact

9 }

10 MPI_Finalize();

Numerical integration (2)



1 //***********************************************************

2 //  compute pi by integrating f(x) = 4/(1 + x**2)

3 //  Each node:

4 //   1) receives the number of rectangles used in the approximation.

5 //   2) calculates the areas of its rectangles.

6 //  3) Synchronizes for a global summation.

7 //  Node 0 prints the result.

8 //  Variables:

9 //  pi           the calculated result

10 //  n            number of points of integration.

11 //  x            midpoint of each rectangle’s interval

12 //  f             function to integrate

13 //  sum, pi   area of rectangles

14 //  tmp temporary scratch space for global summation

15 //  i              do loop index

16  //**********************************************************

Code (1)



17 #include <mpi.h>
18 #include <cstdio>
19 #include <cmath>
20

21 // The function to integrate
22 double f(double x) { return 4. / (1. + x * x); }
23

24 int main(int argc, char **argv) {
25

26 MPI_Init(&argc, &argv);     // Initialize MPI environment
27

28 int myrank;                           // Get the process number and assign it to the variable myrank
29 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
30

31 // Determine how many processes the program will run on and
32 // assign that number to size
33 int size;
34 MPI_Comm_size(MPI_COMM_WORLD, &size);
35

36 // The exact value
37 double PI = 4 * atan(1.0);

Code (2)



38 // Enter an infinite loop. Will exit when user enters n = 0
39 while (1) {
40 int n;
41 // Test to see if this is the program running on process 0,
42 // and run this section of the code for input.
43 if (!myrank) {
44 printf("Enter the number of intervals: (0 quits) > ");
45 scanf("%d",&n);
46 }
47

48 // The argument 0 in the 4th place indicates that
49 // process 0 will send the single integer n to every
50 // other process in processor group MPI-COMM-WORLD.
51 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
52

53 // If the user puts in a negative number for n we leave the program by branching to MPI_FINA
54 if (n < 0) break;

55   

56    // Now this part of the code is running on every node and each one shares the same value 

57   // of n. But all  other variables are local to each individual  process. So each process then calculates 

58  // the each interval size.

Code (3)



60 //*****************************************************
61 // Main Body : Runs on all processors
62 //*****************************************************
63 // even step size h as a function of partitions
64 double h = 1.0 / double(n);
65 double sum = 0.0;
66 for (int i = myrank + 1; i <= n; i += size) {
67 double x = h * (double(i) - 0.5);
68 sum = sum + f(x);
69 }
70 double pi, mypi = h * sum; // this is the total area in this process, (a partial sum.)
71

72 // Each individual sum should converge also to PI, compute the max error
73 double error, my_error = fabs(size * mypi - PI);
74 MPI_Reduce(&my_error, &error, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
75

76  // After each partition of the integral is calculated, we collect all the partial sums.

77      // The MPI_SUM argument is the operation that adds all the values of mypi into pi of 

78    // process 0 indicated by the 6th argument.
79 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

Code (4)



80 //*****************************************************
81 // Print results from Process 0
82 //*****************************************************
83

84 // Finally the program tests if myrank is node 0
85 // so process 0 can print the answer.
86 if (!myrank) 

87 printf("pi is aprox: %f, (error %f, max err over procs %f)\n", pi, fabs(pi - PI), my_error);
88 // Run the program again.
89 }
90 // Branch for the end of program. MPI-FINALIZE will close
91 // all the processes in the active group.
92

93 MPI_Finalize();
94 }

Code (5)
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for( i = 0; i < m; i++ )
for( j = 0; j < n; j++ )

for( k = 0; k < p; k++ )
c[i][j] = c[i][j] + a[i][k] * b[k][j]
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Matrix Product in Parallel (1)



All nodes have all B, and receive part of A (a range (chunk) of files

A(i:i+n-1,:). The node makes the product A(i:i+n-1,:)*B and returns

the result.

⚫ Static load balance: needs to know the computing speed.

Matrix Product in Parallel (2)



Complete code (1)



Complete code (2)



Complete code (3)
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We have already seen the basic collective operations (MPI_Bcast() and

MPI_Reduce()). Collective functions have the advantage that allow to perform

complex common operations in simply and efficiently.

There are other collective operations, namely

⚫ MPI_Scatter(), MPI_Gather()

⚫ MPI_Allgather()

⚫ MPI_Alltoall()

And their vectorized (varible length per processor) versions

⚫ MPI_Scatterv(), MPI_Gatherv()

⚫ MPI_Allgatherv()

⚫ MPI_Alltoallv()

Advanced MPI collective operations



Sends a certain amount of data of the same size and type to the other processes (as

in MPI_Bcast(), but the data to be sent is not the same to all processes).

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, 

int recvcnt, MPI_Datatype recvtype, int root, MPI_Comm comm);

Scatter operations (1)



1     #include <mpi.h>

2     #include <cstdio>

3     int main(int argc, char **argv) {

4         MPI_Init(&argc, &argv);

5         int myrank, size;

6         MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

7         MPI_Comm_size(MPI_COMM_WORLD, &size);

8         int N = 5; // Nbr of elements to send to each processor

9         double *sbuff = NULL;

10       if (!myrank) {

11           sbuff = new double[N * size]; // send buffer only in master

12            for (int j = 0; j < N * size; j++) sbuff[j] = j + 0.25;   // fills ‘sbuff’

13         }

14         double *rbuff = new double[N]; // receive buffer in all procs

15          MPI_Scatter(sbuff, N, MPI_DOUBLE, rbuff, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

16          for (int j = 0; j < N; j++)   printf("[%d] %d -> %f\n", myrank, j, rbuff[j]);

17          MPI_Finalize();

18 if (!myrank) delete[ ] sbuff;

19 delete[ ] rbuff;

20    }

Scatter operations (2)



Scatter operations (3)



Is the inverse to scatter, (gathers) a certain length of data from each processor

in a destination processor.

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf,   

int recvcnt, MPI_Datatype recvtype, int root, MPI_Comm comm)

Gather operations (1)



1     #include <mpi.h>

2     #include <cstdio>

3     int main(int argc, char **argv) {

4         MPI_Init(&argc, &argv);

5         int myrank, size;

6         MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

7         MPI_Comm_size(MPI_COMM_WORLD, &size);

8         int N = 5; // Nbr of elements to send to each processor

9         double *sbuff = new double[N]; // send buffer in all procs

10       for (int j = 0; j < N; j++) sbuff[j] = myrank * 1000.0 + j;

11       double *rbuff = NULL;

12       if (!myrank) {

13            rbuff = new double[N * size]; // recv buffer only in master

14        }

15        MPI_Gather(sbuff, N, MPI_DOUBLE, rbuff, N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

16        if (!myrank)

17            for (int j = 0; j < N * size; j++)    printf("%d -> %f\n", j, rbuff[j]);

18        MPI_Finalize();

19        delete[ ] sbuff;

20        if (!myrank) delete[ ] rbuff;

21   }

Gather operations (2)



It’s conceptually equivalent to perform a gather followed by a broadcast.

int MPI_Allgather(void *sbuf, int scount, MPI_Datatype stype, void *rbuf, int rcount, 

MPI_Datatype rtype, MPI_Comm comm)

All-gather operations (1)



1 #include <mpi.h>

2 #include <cstdio>

3 int main(int argc, char **argv) {

4 MPI_Init(&argc, &argv);

5 int myrank, size;

6 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

7 MPI_Comm_size(MPI_COMM_WORLD, &size);

8 int N = 5; // Nbr of elements to send to each processor

9 double *sbuff = new double[N]; // send buffer in all procs

10 for (int j = 0; j < N; j++) sbuff[j] = myrank * 1000.0 + j;

11 double *rbuff = new double[N * size]; // receive buffer in all procs

12 MPI_Allgather(sbuff, N, MPI_DOUBLE, rbuff, N, MPI_DOUBLE, MPI_COMM_WORLD);

13 for (int j = 0; j < N * size; j++) printf("[%d] %d -> %f\n", myrank, j, rbuff[j]);

14 MPI_Finalize();

15 delete[ ] sbuff;

16 delete[ ] rbuff;

17 }

All-gather operations (2)



Its conceptually equivalent to a scatter from 𝑷𝟎 followed by a scatter from

𝑷𝟏, etc..., or either a gather to 𝑷𝟎, followed by a gather to 𝑷𝟏, and so on...

int MPI_Alltoall(void *sendbuf, int sendcount, MPI_Datatype sendtype, void

*recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

All-to-all operations (1)



1 #include <mpi.h>

2 #include <cstdio>

3 int main(int argc, char **argv) {

4 MPI_Init(&argc, &argv);

5 int myrank, size;

6 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

7 MPI_Comm_size(MPI_COMM_WORLD, &size);

8 int N = 3; // Nbr of elements to send to each processor

9 double *sbuff = new double[N]; // send buffer in all procs

10 for (int j = 0; j < N; j++) sbuff[j] = myrank * 1000.0 + j;

11 double *rbuff = new double[N * size]; // receive buffer in all procs

12 MPI_Alltoall(sbuff, N, MPI_DOUBLE, rbuff, N, MPI_DOUBLE, MPI_COMM_WORLD);

13 for (int j = 0; j < N * size; j++) printf("[%d] %d -> %f\n", myrank, j, rbuff[j]);

14 MPI_Finalize();

15 delete[ ] sbuff;

16 delete[ ] rbuff;

17 }

All-to-all operations (2)



All-to-all operations (3)



It is conceptually equivalente to a MPI_Scatter() but allows that the length

of data send to each processor may be different.

int MPI_Scatterv( void *sendbuf, int *sendcnts, int *displs, MPI_Datatype sendtype, 

void *recvbuf, int recvcnt, MPI_Datatype recvtype, int root, 

MPI_Comm comm);

Vector scatter (variable length) (1)



1 int N = size * (size + 1) / 2;

2 double *sbuff = NULL;

3 int *sendcnts = NULL;

4 int *displs = NULL;

5 if (!myrank) {

6 sbuff = new double[N]; // send buffer only in master

7 for (int j = 0; j < N; j++) sbuff[j] = j; // fills ‘sbuff’

8 sendcnts = new int[size];

9 displs = new int[size];

10 for (int j = 0; j < size; j++) sendcnts[j] = (j + 1);

11 displs[0] = 0;

12 for (int j = 1; j < size; j++)  displs[j] = displs[j - 1] + sendcnts[j - 1];

13 }    

14    double *rbuff = new double[myrank + 1]; // receive buffer in all procs

15    MPI_Scatterv(sbuff, sendcnts, displs, MPI_DOUBLE, rbuff, myrank + 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

16    for (int j = 0; j < myrank + 1;  j++)

17 printf("[%d] %d -> %f\n", myrank, j, rbuff[j]);

Vector scatter (variable length) (2)



Is the same as gather, but each processor receives data of different length.

int MPI_Gatherv(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf,   

int *recvcnts, int *displs, MPI_Datatype recvtype, int root, 

MPI_Comm comm);

Gatherv operation (1)



1 int sendcnt = myrank + 1;   // send buffer in all 

2 double *sbuff = new double[myrank + 1] ;

3 for (int j = 0; j < sendcnt; j++)

4            sbuff[j] = myrank * 1000 + j;

5 int rsize = size * (size + 1) / 2;

6 int *recvcnts = NULL;

7        int *displs = NULL;

8 double *rbuff = NULL;

9 if (!myrank) {

10         // receive buffer and ptrs only in master

11         rbuff = new double[rsize];  // recv buffer only in master

12 recvcnts = new int[size];

13        displs = new int[size];

14  for (int j = 0; j < size; j++) recvcnts[j] = (j + 1);

15 displs[0] = 0;

16 for (int j = 1; j < size; j++)  displs[j] = displs[j - 1] + recvcnts[j - 1];

17 }

18 MPI_Gatherv(sbuff, sendcnt, MPI_DOUBLE, rbuff, recvcnts, displs, MPI_DOUBLE, 0, MPI_COMM_WORLD);

Gatherv operation (2)



Is the same as gatherv, followed by a broadcast.

int MPI_Allgatherv(void *sbuf, int scount, MPI_Datatype stype, void *rbuf, int

*rcounts, int *displs, MPI_Datatype rtype, MPI_Comm comm)

Allgatherv operation (1)



1 int sendcnt = myrank + 1;   // send buffer in all 

2     double *sbuff = new double[myrank + 1];

3 for (int j = 0; j < sendcnt; j++)

4 sbuff[j] = myrank * 1000 + j;

5 // receive buffer and ptrs in all

6 int rsize = size * (size + 1) / 2;

7       double *rbuff = new double[rsize];

8 int *recvcnts = new int[size];

9       int *displs = new int[size];

10 for (int j = 0; j < size;  j++) recvcnts[j] = (j + 1);

11       displs[0] = 0;

12       for (int j = 1; j < size; j++)

13 displs[j] = displs[j - 1] + recvcnts[j - 1];

14 MPI_Allgatherv(sbuff, sendcnt, MPI_DOUBLE, rbuff, recvcnts, displs, MPI_DOUBLE, MPI _COMM_WORLD);

Allgatherv operation (2)



Vectorized version (variable length data) of MPI_Alltoall().

int MPI_Alltoallv(void *sbuf, int *scnts, int *sdispls, MPI_Datatype stype, void *rbuf,

int *rcnts, int *rdispls, MPI_Datatype rtype, MPI_Comm comm);

All-to-all-v operation (1)



1       int ssize = (myrank + 1) * size; // vectorized send buffer in all

2 double *sbuff = new double[ssize];

3       int *sendcnts = new int[size];

4       int *sdispls = new int[size];

5 for (int j = 0; j < ssize; j++)  sbuff[j] = myrank * 1000 + j;

6 for (int j = 0; j < size; j++) sendcnts[j] = (myrank + 1);

7       sdispls[0] = 0;

8 for (int j = 1; j < size; j++)    sdispls[j] = sdispls[j - 1] + sendcnts[j - 1];

9 int rsize = size * (size + 1) / 2; // vectorized receive buffer and ptrs in all

10      double *rbuff = new double[rsize];

11       int *recvcnts = new int[size];

12 int *rdispls = new int[size];

13 for (int j = 0; j < size; j++) recvcnts[j] = (j + 1);     

14 rdispls[0] = 0;

15 for (int j = 1; j < size; j++)    rdispls[j] = rdispls[j - 1] + recvcnts[j - 1];

16        MPI_Alltoallv(sbuff, sendcnts, sdispls, MPI_DOUBLE, rbuff, recvcnts, rdispls, MPI_DOUBLE,   

MPI_COMM_WORLD);

All-to-all-v operation (2)



1. Try to run the cpi code with different number processors and mesh 
points to see the change of the accuracy and total compute time.

2. Based on the cpi code, try to do the integration 0׬

𝜋/2
sin 𝑥 ⅆ𝑥.

3. Based on the matrix production code, write the parallel code of the 
Jacobi iterative method for solving a linear system.

Exercise 

Jacobi Iteration

Linear System





Thanks for your attention！
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