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Abstract. We present a new moving mesh method for arbitrary Lagrangian-Eulerian simula-
tions. The mesh motion is reduced to generation of a mesh which is quasi-uniform in a space
metric induced by the solution gradient. The new method generates meshes which satisfy prac-
tical requirements such as mesh smoothness and bounded variation of mesh size. Two numerical
examples demonstrate basic features of the method and its applicability to gas dynamic problems.

1. INTRODUCTION

The arbitrary Lagrangian-Eulerian (ALE) simulation combines the best properties
of Eulerian and Lagrangian simulations. In most ALE methods, the computational
mesh remains shape-regular (as in Eulerian methods) during the whole simulation
and at the same time it follows the fluid flow (as in Lagrangian methods). When
dynamics of fluid flow does not match error dynamics, the mesh motion should
be driven by the error dynamics, and this is the motivation for using ALE meth-
ods.1,11,13 In this article, we present a new method for the mesh motion based on
error dynamics.

The ALE cycle consists of three major steps: an explicit Lagrangian step, a mesh
motion step, and a remapping step.1,8,9,11,13 Since each step contributes to the total
error, the ideal mesh motion method should target this total error. Analysis of
the total error for smooth solutions implies that the optimal mesh should be quasi-
uniform in a metric induced by the solution gradient. We extrapolate this result
to problems with shocks and base the space metric on the discrete gradient. We
propose to use the reaction-diffusion equation to smooth the discrete gradient to
avoid unphysical mesh clustering around shocks. We also lift the metric by adding a
small positive constant to it in order to avoid creation of huge cells in regions where
the gradient is close to zero.

The mesh motion methods based on monitor function also use the solution gra-
dient.2,5,13 However, there are a few significant differences with the approach devel-
oped in this article. First, we perform the metric smoothing in the physical space.
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For smooth solutions this results in the rigorous control of the error. Second, we
use the weak formulation of the discrete gradient instead of its explicit form. This
technique smears numerical instabilities related to finite differencing.

We also mention methods which use different geometric principles to relax the
Lagrangian mesh.4,7,9

The article is organized as follows. In Section 2 we recall basics of the ALE
simulation, the objective of the mesh motion step, and its connection with a metric-
based adaptation method. In Section 3 we introduce and analyze new approach to
automated metric recovery. In Section 4 we present the new mesh motion method.
Numerical results for two 1D model problems are discussed in Section 5. In Appendix
we motivate briefly the use of metric-based adaptation in ALE framework for the
case of smooth solution.

2. BASICS OF ARBITRARY LAGRANGIAN-EULERIAN

SIMULATION

Let the superscript n specify the time step for all grid functions. At time t = tn,
the mesh xn on [a, b] is represented by the ordered set of nodes:

a = xn0 < xn1 < · · · < xnM+1 = b. (1)

Let hni+1/2 = xni+1 − xni denote the length of the mesh interval [xi, xi+1] which we
shall refer to as the cell.

Let u(x, t) be the solution of a conservation law

∂u

∂t
+
∂(F (u))

∂x
= 0 (2)

subject to appropriate initial and boundary conditions.
Let ūn be an approximation of u(x, t) represented by cell-centered values ūni+1/2.

Hereafter, ūn denotes either a vector of cell-centered values or a piecewise constant
function over [a, b]. The value ūni+1/2 approximates the exact mean value of u(x, t)

on interval [xni , x
n
i+1] at time tn:

ūni+1/2 ≈ ū([xni , x
n
i+1], tn) ≡ 1

hni+1/2

∫ xni+1

xni

u(x, tn)dx.

The explicit Lagrangian step can be written in an operator form

ūn+1 = Ln(ūn) (3)

where Ln is one of the popular time integration methods for (2).
The idea of the mesh motion step is to replace the mesh xn with a new mesh x̃n

to minimize the error after one step of the ALE method. This error consists of three
pieces: the remapping error, the time integration error and the space discretization
error. When x̃n = xn, the remapping error is zero; however, the two other errors
may be too large. Thus, the objective of the ideal mesh motion step is to find a
mesh which balances these three errors such that the overall error is minimized. Let
ũ
n

denote the solution remapped on mesh x̃n. Then, the optimal mesh is a solution
of the following minimization problem:

x̃nopt = arg min
x̃n1 ...x̃

n
M

‖u(x, tn+1)− Ln(ũ
n
)‖L1([a,b]). (4)
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The L1-norm of the error is conventional for gas dynamic models featuring strong
shocks.

The exact solution of (4) is usually not practical. In practice, the mesh x̃n must
satisfy the following two conditions.

(C1) Let H be the ratio of maximal and minimal cell sizes in mesh x̃n,

H = max
06i6M

h̃ni+1/2

/
min

06i6M
h̃ni+1/2.

We assume that there exists a positive (user-given) constant H∗ such that

H 6 H∗. (5)

(C2) We assume that each node of x̃n deviates from the similar node of xn by less
than the local mesh size.

Condition (C1) controls the minimal mesh size and therefore the time step in the
explicit Lagrangian step. It limits resolution of strong shocks and does not allow cre-
ation of large cells in regions where solution is constant. This condition is a relaxed
form of the mesh quasi-uniformity condition — H∗ may be large enough. Condi-
tion (C2) allows to use conservative high-order remapping methods10 in higher-
dimensions.

For a given mesh xn, conditions (C1) and (C2) form a closed set F(xn) of
admissible meshes. We reformulate the optimization problem as follows:

x̃nopt = arg min
{x̃n1 ...x̃nM}∈F(xn)

‖u(x, tn+1)− Ln(ũ
n
)‖L1([a,b]). (6)

The complete analysis of problem (6) can be done for smooth solutions12 such
that u′(x) > 0. In this case, the approximate solution of (6) is reduced to generation
of a mesh which is quasi-uniform in metric

M(x) =
√
|u′(x)|. (7)

A sketch of the analysis is given in the appendix. We extrapolate this result to
problems with shocks and modify it for the case when the gradient is zero in some
parts of the computational domain.

3. METRIC RECOVERY, SMOOTHING AND LIFTING

In applications, the metric (7) is not known. Therefore, the solution gradient |u′| has
to be replaced by the discrete gradient |u′h| which is not an accurate approximation of
|u′|, especially for problems with shocks. Moreover, the recovered discrete gradient
is usually a non-smooth function and may be even equal to zero in some parts of
the computational domain. This explains why it is never used directly for building
a space metric.

Different monitor functions using ad hoc modifications of the discrete gradient
can be found in the literature.2,5 Most efficient modifications use the Laplacian
smoother defined in a reference (logical) space. We propose (a) to apply smoothing
in physical space and (b) to define the smoother via the reaction-diffusion equation
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(9) with a mesh dependent diffusion coefficient. To satisfy condition (C1), we add
to the metric a rigorously defined constant. We call this metric modification as
metric lifting. The metric M built below is induced by a continuous function |v|
such that

• the discrepancy |v| − |u′| is small for a smooth function u with u′ 6= 0 on [a, b];

• rough features of |u′h| are smeared out;

• variations of |v| on [a, b] are limited, i.e. max
x∈[a,b]

|v(x)|/ min
x∈[a,b]

|v(x)| 6 H∗.

Let uh(x) be a piecewise constant function defined on a mesh x and u′(a) and
u′(b) be known one sided derivatives of u(x) at points a and b, respectively. Let V h

be the finite element space of continuous piecewise linear on x functions and V h
0 be

its subspace of functions vanishing at points a and b. Consider the following finite
element problem: Find vh ∈ V h such that vh(a) = u′(a), vh(b) = u′(b), and

∫ b

a

(
vhwh + ε(x)

∂vh
∂x

∂wh
∂x

)
dx = −

∫ b

a

uh
∂wh
∂x

dx ∀wh ∈ V h
0 , (8)

where ε(x) is a piecewise constant function:

ε(x) = h2
i+1/2, x ∈ (xi, xi+1).

The problem (8) defines implicitly a smoothing operator S for the first derivative
of uh. Note that that first derivative of uh is posed in a weak sense to avoid numerical
instabilities in recovering u′h. The matrix of the discrete system appearing from (8)
is not stiff, since its properties are close to that of the finite element mass matrix
in space V h. Therefore, the PCG method with the Jacobi preconditioner applied to
the solution of (8) converges fast. Equation (8) is the finite element discretization
of the reaction-diffusion equation

−(ε(x)v′(x))′ + v(x) = u′(x), x ∈ (a, b), v(a) = u′(a), v(b) = u′(b). (9)

When u′ is a smooth function, the solution v approximates u′ because of the small
value of the diffusion term. When u′ is a non-smooth function, the diffusion term
plays an important role in smoothing the solution v. This is illustrated in Fig.1.

The finite element framework allows us to differentiate and smooth piecewise
constant data uh on non-uniform meshes. Moreover, it is possible to estimate the
smoothing effect of the operator S. In view of a limited change of the mesh steps
in mesh x (due to condition (C1)), there exist constants ch, Ch such that chh 6
hi+1/2 6 Chh, and we can apply the result from.3 Fix a small integer K and consider
the problem: find gh ∈ Vh, such that gh(a) = 0, gh(b) = 1 and

∫ b

a

(
ghwh + h2∂gh

∂x

∂wh
∂x

)
dx = 0 ∀wh ∈ V h

0 . (10)

Then there exist constants c and γ independent of M such that

M−K∑

i=0

(gh(xi))
2 6 ce−γK.



K.LIPNIKOV and YU.VASSILEVSKI/Metric-Based Mesh Adaptation in ALE simulation

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
X

"U’(x)"
"V(x)"

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
X

"U’(x)"
"V(x)"

Figure 1: The solution v(x) of the reaction diffusion problem for smooth (left) and non-smooth
(right) function u′(x), ε = 10−4.

This inequality may be used to estimate the decay rate for the discrete Green func-
tion Gj ∈ V h

0 associated with the j-th mesh node:

∫ b

a

(
Gjwh + ε(x)

∂Gj

∂x

∂wh
∂x

)
dx = wh(xj) ∀wh ∈ V h

0 . (11)

Thus, we have a similar estimate for Gj
i ≡ Gj(xi):

∑

i:|i−j|>K
(Gj

i )
2 6 ce−γK. (12)

Let us consider for simplicity the homogeneous Dirichlet boundary conditions,
i.e. v(a) = u′(a) = 0 and v(b) = u′(b) = 0. The nodal value vh(xi) of the solution
to (8) may be represented as a series

vh(xi) =
∑

16j6M
Gj
iUj, (13)

where Uj is the finite difference approximation of u′ at point xj. Formulas (12) and
(13) imply that vh(xi) is affected only by Ujs in a small vicinity of xi. Therefore,
the smoothing operator S preserves the main features of u′.

Although |vh(x)| is a non-negative function, it may be close to zero for some
values of x. Moreover, even if this is not the case, variation of |vh| on [a, b] may be
excessive. In order to guarantee strict positivity of vh(x) and to satisfy condition (5)
imposed on the mesh, we modify the right hand side of equation (9) by substituting
u′(x) for

u′(x) + max

{
0,

max
x

u′(x)−H2
∗min

x
u′(x)

H2
∗ − 1

}
. (14)

To compute the lifting constant, we approximate u′(x) with finite differences. The
impact of the metric lifting on the interpolation error is as follows: if the lifting
constant does not exceed ‖

√
u′‖2

L1([a,b])/(b− a)2, then the amplification of the norm

of the interpolation error is bounded.12
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Hereafter,M denotes the continuous metric induced by the finite element solution
vh of (8) with the right hand side modified as in the continuum case (14), i.e.

M(x) =
√
|vh(x)|. (15)

4. MESH MOTION METHOD

The mesh size of the M-uniform mesh x with M + 2 nodes is computed as follows:

hM,i+1/2 =
1

M + 1

b∫

a

√
M(x) dx ≡ CM, i = 0, . . . ,M. (16)

We suggest a simple approach for generating aM-quasi-uniform mesh. Starting
with an arbitrary mesh with M + 2 nodes, we compute the integral in (16) and
move the mesh nodes to equidistribute hM,i+1/2. A new position for the mesh node
is defined in such a way to increase the mesh quality QM(x):

QM(x) = min
06i6M

F (zi+1/2),

where

F (z) = z3(2− z)3, zi+1/2 = min

{
hM,i+1/2

CM
,

CM
hM,i+1/2

}
.

Quality of theM-uniform mesh with M +2 nodes equals to 1. For all other meshes,
the mesh quality is strictly less than 1.

For a given mesh x, we loop over M interior nodes that are ordered by increasing
of their qualities (the quality of a mesh node is defined as the minimal quality of
its neighboring elements). On each step of the loop only one node is repositioned
to maximize its quality. If the required mesh quality is not reached after this loop,
we reorder the mesh nodes and repeat the loop. The algorithm is terminated when
Q(x) approaches 1 (for instance, when Q(x) > Q0, where Q0 = 0.9 − 0.999). Our
experiments show robust convergence of the algorithm. We shall use this technique
as the black-box ingredient of our basic mesh adaptation algorithm:

Basic mesh adaptation

1. Compute the discrete solution ūn and associated mesh xn.

2. Recover the metric M from ūn using (8) and (15).

3. Generate mesh x̃n such that QM(x̃n) > Q0.

The basic mesh adaptation requires single evaluation of ūn. The number of loops
depends on Q0 and the quality of the initial mesh and may vary between a few tens
to a few hundreds.

If the initial mesh xn is far from theM-uniform mesh, the approximation of u′(x)
in the right-hand side of (8) may be inadequate. In order to fix this problem, we
suggest the full mesh adaptation:

Full mesh adaptation

1. Compute the discrete solution ūn on mesh xn.
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2. Recover the metric M from ūn using (8) and (15).

3. If QM(xn) > Q0 then set x̃n = xn and stop.

4. Otherwise, generate a new mesh xn such that QM(xn) > Q0 and go to 1.

The full mesh adaptation requires a few evaluations of ūn on different meshes (the
remapping method can be used for this purpose). In general, the method of full
mesh adaptation is too costly; therefore, it is not practical. Later, we use it only for
comparison purpose.

A remarkable feature of the method of full mesh adaptation is that trajectories of
mesh nodes are rather smooth in time provided that Q0 is close to 1 and the analytic
solution is smooth. The method of basic mesh adaptation may result in non-smooth
trajectories of the mesh nodes (see Fig. 2). However, the L1-norm of the error is not
sensitive to this non-smoothness, at least for the examples considered in the next
section.

The method of basic mesh adaptation may be modified to reduce further its
computational cost. Since the speed of the error propagation is small in the explicit
method, the quality of the mesh after each Lagrangian step is sufficiently big. Thus,
at each time step we may limit the number of loops by a small integer Lloop (Lloop =
max(10, (M + 1)/10) in our experiments). This modification may have a smoothing
effect onto the trajectories of mesh nodes, although the mesh quality is no longer
close to 1 and varies between 0.3 and 0.9 indicating that the resulting mesh remains
M-quasi-uniform. We shall refer to this algorithm as the method of incomplete
mesh adaptation.

5. NUMERICAL RESULTS

The lifting constant defined in (14) will allow us to build adaptive meshes satisfying
(5). In all experiments the metric M is computed using (8) and (15).

5.1. Linear advection problem

We consider the following linear advection problem. Given a small δ > 0, we define
the function u0 by

u0(x) =





0, x 6 −δ,
ξ(x), −δ < x < δ,
1, δ 6 x,

where ξ(x) is the cubic cut-off function with zero first derivatives and zero values
at points x = ±δ. The function u(x, t) = u0(x + 0.4 − t), t ∈ [0, 0.2] mimics the
shock propagation from 0.4 to 0.6 with constant speed 1. In order to comply with
the explicit simulation limitations, we restrict the time step by CFL = 1.

Fig. 2 shows trajectories of interior nodes for the mesh consisting of 50 cells
and methods of full and basic mesh adaptations. The initial mesh at time t =
0 is the same for both methods. The chosen value for the parameter H∗ = 10
does not allow to put a lot of mesh points on the strong shock (δ = 10−3) which
makes the adaptation problem non-trivial. One can observe smooth and non-smooth
trajectories of the mesh nodes for the first and the second methods, respectively.
Table 1 demonstrates that (a) the mean error is reciprocal to M and H∗, (b) the
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Figure 2: Linear advection problem: the method of full mesh adaptation (left) versus the method
of basic mesh adaptation (right); M = 49, H∗ = 10, δ = 10−3, and Q0 = 0.999.

larger M , the smaller relative deviations from the mean error, and (c) the error is
the same in both methods.
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Figure 3: Linear advection problem: smoothed trajectories of mesh nodes in the method of basic
mesh adaptation (left) versus trajectories of the mesh nodes in the method of incomplete mesh
adaptation with Lloop = 10 (right); M = 49, H∗ = 10, δ = 10−3, and Q0 = 0.999.

We did not observe any considerable negative impact of non-smoothness of the
mesh trajectories on neither the L1-norm of the error nor the error due to the
remapping method, when oscillations were below 20-40% of the local mesh size. The
same conclusions hold for the ALE simulation on precomputed smooth trajectories
shown on the left picture in Fig. 3. The trajectories of the mesh nodes shown on
the left picture in Fig. 2 are smoothed by the reaction-diffusion operator (9) posed
in the time domain (0, 0.2) using the piecewise constant function ε(t) = (∆tn+1)2

for t ∈ (tn, tn+1). The smoothing operator S is applied independently to each
trajectory. Note that time-smoothing of mesh trajectories produces less condensed
meshes around the shock.

Right picture in Fig. 3 shows trajectories of mesh nodes in the method of incom-
plete mesh adaptation with Lloop = 10. Table 1 demonstrates that the mean error
increases by at most 6% although the maximum deviation from the mean value may
be substantial.
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Table 1: Linear advection problem: mean L1-norm of error and the maximal deviation from the
mean error (in curved brackets) for three mesh adaptation methods; Q0 = 0.999, δ = 10−3, and
Lloop = max{10, (M + 1)/10}.

H∗ \M + 1 50 100 200
Full mesh adaptation

10 7.4e-4 (1.4e-4) 3.2e-4 (0.4e-4) 1.5e-4 (0.3e-5)
20 3.6e-4 (0.4e-4) 1.6e-4 (0.4e-5) 8.0e-5 (1.8e-6)
40 1.9e-4 (0.3e-5) 8.7e-5 (1.5e-6) 4.2e-5 (0.5e-6)

Basic mesh adaptation
10 7.0e-4 (2.0e-4) 3.1e-4 (0.2e-4) 1.5e-4 (5.0e-6)
20 3.5e-4 (0.4e-4) 1.6e-4 (0.6e-5) 8.0e-5 (2.7e-6)
40 1.8e-4 (0.1e-4) 8.6e-5 (1.4e-6) 4.2e-5 (0.5e-6)

Incomplete mesh adaptation
10 7.0e-4 (2.0e-4) 3.1e-4 (0.2e-4) 1.5e-4 (6.0e-6)
20 3.6e-4 (0.5e-4) 1.6e-4 (1.3e-5) 8.0e-5 (3.7e-6)
40 1.9e-4 (0.2e-4) 9.3e-5 (7.0e-6) 4.6e-5 (2.5e-6)

5.2 Sod shock tube problem

Let us consider the system of 1D gas dynamics equations written in the Lagrangian
form:

1

ρ

dρ

dt
+
∂u

∂x
= 0,

ρ
du

dt
+
∂p

∂x
= 0,

ρ
dε

dt
+ p

∂u

∂x
= 0,

(17)

where ρ is the density, u is the velocity, ε is the specific internal energy, and p is the
pressure. The pressure is computed from the equation of state, p = (γ−1)ρε, where
γ is the ratio of specific heats. The system (17) is closed by imposing some initial
conditions and boundary conditions for either the velocity or pressure. The system
is solved using the second-order predictor-corrector method.11

The Sod shock tube problem consists of two regions of gas with γ = 1.4 initially
separated by a membrane at x = 0.5. The gas to the left of the membrane is more
dense (ρL = 1 and ρR = 0.125) and at a higher pressure (pL = 1 and pR = 0.1)
compared to the one on the right. We impose the reflecting boundary conditions
at x = 0 and x = 1. The final time is t = 1 so that we can study the interaction
of waves generated after removing the membrane. To compute errors we use the
Lagrangian solution obtained on a fine mesh with 105 cells.

In all experiments the initial mesh at time t = 0 is adapted to the discontinuity
in the density profile using the method of full mesh adaptation. The method of
incomplete mesh adaptation is used for t > 0. Time step in numerical simulations is
restricted by CFL = 0.7. The results of numerical experiments are shown in Fig. 4
and Table 2. The trajectories of the mesh nodes indicate clearly interaction of the
reflected shock wave with the contact discontinuity. In particular, the change in
the solution profile at time t ≈ 0.4 induces the strong motion of the mesh which is
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even more obvious for bigger Lloop. The same phenomena is observed in other mesh
motion methods.6 Since the time step remains small, the local motion of the mesh
nodes is still within one mesh cell.

In the pure Lagrangian simulation the shock wave is not well resolved after t > 0.4
(see Fig. 4). As the result, the Lagrangian solution is about 4 times less accurate
than the solution on the adapted mesh with the same number of nodes.

Since the metric M is chosen to minimize the error in the density profile, the
error of the other physical functions may demonstrate non-optimal rate of reduction.
Table 2 shows that the first-order convergence rate is not observed for all unknowns.
In general, the metric may be build using the sum of weighted errors in primary
variables.6 Increasing of H∗ results in smaller errors due to better resolution of
material discontinuities and shock waves. On the other hand, the simulation requires
more time steps due to the CFL restriction.
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Figure 4: Trajectories of mesh points for the method of incomplete mesh adaptation with Lloop = 10
for the Sod shock tube problem; M = 99, Q0 = 0.9. The pictures correspond to H∗ = 10 (top-left)
and H∗ = 20 (top-right). The bottom picture shows trajectories of mesh points for the Lagrangian
simulation.

6. CONCLUSION

We developed and studied the new moving mesh method. The existence of mathe-
matical motivation separates our method from a large group of other moving mesh
methods based on a metric or a monitor function. Most of the analysis can be ex-
tended to higher dimensions.



K.LIPNIKOV and YU.VASSILEVSKI/Metric-Based Mesh Adaptation in ALE simulation

Table 2: Sod shock tube problem: L1-norm of the errors at time t = 1 for the method of incomplete
mesh adaptation with Lloop = max{10, (M + 1)/10}.

H \M + 1 50 100 200 400
Density ρ

10 9.37e-3 3.66e-3 1.74e-3 9.42e-4
20 7.13e-3 2.48e-3 1.08e-3 5.94e-4

Velocity u
10 1.24e-2 4.37e-3 2.04e-3 9.73e-4
20 1.07e-2 3.37e-3 1.33e-3 6.06e-4

Internal energy ε
10 2.04e-2 7.71e-3 3.80e-3 2.30e-3
20 1.52e-2 5.37e-3 2.42e-2 1.72e-3
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APPENDIX

Here, we shall motivate briefly the use of metric-based mesh adaptation in ALE sim-
ulations. Under certain assumptions, the following statements can be proved. First,
the leading term in the total error is independent of Ln. Therefore, an approximate
solution to (6) can be found using only ūn and xn. Second, an approximate solution
to (6) is aM-quasi-uniform mesh where metricM is induced by the first derivative
of u.

Our assumptions are as follows. First, we assume solution regularity, i.e., the
solution u(x, t) has bounded second derivatives. Second, we assume exact data,
i.e., the piecewise constant data ūn representing u(x, t) on xn are exact. Third,
let ξ be the Lagrangian coordinate, x(ξ, t) be the transformation from Lagrangian
to Cartesian coordinates such that x(ξ, tn) ∈ [xni , x

n
i+1] when ξ ∈ [ξi, ξi+1], and

eni+1/2(x(ξ, tn), tn) ≡ u(x(ξ, tn), tn) − ūni+1/2 be the error function. We shall assume
that the operator Ln is such that

|en+1
i+1/2 − eni+1/2| 6 CL(hni+1/2 + ∆tn)2 ∀ξ ∈ [ξi, ξi+1]. (18)

This estimate has been proven in11 for the donor-type method applied to the 1D
viscous Burgers’s equation and for the predictor-corrector method applied to the
system of 1D gas dynamics equations.

Let E(u, tn,xn) denote the L1-norm of the error on mesh xn:

E(u, tn,xn) =
M∑

i=0

∫ xni+1

xni

|u(x, tn)− ū([xni , x
n
i+1], tn)|dx.
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For the function u(x) with only one argument, we shall use the notation

E(u,x) =

M∑

i=0

∫ xi+1

xi

|u(x)− ū([xi, xi+1])|dx.

Theorem 1.12 Under assumptions of solution regularity, exact data, and con-
ditions (C1), (C2), (18), the leading term of the error in (6) depends only on
E(u, tn, x̃n):

‖u(x, tn+1)− Ln(ũ
n
)‖L1([a,b]) = E(u, tn, x̃n) +O((h+ ∆tn)2)|b− a|. (19)

The theorem allows us to replace the complicated problem (6) by a simpler prob-
lem: Find x̃nopt such that

x̃nopt = arg min
x̃n1 ,...,x̃

n
M

E(u, tn,xn). (20)

Now we turn to the approximate solution of problem (20) which provides the
same error reduction for the piecewise constant interpolation as the optimal mesh
x̃nopt. Our second result states that a mesh uniform in u′(x)-metric is the approximate
solution of the optimization problem (20).

Theorem 2.12 Let function u(x) ∈ C2([a, b]) and u′(x) > 0 define the metric

M on [a, b]. Furthermore, let mesh x̃ given by (1) be M-uniform, h̃M,i+1/2 = CM.
Then there exists an integer M0 > 0 and constant C independent of u and h such
that for all M > M0

E(u, x̃) 6 CE(u, x̃opt), E(u, x̃opt) = min
x1,...,xM

E(u,x). (21)
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