
Mesh Modification and Adaptation
Within INMOST Programming Platform

Kirill Terekhov and Yuri Vassilevski

Abstract INMOST (Integrated Numerical Modelling Object-oriented Supercom-
puting Technologies) is a programming platform which facilitates development
of parallel models. INMOST provides to the user a number of tools: mesh
manipulation and mesh data operations, automatic differentiation, linear solvers,
support for multiphysics modelling. In this paper, we present mesh modification
and adaptation capabilities of INMOST.

1 Introduction

Parallel modelling of complex multiphysics phenomena is a challenge since the
programmer has to implement numerical methods in parallel, manage the un-
structured grid, data exchanges and assembly of large distributed linear systems
with MPI, solve the resulting linear and nonlinear systems and finally postprocess
the result. INMOST [8] is an open-source library that alleviates the most of the
burden from the programmer providing a unified set of tools to address each of
the aforementioned issues. We have used the INMOST platform to implement
the fully implicit black-oil reservoir model and fully coupled blood coagulation

K. Terekhov (�)
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow,
Russia
e-mail: terekhov@dodo.inm.ras.ru

Yu. Vassilevski
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow,
Russia

Lomonosov Moscow State University, Moscow, Russia

Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Sechenov University, Moscow, Russia

© Springer Nature Switzerland AG 2019
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 131,
https://doi.org/10.1007/978-3-030-23436-2_18

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23436-2_18&domain=pdf
mailto:terekhov@dodo.inm.ras.ru
https://doi.org/10.1007/978-3-030-23436-2_18


244 K. Terekhov and Yu. Vassilevski

model [12]. The black-oil reservoir model involves simultaneous solution of three
Darcy equations that describe flows of the mixture of water, oil and gas. The blood
coagulation model couples the Navier-Stokes equations with the Darcy term and
nine additional advection-diffusion-reaction equations that participate in a reaction
cascade responsible for blood coagulation [3]. Both multiphysics applications can
greatly benefit from adaptation of the computational mesh to the solution during the
simulation.

Mesh modifications are demanded in parallel generation of huge computational
meshes. Static and dynamic mesh adaptations through refinement and coarsening
reduces the computational work. These mesh operations require very flexible
and efficient data structure for storage of mesh elements, adjacency information,
allowing for fast removal and addition of elements. Mesh libraries allowing for
mesh modification, such as Dune [5], project DuMuX [6] based on Dune, STK
mesh from Trilinos package [14], have attracted ever-growing attention. There are
other notable packages for parallel mesh management, such as MOAB [10] and
MSTK [7], they offer basic mesh modification functionality: delete and add mesh
elements. INMOST platform provides mesh modification tools which are applicable
to meshes composed of arbitrary polyhedral star-shaped cells. The algorithms
and functionality that form the basis of the INMOST mesh operations module
were previously reported in [2, 4, 11, 12, 15]. In this work we address sequential
modification of general meshes leaving parallel mesh modification to further works.

2 Mesh and Mesh Data

The primary mesh functionality of the INMOST platform is formed by the following
operations:

• load a mesh and associated data;
• compute partitioning of the mesh;
• redistribute the mesh;
• build multiple layers of ghost cells;
• access mesh elements, status of elements, mesh data;
• save the result in parallel format.

The data structure supports the full zoo of elements: nodes, edges, faces, cells
as well as bidirectional adjacency connections between them as depicted in Fig. 1a.
The traversal of adjacencies should be ordered: edges of each face form a loop that
defines the normal orientation, nodes of certain types of cells appear in a predefined
order. The elements can be organized into sets of elements which in turn can be
organized into a tree structure as depicted in Fig. 1b.



Mesh Modification and Adaptation Within INMOST Programming Platform 245

Fig. 1 (a) Element zoo and adjacency connections. (b) Organization of sets of elements into a tree
structure

2.1 Data Structure and Algorithms for Mesh Modification

Various scenarios of data usage imply a large variety of mesh data representations
shown in Fig. 2. Mesh data can be dense or sparse, i.e., given on all or some
elements. The data can have fixed or variable size, various data types: bulk (single
character), integer, double, a reference to an element, double with single or multiple
variations (variation is represented by a sparse vector consisting of an index and a
coefficient), a reference to an element of another mesh. The user can access the data

Fig. 2 Data representation in a mesh



246 K. Terekhov and Yu. Vassilevski

directly in the memory through provided classes or can request to copy the data into
provided arrays. Data on a mesh is associated with a tag.

All data of a mesh (including adjacency information) is stored using mesh data.
Mesh operations imply possible increase of the number of elements and the size of
the stored data. To cope with this, we separate dense data array into chunks, each
chunk is capable of storing m-bit data for N elements. We keep in memory the
contiguous blocks of size mN bits and links to these blocks. When we need to store
more data, another block is added. The data fragmentation allows us to access the
data in memory during reallocation.

We want to store references to elements in the mesh that are valid during
modification and to minimize the memory required to store the data. To this end,
we represent each element by a unique identificator: the first three bits store the
element type, the rest of the bits store the position in a non-shrinkable array that
holds position of the data. As a result, we can move the data and change its position
keeping its identificator. When the element is deleted, the position of its data is set
to −1. To handle removal of elements efficiently, we keep an array of positions of
deleted elements. When an element is deleted, its position is added to the array and
its data is deallocated or zeroed-out. When a new element is to be added, we first try
to add it to the array of empty data positions. If no empty positions are available, we
extend the data set by the new element. Compaction of data is achieved by repetitive
motion of elements stored at the last positions to the empty positions if they occur.

New mesh elements can be added or deleted and the adjacency connections can
be modified. An element is deleted by disconnection of the lower level adjacency
connections and deletion of all the adjacency elements dependent on the deleted
element. This is needed to keep the mesh consistent. The lower level adjacencies
are two nodes for an edge, edges or nodes for a face, faces or nodes (in some
cases) for a cell. Adjacencies of mesh elements can be disconnected and connected
by functions Element::Disconnect, Element::Connect, element can be deleted or
hidden depending on mesh state by Element::Delete, or completely destroyed
disregarding the state of the mesh by Element::Destroy.

A new element is inserted into the mesh by its lower adjacency dependence.
The elements are created with the functions Mesh::CreateNode, Mesh::CreateEdge,
Mesh::CreateFace, Mesh::CreateCell.

A local mesh modification on an element is performed as follows. Upper
adjacencies of the element are disconnected first and then the element is deleted
to keep upper adjacencies intact. The mesh becomes inconsistent at this point. Then
new elements are added to the mesh and the upper adjacencies are reconnected by
function Element::Connect to make the mesh consistent again.

The user can calculate and store geometrical quantities, such as edge length,
face area and normal, cell volume, barycentres for elements. The quantities are
recomputed only for modified elements during mesh modification. The func-
tion computing geometrical quantities is Mesh::PrepareGeometricData, remov-
ing geometrical data Mesh::RemoveGeometricData, checking data availability
Mesh::HaveGeometricData. The data can be accessed through functions Ele-
ment::Barycenter, Edge::Length, Face::Area, Cell::Volume, Face::Normal, Face::
OrientedNormal, Face::FixNormalOrientation or, in general, Mesh::GetGeometric-
Data.



Mesh Modification and Adaptation Within INMOST Programming Platform 247

2.2 Topology Correctness Control

During generation and modification, it is easy to produce a topologically incon-
sistent configuration. A number of controls of mesh topological correctness are
provided:

• Check for duplication of elements: when a new element is created, the adjacency
is checked and if the element already exists, it is returned to the user.

• Check for element degeneracy: a face is prohibited to have less then 3 edges and
a cell is prohibited to have less then 4 faces.

• Check and fix order of edges within a face: the edges should form a closed loop.
• Check for normal orientation of faces: the traversal of face nodes should match

the face normal direction.
• Check for face planarity: an error is returned if the face is non-planar.
• Check for interleaved faces: an error is returned if multiple faces share the same

nodes.
• Check for mesh conformity: each interior face is shared by exactly two neigh-

bouring cells.
• Check for slivers: a cell face should not contain all the cell nodes.
• Check for adjacent elements on element creation: check for duplicated adjacen-

cies, deleted adjacencies or their improper dimensionality.
• Prohibit existence of general polygons and polyhedra: only known types of

elements are allowed in the mesh, such as triangles, quads, tetrahedrons, hexes
and so on.

• Prohibit existence of multi-line or multi-polygon: detect and prohibit elements
whose lower adjacencies do not form a closed loop.

The tests are performed during mesh modification. The function Mesh::SetTopo-
logyCheck sets topology test, RemTopologyCheck removes it, Mesh::GetTopo-
logyCheck returns the current set of tests, The erroneous elements are marked
by a data whose tag can be accessed by Mesh::TopologyErrorTag. The topology
correctness tests have to be enriched by checks for appearance of concave or non-
star-shaped elements, self intersections of edges of a face or faces of a cell.

2.3 High-Level Modification Routines

A number of procedures facilitate the mesh modification managing all necessary
reconnections in the mesh. Two types of procedures are provided: functions uniting
a set of elements into a single element and functions splitting an element into subele-
ments. To unite a set of edges, faces or cells, one uses functions Edge::UniteEdges,
Face::UniteFaces, Cell:UniteCells. To split an edge by nodes, a face by edges and a
cell by faces, one uses functions Edge::SplitEdge, Face::SplitFace, Cell::SplitCell.



248 K. Terekhov and Yu. Vassilevski

Fig. 3 Separation of a face
F0 by a set of edges into faces
F1, . . . , F5

Algorithm 1 Find all the loops L that form new faces
1: First we set a visit counter for all the edges. The original set of edges of the face should be

visited just once and get the counter “1”, the new edges that split the face should be visited
twice and get the counter “2”.

2: Start from an edge that has a visit counter “1”. Add it to a loop "m. Set the recursion depth
k = 0 and a counter of the loops m = 0.

3: Consider all the adjacent edges Ek with non-zero visit counter of the last added edge lk ∈ "m.
4: Add a next non-considered edge e ∈ Ek to the loop "m. If there are no more edges, then go to

step 7.
5: Compute the number of visits of nodes by edges in "m, if all the nodes are visited twice, then

"m is a closed loop and we go to step 6, if all the nodes are visited twice or once then continue
to step 3, if some nodes are visited more then twice then we go to step 7.

6: The "m is a closed loop. We increase m = m+ 1 and copy "m = "m−1.
7: We remove last added edge lk from "m and reduce the recursion depth k = k − 1. If k = −1

then go to the step 8, otherwise return to the step 4.
8: Select such an m that the area covered by "m is the smallest and add "m to the set of all loops

L . For all the edges in "m we reduce the visit counter by one.
9: If there are still any edges with visit counter “1” return to step 2, otherwise exit the algorithm.

The unification scenario implies detection and elimination of all lower-level
adjacencies internal to the union, connection of a new element to lower-level
adjacencies external to the union, and reconnection of upper-level adjacencies. In
certain cases merging of elements is not possible without topological issues and an
error is returned. For instance, if a hexahedron is surrounded by other hexahedra, its
faces can not be united. If a set of adjacencies external to a desirable union forms
multiple disjoint loops, an error occurs as well.

The splitting scenario implies finding all closed loops in a graph formed by the
adjacency connections such that the geometric measure (length, area or volume)
is minimal. The problem of dividing a face by a set of edges is depicted in
Fig. 3. To solve the problem of finding closed loops, we use recursive Algorithm 1
implemented in function Face::SplitFaces.

Non-flat face may complicate its splitting: face projection to a plane should
be performed before application of Algorithm 1. Recursive Algorithm 1 is rather
expensive, a more efficient algorithm stems from the divide and conquer strategy.

2.4 Mesh Modification and Mesh Data Transfer

Mesh modification is often accompanied by data transfer based on modification
epochs. The user can switch the mesh into a modification state. In this state, the



Mesh Modification and Adaptation Within INMOST Programming Platform 249

Algorithm 2 Mesh modification epoch
1: Call Mesh::BeginModification to enter the modification state. From this point all deleted

elements are only marked for deletion but remain in the mesh. Requests for adjacent elements
skip elements marked for deletion.

2: Perform modification of the mesh. Delete old elements and create new elements.
3: Call Mesh::ResolveModification to setup the data necessary for exchange of data in parallel on

the new mesh.
4: Call Mesh::SwapModification to recover the old mesh and transfer mesh data.
5: Call Mesh::ApplyModification to apply all changes. All the elements marked for deletion and

their data are irreversibly destroyed. Links to deleted mesh elements are replaced to invalid
links.

6: Call Mesh::EndModification to exit the modification state.

deleted elements are hidden from the mesh, but their data is still available for data
transfer. The steps are presented in Algorithm 2.

The transfer of physical quantities is not provided during mesh modification as
their interpolation is problem-dependent. The user can implement his interpolation
procedures on the basis of the above functions.

3 Examples

The following examples involve mesh modification and use the aforementioned
structure and algorithms. All examples are available in the INMOST repository [8].

3.1 Mesh Repair and Improvement

The following two examples represent only a small subset of possible mesh
improvements that can be performed.

Example GridTools/FixFaults addresses the following mesh inconsistency. The
conventional Corner Point Grid format stores a geological grid with a fault as a
combination of two grids shifted vertically with respect to each other. The two grids
are disjoint and the geological grid is not conformal. To fix this issue, we have to find
intersection of faces that are in contact, introduce new edges and split the contacting
faces as depicted in Fig. 4. The fault displayed in Fig. 5a has two disjoint mesh traces
as shown in Fig. 5b. The corrected conformal grid on the fault is shown in Fig. 5c.

Example GridTools/FixTiny addresses meshes which have faces or edges of very
small size. This may result in instability of discretization methods, deterioration of
accuracy, very stiff matrices, etc. Our tool collapses such elements. An edge can be
collapsed to a node, a face to either an edge or a node, a cell to either a face or an
edge or a node. Moreover, the tool is able to repair an issue in the grid illustrated in
Fig. 5a. The choice of the collapse operation for an element is based on the analysis



250 K. Terekhov and Yu. Vassilevski

Fig. 4 Finding intersection of overlapping faces and separation into a new set of faces

(a) (b) (c)

Fig. 5 (a) Fixing the grid with self-intersections in edges of the mesh. (b) Traces of two disjoint
faces on the fault. (c) Faces are split at the fault between two meshes

of the bounding ellipsoid with minimum volume [13]. For a 3D cell, comparing the
ellipsoid semi-axes of the matrix corresponding to the ellipse, we:

• collapse the cell to an edge, if one semi-axis is significantly larger than the others;
• collapse the cell to a face, if two largest semi-axes are relatively close;
• collapse the cell to a node, if all three semi-axes are almost equal.

3.2 Dual Meshes

Vertex-centered finite volume (FV) methods exploit polyhedral dual grid which
benefits from the reduction of the number of degrees of freedom keeping the same
accuracy if one compares them with cell-centered FV methods on tetrahedral or
triangular prismatic grids. The construction of the dual grid is straightforward, see
Fig. 6. The example is GridTools/Dual.



Mesh Modification and Adaptation Within INMOST Programming Platform 251

(a) (b)

Fig. 6 Initial triangular prismatic grid (a) converted into dual grid (b)

3.3 Cutting Grids

This tool allows to cut cells by a plane or by the zero-level of a signed-distance
function as demonstrated in Fig. 7a. The first example forms a geological layer into
an uniform grid. The second example cuts an uniform grid to a shape of interest. In
both cases tiny cell may be produced and we recommend to collapse these cells by
the tools discussed in Sect. 3.1. The grid is cut by the zero-level of a given function
according to Algorithm 3.

(a) (b)

Fig. 7 (a) Results of slicing the grid with a function that defines the domain inside of one sphere
in one half of the grid and outside of another sphere in another part of the grid. Transparent
green surface defines the boundaries of the mesh, slice of the mesh is displayed with the white
color. (b) The result of cutting the face with more than two cut nodes (red dots): the barycentre
is introduced (blue dot), the segments to non-cut nodes are considered (dashed lines) and new
cut nodes along these segments are introduced (green dots), connecting the dots results in a cut
trajectory (bold lines)



252 K. Terekhov and Yu. Vassilevski

Algorithm 3 Slicing grid by zero-level of a function
1: for all nodes of the gird do
2: if the function is zero on the node then
3: mark it as cut
4: end if
5: end for
6: for all edges of the grid do
7: if the function changes sign on the edge nodes then
8: search for zero of the function along the edge and insert a zero-level node, split the edge

by this node
9: end if

10: end for
11: for all faces of the grid do
12: if there are only two cut nodes adjacent to the face then
13: split the face by an edge connecting these two nodes
14: else if all nodes of the face are cut then
15: mark entire face as cut
16: else if there are more then two cut nodes then
17: consider barycentre of the face and introduce nodes at zero of the function on segments

connecting non-cut nodes of the face and the barycentre: these cut nodes form a trajectory that
cuts the face, see Fig. 7b

18: end if
19: end for
20: for all cells of the grid do
21: if cut edges of the cell form a simple loop then
22: insert a face defined by this loop of edges and cut a cell by this face
23: else
24: insert the barycentre of the cell
25: consider segments connecting the barycentre and the uncut nodes of the cell and insert

new cut nodes along the segments
26: consider triangles formed by the uncut edges and the barycentre and insert new cut edges
27: consider pyramids formed by the barycentre and the uncut faces of the cell and connect

all cut edges into a face
28: split the cell by resulting set of faces
29: end if
30: end for

The examples are GridTools/Slice for slicing by a plane and GridTools/SliceFunc
for slicing by a function.

3.4 Mesh Adaptation

Example AdaptiveMesh provides dynamic refinement of general polyhedral meshes
shown in Fig. 8. For each cell to be refined, the algorithm adds nodes at barycentres
of the cell, its faces and edges. For each cell edge, a quadrilateral is formed by the
mid-edge, the cell barycentre and the barycentres of two cell faces adjacent to the
edge. The cell is split into subcells by these quadrilaterals, and the conformity of the
refined mesh is recovered.



Mesh Modification and Adaptation Within INMOST Programming Platform 253

Fig. 8 Local adaptation of three kinds of prismatic meshes, from left to right: hexagonal,
triangular, non-convex squama. The middle cutaway of the grids is displayed

The local coarsening is based on hierarchy of sets. The leaf sets store all mesh
elements, the union of these elements restore a coarse element. When a cell is
refined, a new leaf set is created and the subcells are added to this set. The level
of refinement in adjacent elements can differ by no more than one, in order to
avoid highly graded meshes. Sequential and parallel algorithms for refinement and
coarsening will be reported in other works.

4 Real-Life Application

INMOST was used for the solution of poromechanics problem, formulated similar
to the one in [1]. The problem was solved on the grid of Norne oil field [9] with
one injection well and two production wells. The grid features multiple faults and
pinch-outs. For filtration part of the problem the original porosity and permeability
data was used, for coupling and mechanical part, the Biot coefficient, Biot modulus,
and anisotropic 4-th rank compliance tensor were synthetically defined based on
permeability and porosity fields. Figure 9 illustrates the magnitude of displacement
field in logarithmic scale after 1000 days of injection.

5 Conclusion

We have presented briefly the open-source platform INMOST for the development
of parallel mathematical models on general meshes. The platform allows the user
to perform mesh generation and mesh modifications such as mesh repair and mesh
adaptation.



254 K. Terekhov and Yu. Vassilevski

Fig. 9 Grid for Norne oil field colored in magnitude of displacement for poromechanics problem

Acknowledgements This work was supported by the Russian Foundation for Basic Research
(RFBR) under grants 17-01-00886 and 18-31-20048.

References

1. Badia, S., Quaini, A., Quarteroni, A.: Coupling biot and Navier–Stokes equations for modelling
fluid–poroelastic media interaction. J. Comput. Phys. 228(21), 7986–8014 (2009)

2. Bagaev, D.V., Burachkovskii, A.I., Danilov, A.A., Konshin, I.N., Terekhov, K.M.: Devel-
opment of INMOST programming platform: dynamic grids, linear solvers and automatic
differentiation. In: Russian Supercomputing Days, pp. 543–555. http://2016.russianscdays.org/
files/pdf16/543.pdf (2016, in Russian)

3. Bouchnita, A.: Mathematical modelling of blood coagulation and thrombus formation under
flow in normal and pathological conditions. Ph.D. Thesis, Université Lyon 1 - Claude Bernard,
Ecole Mohammadia d’Ingénieurs - Université Mohammed V de Rabat, Maroc (2017)

4. Danilov, A.A., Terekhov, K.M., Konshin, I.N., Vassilevski, Yu.V.: Parallel software platform
INMOST: a framework for numerical modeling. Supercomput. Front. Innov. 2(4), 55–66
(2015)

http://2016.russianscdays.org/files/pdf16/543.pdf
http://2016.russianscdays.org/files/pdf16/543.pdf


Mesh Modification and Adaptation Within INMOST Programming Platform 255

5. Distributed and Unified Numerics Environment. https://dune-project.org/. Accessed 30 May
2018

6. Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S.,
Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMux: DUNE for multi-phase, component,
scale, physics,... flow and transport in porous media. Adv. Water Resour. 34(9), 1102–1112
(2011)

7. Garimella, R.V.: MSTK - a flexible infrastructure library for developing mesh based applica-
tions. In: Proceedings, 13th International Meshing Roundtable, pp. 213–220 (2004)

8. INMOST – a toolkit for distributed mathematical modeling. http://www.inmost.org. Accessed
15 April 2018

9. Norne: the full Norne benchmark case, a real field black-oil model for an oil field in the
Norwegian Sea. https://opm-project.org/?page_id=559. Accessed 26 February 2019

10. Tautges, T.J.: MOAB-SD: integrated structured and unstructured mesh representation. Eng.
Comput. 20(3), 286–293 (2004)

11. Terekhov, K.M.: Application of unstructured octree grid to the solution of filtration and
hydrodynamics problems (in Russian). Ph.D. Thesis, INM RAS (2013)

12. Terekhov, K., Vassilevski, Y.: INMOST parallel platform for mathematical modeling and
applications. In: Voevodin, V., Sobolev, S. (eds.) Supercomputing. RuSCDays 2018. Commu-
nications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.
1007/978-3-030-05807-4_20 (2019)

13. Todd, M.J., Yıldırım, E.A.: On Khachiyan’s algorithm for the computation of minimum-
volume enclosing ellipsoids. Discrete Appl. Math. 155(13), 1731–1744 (2007)

14. Trilinos – platform for the solution of large-scale, complex multi-physics engineering and
scientific problems. http://trilinos.org/. Accessed 15 April 2018

15. Vassilevski, Yu.V., Konshin, I.N., Kopytov, G.V., Terekhov, K.M.: INMOST - Programming
Platform and Graphical Environment for Development of Parallel Numerical Models on
General Grids (in Russian). Moscow University Press, Moscow (2013)

https://dune-project.org/
http://www.inmost.org
https://opm-project.org/?page_id=559
https://doi.org/10.1007/978-3-030-05807-4_20
https://doi.org/10.1007/978-3-030-05807-4_20
http://trilinos.org/

