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The solution on parallel computers of multiphase flow problems is considered. To
store and operate with distributed mesh data on the problem discretization stage the
INMOST program platform was exploited. The resulting linear systems were solved
by the overlapping additive Schwarz method from PETSc package as well as by the
developed linear solver on the base of BIILU2 method. The results of numerical ex-
periments for different parallel computers were presented and analyzed. The efficiency

of the INMOST platform and the involved linear solvers was demonstrated.

Parallel linear systems solution for multiphase flow

The main purpose of the paper is to demonstrate applicability of the INMOST program

platform to the solution of complex geophysical problems such as multiphase flow model.

1. Three-phase black oil model

We consider the three-phase black oil model in a porous medium [2]. Two-phase flow model

The basic equations for the black oil model are the following:

1. Mass conservation equations:

0 .
§<¢pwsw> = —div (pwuw> + Pwqw,
for the water component,
0 .
7 <¢p0050) = —div (Pouuo> + po,q0,

for the oil component, and

ot

for the gas component.

2. Darcy’s law for each phase:

kra
Ha

Uy = —

K(Vpa — pasz>, a=w,o,q.

3. The saturation constraint:
Sw+So+ 83 = 1.

4. Pressure difference between phases is given by capillary pressure:

Po — Pw = Pcow) Pg — Po = Pcgo-

0 .
a7 [‘b (PgSg + PGoSoﬂ = —div <Pgug + PGouo> + PgdGs + PG40,

is introduced in a similar way and is presented in [1]. Subscripts denote to the three phases —
water, oil (the liquid phase) and gas (the gaseous phase) — and the three components — water,
oil and gas, respectively.

(6)

*This work has been supported in part by RFBR grants 14-01-00830, 15-35-20991 and ExxonMobil Upstream

Research Company.

96



Cynepromnstomeprule OHu 6 Poccuu 2015 // Russian Supercomputing Days 2015 // RussianSCDays.org

Here K is an absolute permeability tensor, ¢ is a porosity, pa, Sa, U are unknown pressure,
saturation, volumetric velocity, B, te and k.o are the formation volume factor, viscosity and
relative phase permeability for the phase o = w, 0, g. Also pw, po,, pc, and pg are the densities
at current conditions, z is the depth, g is a gravity term, gg, is a source/sink well term of the
component f =W, O, G at standard conditions.

We consider no-flow (homogeneous Neumann) boundary condition on the reservoir boundary
and wells with a given bottom pressure py, component flux gg, or total flux ¢r = qw, +qo, +4qa.-

In our simplified model each well is assumed to be vertical and connected to the center of a
cell. The formula for the well term was suggested by Peaceman [3]:

k

W1 (pbh — Pa — PaB(2bh — Z)), (7)

o7

46s =

where W1 is the well index, which doesn’t depend on the properties of fluids, but depends on
properties of the media.

In the discrete counterparts of (1)-(4) the mobilities Ao = kpa(Sa)/ta(Pa) on the face fi;
are taken upwinded:

Aa(Sa) Aa(Sasir Pasi) if flow is directed from cell ¢ to cell j,

Xa(Sajs Pa.j) if flow is directed from cell j to cell .

The phase mobilities for well-producer are taken upwinded from the cell. For well-injector
we have only water injected and thus take the downstream mobility from the cell with the well:
Ainj = (krw/tw + Ero/tto + krg/ttg)cen. We also assume that there is no capillary pressure in
wells, so all the well fluxes depend on the same (oil) pressure.

Both two- and three-phase flow models are discretized using fully implicit schemes for time
discretization and monotone nonlinear finite volume method for spatial discretization of the
fluxes in Jacobian matrix [1].

2. Parallel multiphase flow experiments

The first numerical test for a parallel version of three-phase black-oil model was performed
on the BlueGene/P cluster located in the Moscow State University and two parts of the INM
cluster [12].

e BG/P system consists of relatively slow PowerPC 450 (850 MHz) cores with 2 GB RAM
each.

e The first part of the INM cluster (INM-1) consists of nodes with two quad-core Intel Xeon
X5355 (2.66 GHz) or Intel Xeon E5462 (2.80 GHz) processors and 8 GB RAM per node.

e The second part of the INM cluster (INM-2) consists of nodes with two six-core Intel Xeon
X5650 (2.67 GHz) and 24 GB RAM per node.

The problem set-up is the following. The square region contains two wells in the opposite
corners: one injector and one producer with given bottom hole pressures.

In our parallel simulation, we use parallel grid generation. At the first stage the computa-
tional domain is split into subdomains which are distributed between available cores. At the
second stage each core constructs a local grid inside the associated subdomain and exchanges
ghost cells with neighbours. Only one layer of ghost cells is sufficient due to the compact stencil
of discrete operators. Grid partitioning example is shown on Fig. 1.

The total grid dimensions are 128 x 128 x 16 which gives us total of 304 192 nodes (cells +
boundary entities).
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Figure 1. Grid partitioning example.

Table 1. Parallel speedup of simulation, BG/P.

#cores Nodes/core  #lit tinit tsol Speedup
8 38024 71024 68.8s 28549s 1x

16 19012 71042 37.2s 14471s 1.97x

32 9506 71648 19.6s  7464s 3.82x

64 4753 72174 10.5s  38T74s 7.36x

128 2377 73806 5.9s  2059s 13.86x

Table 2. Parallel speedup of simulation, INM-1 and INM-2 clusters.

INM-1 INM-2
#cores Linit tsol  speedup tinit tsol  speedup
8 9.9s 12506s 1x 6.2s 4909s 1x
16 5.2s  6182s 2.02x 3.8s  2980s 1.65x
32 3.0s  3756s 3.33x 2.4s 1957s 2.51x
64 1.7s 1926s 6.49x 2.0s 1092s 4.50x
128 1.0s 1131s 11.06x — - -

Linear systems were solved with the PETSc package. The chosen solver is BCG iterations
combined with the additive Schwarz preconditioner and ILUOQ preconditioners in subdomains.

Table 1 shows the results of the parallel experiment on BG/P for 200 days simulation. One
can see good speedup for up to 128 cores (2.4k nodes per core). The number of total nonlinear
iterations is 648 and does not depend on the number of cores. The number of linear iterations
(#lit) increases slightly as #cores grows, while the initialization (tinit) and computation (ts)
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times decrease almost linearly. We note that the BG/P system has fast connection with relatively
slow computational cores.

Table 2 shows the results for INM-1 and INM-2 which have much faster cores than BG/P.
As expected, the speedup is lower albeit satisfactory: up to 11x for 8-to-128 cores on INM-1 and
4.5x for 8-to-64 cores on INM-2.
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Figure 2. Parallel speedup, BG/P, INM-1 and INM-2.
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Figure 3. Solution times for parallel computation, BG/P, INM-1 and INM-2.

Figure 2 presents the speedup of the parallel computation which in case of BG/P cluster
is close to the ideal linear speedup. Figure 3 shows the diagram with computational times on
three clusters.

The presented results demonstrate good quality of the developed parallel data structure and
algorithms [5,6], although we use the third-party PETSc linear solver that also can be improved.

99



Cynepromnstomeprule OHu 6 Poccuu 2015 // Russian Supercomputing Days 2015 // RussianSCDays.org

The second experiment deals with two-phase flow model on a massively parallel BG/P
system with up to 8k cores. Problem setup and grid construction method is similar to the first
test case. We consider 50 days simulation on 0.9 million cells nonorthogonal hexahedral grid
(1.8 million unknowns).

Table 3 presents number of linear (#lit) and nonlinear (#nonlit) iteration, initialization
(tinit), grid generation (tgiq) and total simulation (ts) times of the parallel experiment for two-
phase flow model. The reference results are taken for 512 cores run. One can see that the total
simulation time decreases, yet there is almost no speedup for 1024-t0-2048 and 4096-to-8192
pairs (see Fig. 4, left). This is explained by the sharp increase of the total number of the PETSc
linear iterations in these pairs (see Fig. 4, right). As an additional argument, it should be paid
attention to the fact that number of degrees of freedom per core (#DoF /core) for 8192 cores is
extremally small (219).

Table 3. Parallel speedup of the two-phase flow simulation, BG/P.

#cores #DoF /core #nonlit #lit tinit  tgrid tsol  speedup

512 3515 151 247919 2.69 1.19 1478.7 1x
1024 1757 151 190099 1.80 0.70 559.0 2.64x
2048 878 150 333369 1.34 0.49 536.2 2.76x
4096 439 148 291533 1.53 0.41 296.7 4.98x
8192 219 147 402742 1.91 0.46 296.0 5.0x
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Figure 4. Left: reduction of computation time compared to 512-cores experiment. Right: total number
of linear iterations for simulation.

3. Parallel solution of linear systems

In the INMOST framework it is possible to exploit some set of the inner parallel linear
solvers (such as based on BiCGStab(L) solvers with the second order ILU factorization [8] or with
second order Crout-ILU with inversed-based condition estimation and unsymmetric reordering
for diagonal dominance used as a preconditioners), external linear solvers from PETSc and
Trilinos, as well as user devepoled linear solvers.

100



Cynepromnstomeprule OHu 6 Poccuu 2015 // Russian Supercomputing Days 2015 // RussianSCDays.org

In the present section we consider the solution of sample linear systems come from the
described INM black oil simulator for the problem SPE-10 (see [4]). In the first test case we
solve the linear system with the Jacobian matrix for a refined well model for 50-th day of
simulation with 1.2434 days timestep (see Table 4). In this table we use the following notation:
n - the size of the matrix A, nz(A) - the total number of nonzero entries in A, eqzd - the number
of zero entries on the main diagonal of A, ltzd - the number of negative entries on the main
diagonal of A, gtza - the number of positive entries in the off-diagonal part of A, nzry;, and
NZryax - Minimum and maximum numbers of nonzeroes in a row of A, respectively. The matrix
row with 253 nonzero elements cooresponds to one of the wells.

Table 4. INM simulator matrix properties.

name n nz(A) eqzd  ltzd gtza  NZrymin NZTmax

N50 3896016 43925904 28 2737291 30234207 1 253

Table 5. N50 problem: PETSc AS(ILU(1);q = 1)-BiCGStab and BIILU2(¢q = 2; 7 = 0.005)-BiCGStab

solution.

Solver p #mvm Tprec Titer T’total Speedup

PETSc 1 163  2.35 128.83 131.18 1.00
2 450  1.89 173.47 175.37 0.74

4 356 0.99 12276 123.75 1.06

8 513  0.56 129.87 130.43 1.00

16 281 0.30  59.67  59.97 2.18

32 641 0.15 60.38  60.53 2.16

64 734  0.10 46.61 46.71 2.80

BIILU2 1 139 54.50 5091 10541 1.00
2 209 30.72 3752  68.24 1.54

4 185 18.38 21.11  39.49 2.66

8 187 1394 15.67  29.61 3.55

16 228 7.01 1498 21.99 4.79

32 215 3.49 7.00 10.49 10.04
64 321 4.82 5.40  10.22 10.31

In Table 5 we present the comparisson of parallel solution for the above linear system N50 for
PETSc [7] and our research linear solver based on BIILU2 preconditioning [9,10]. The number
of processors was p = 1,2,4,...,64 for the described above INM-2 cluster. For both solvers
the optimal parameters were chosen: for PETSc package we have used BiCGStab iteration
with overlapped (overlap size is ¢ = 1) additive Swartz and structural ILU(1) factorization as
a preconditioner, for BIILU2 solver we have used BiCGStab iteration with the second order
threshold ILU2(7 = 0.005) factorization and ¢ = 1 as a preconditioner. In this table Tpyec,

101



Cynepromnstomeprule OHu 6 Poccuu 2015 // Russian Supercomputing Days 2015 // RussianSCDays.org

Table 6. Poisson equation solved by BIILU2(¢=1;7=0.1)-BiCGStab on INM-2 cluster in 8 nodes by 8
cores configuration.

mesh  p n/p #mvm Ty  Tier  Tiota  speedup
16x16x32 1 8192 33 0.0091 0.0116 0.0207 1.00
8x8x16 1 1024 15 0.0012 0.0007 0.0019 10.89
32x32x64 8 8192 71 0.0120 0.0331 0.0452 1.00
16x16x32 8 1024 37 0.0016 0.0028 0.0044 10.27
64x64x128 64 8192 129 0.0157 0.0727 0.0885 1.00
32x32x64 64 1024 71 0.0020 0.0133 0.0153 5.78

Table 7. Poisson equation solved by BIILU2(¢=1;7=0.1)-BiCGStab on INM-2 cluster in 8 nodes by 8
cores configuration.

Matrix Method p dens #mvm Tpree  Titer Thotal S

N50 BiCGStab 64 1.89 241 478 3.87 8.65 1.00
N50 BiCGStab 128 1.94 173 199 218 417 2.07

N50 BiCGStab 256  2.02 217 247 210 458 1.88

N50 GMR][10] 64 1.89 217 588 4.84 10.73 1.00
N50 GMRJ10] 128 1.94 197 199 245 444 241

N50 GMRJ[10] 256 2.02 217 253 1.91 445 240

Titer and Tiota denote the times for preconditioner construction, iterations and total solution,
respectively. One can see that the grows of the iterations number #mvm for PETSc is much
more than for BIILU2 solver. PETSc demonstrates much more grows of the iterations number
#mvm in comparisson with BIILU2 solver. This is why PETSc provides very small speedup,
while speedup for BIILU2 is quite reasonable.

In Table 6 the results for the solution of a sample Poisson equation is presented. We examine
the performance of the solver for different number of processors as well as the different sizes of
the linear systems reducing down to 1024 rows per processor. One can see only 4.27 grows of
solution time for the same subproblem size equal to 8192 for 1 and 64 number of processors.

In addition, for N50 problem we apply the polynomial preconditioning [11] aimed to reduce
the number of global syncronizations. It was assumed that it may have a reason for a large
number of processors. In Table 7 the results of parallel runs on p = 64, 128, 256 processors are
presented. The experiments were performed on “Lomonosov” computer cluster [13]. One can
see, that for p = 256 the polynomial method GMR[10] work faster (Tiota = 4.45) that regular
BIILU2 (Tiotal = 4.58) for the same number of iterations (Fmvm=217).
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4. Conclusions

We considered the parallel solution of the multiphase flow problems using the INMOST pro-
gram platform. The platform demonstrated the user friendly interface, flexibility and efficiency
of the mesh related operations. Linear systems originated from the problems were solved using
both the inner BIILU2 solver and external PETSc package. BIILU2 showed better scalability
than the commonly used PETSc.
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