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Individualized numerical simulations of physiological processes in the human body remain the challenge for
many years. Contemporary resolution of medical images and new algorithms for their postprocessing allow
to develop anatomically correct numerical models of various processes such as patient-speci�c blood circu-
lation, cardiac electrophysiology etc. In this paper we present and develop the methods and algorithms for
constructionof patient-speci�cdiscrete geometricmodels. Thesemodels are representedbyanatomically cor-
rect computational meshes. Themethods are general-purpose and can be applied to any region or network of
the human body.We demonstrate practicability of themethods for two important medical applications. Each
application imposes speci�c restrictions on both the input medical images and the output patient-speci�c
discrete model, and, therefore, calls for a speci�c class of 3D reconstruction methods. The �rst application
deals with numerical evaluation of fractional �ow reserve (FFR) in coronary arteries. The second application
deals with electrocardiography simulation (ECG).

Atherosclerotic diseases of coronary vessels are the main reasons of widespread myocardial ischemia
frequently resulting in disability or death. The basic methods of medical treatment assume invasive endovas-
cular intervention (bypassing, stenting, et al.). The use of these methods is restricted in some cases due to
personal contraindications or low e�ectiveness. Themain criterion of the endovascular surgical treatment ef-
�ciency is the value of FFR. It is calculated as the ratio of themean coronary pressure distal to the lesion after
dilator administration to the mean aortic pressure [20, 27, 52]. The coronary pressure is normally measured
by ultrasound endovascular transducer. Thismeasurement requires expensive and invasive endovascular in-
tervention. Contemporary non-invasive methods are based on 3D blood �ow simulation in the vicinity of the
lesion [20]. The method is subject to criticism [34, 50] due to bad posedness of upstream and downstream
boundary conditions, rigid wall approximation for the vessel tissue, large computational cost, general di�-
culties in parameters �tting.
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In this work we present the new numerical technique for non-invasive numerical estimate of FFR on
the basis of computed tomography (CT) data. The estimate is based on 1D blood �ow modelling in vascular
networks and reconstruction of patient-speci�c coronary network. We show that FFR value depends on the
heart ejection intensity. Since clinical measurements are available in quiet conditions only, FFR under inten-
sive heart rates can be estimated only numerically. This observation gives the additional motivation for the
technology of individual virtual FFR assessment.

Our approach to the numerical estimate of FFR is based on coupling patient-speci�c coronary �ow sim-
ulation and physiologically correct simulation of the blood �ow in a reference cardiovascular system. The
corner stone of the approach is automatic construction of a global anatomically correct 1D computational
graph adapted to patient coronary network. Individualized regional network of coronary vessels is built from
patient-speci�c CT-scans by our fully automatic algorithm for coronary arteries identi�cation. It starts from
the fast variant of the isoperimetric distance trees algorithm [15] for aorta identi�cation. The coronarynetwork
is reconstructed by the use of the Frangi vesselness �lter [9]. The �lter is based on the Hessian 3D analysis
of the CT-image and is applicable for all tubular structures in the vascular data set. A global 3D vascular net-
work (1D computational graph) of the systemic circulation is built on the basis of the anatomically correct
database [55] by the automatic algorithm [12]. The regional and the global networks are merged by our adap-
tation algorithm performing the similarity function analysis (see Section 1.3.2). The algorithm is a speci�c
realization of a general approach whose detailed description and applications are given in [4]. The other pa-
rameters of ourmodel of blood �ows in 1D vascular networks are obtained as follows. Elastic properties of the
blood vessels are adjusted to typical values from clinical studies [1, 36] categorized according to age, physical
conditions, etc. Hydraulic resistance coe�cients are adjusted by �tting model linear velocity to individual
ultrasound measurements similar to our previous works [12, 38].

Electrocardiogram is the well known graphical representation of the cardiac electrical function. It is
recorded during ECG procedure, a non-invasive medical procedure of measuring electric potential activity
on the body surface. In clinical practice ECG is widely used in medical examination as the early non-invasive
detection of heart disease. The four limb electrode electrocardiograms have been used for decades, and ECG
modelling highly improved comprehension of this process. Recently the computer algorithms become used
for dispersion analysis of low amplitude ECG signal oscillations producing highly sensitive analysis of the
re-polarization phase, the most challenging phase of heart excitement in clinical interpretation [19].

The modelling of cardiac electrophysiology may be formalized as the full-scale study of the heart elec-
trical activity from inner-cellular level to the electrode recordings at the body surface. Various mathematical
models and numerical methods have been developed for modelling of cardiac electrophysiology [24]. Gen-
erally the full-scale ECG modelling involves simulations of electric potential propagation on three di�erent
scales: the single-cell models represented by ODE are used on the cellular level, the bidomain model rep-
resented by PDE system is used on the cardiac tissue level, the simpli�ed quasi-static version of Maxwell’s
equations is used on the whole-body level. Recently the pipeline for veri�cation of electrophysiology solvers
was proposed [28]. Other validation techniques were discussed in [21].

The mathematical models of ECG may be used to estimate impacts of various processes on the electro-
cardiogram [53] and to evaluate how di�erent cardiac pathologies may a�ect ECG readings. Our future work
is aimed at modelling ECG for patients with congenital heart disease. The reconstruction of personalized
anatomical model of the pathological heart is one of the crucial steps in ECGmodelling. The bidomainmodel
requires an accurate anatomical model of patient heart accounting the myocardial anisotropy structure. The
magnetic resonance imaging (MRI) may be used to obtain both the anatomical structure of the heart and the
anisotropy structure of the cardiac tissue. Accurate patient-speci�c anatomical reconstruction of torso re-
quires the high resolutionmedical imaging data like CT or MRI for the whole body, which inmost cases is not
available. However, the anthropometric measurements of the patient’s body are easily accessible, and thorax
CT/MRI images may be used to construct subject speci�c patient’ thorax anatomical model. Our preliminary
simulations indicate that ECG readings have low sensitivity to segmentation errors outside the thorax region.
Thus, patient-speci�c segmentation should be focused on the cardiac region, and a reference human model
may be used in the remaining part of the body. Using this concept we investigate the impact of the anatomical
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structure in the thorax region on ECG reading. Our preliminary ECG simulation uses decoupledmonodomain
equation for the cardiac tissue and Laplace equation for the torso region.

The corner stone for medical image processing is a segmentation process when each voxel of the 3D
medical image is assigned with the particular tissue or internal organ. Various medical image segmentation
techniques have been developed [17, 33, 49]. The most promising fully automatic segmentation methods be-
long to atlas-based segmentation techniques. The patient-speci�c segmentation is obtained from the atlas
of presegmented images of other individuals. This atlas should contain enough di�erent cases for accurate
mapping of the new patient data. Thus atlas-based approach requires huge amount of segmentation expert
work for the preparation of atlases and development of algorithms dealing with big data. Semi-automatic
segmentation technologies require interaction with the expert. They are used primarily for precise local seg-
mentations, where only one organ or tissue is processed. In this work we use our technique for adaptation of
the once segmented reference humanmodel to di�erent individuals. This technique relies on anthropometric
scaling, control points mapping and supervised segmentation [7].

The paper outline is as follows. In Section 1we discuss and present severalmethods for 3D reconstruction
of patient body frommedical images. In particular, we consider segmentation ofmedical images for thewhole
body and its vascular network, as well as our approaches to patient-speci�c adaptation of reference models.
In Section 2 we demonstrate the use of the patient-speci�c reconstruction for two medical applications, the
numerical estimate of FFR and the numerical simulation in cardiac electrophysiology.

1 3D reconstruction of patient body from medical images

1.1 Sources of medical images

The anatomical 3D data are usually provided in the form of medical image data sets (scans) from imaging
modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). The MRI intensity is
sensitive to the molecular dynamics of tissue water. The random rotational motion of water molecules pro-
vides intrinsic ‘relaxation’ properties relating to the rate by which the excitable MRI signal recovers (referred
to as T1) or the excited signal decays (T2). Special modality study can be used for better resolution of par-
ticular tissues. For instance, accurate blood vessel geometry reconstruction is obtained by contrast imaging.
High contrast vessel images canbegained fromcontrast-enhancedmagnetic resonance angiography (ceMRA)
or contrast-enhanced computed tomography angiography (CTA). In several physiological models the tissue
structure should be de�ned. Anisotropic structure of cardiac tissue is recovered by the magnetic resonance
di�usion tensor imaging (MR-DTI) [18], a subset of MRI that measures the anisotropy of water di�usion in-
duced when tissues have an ordered organization. Di�erent modalities exhibit di�erently in visualization of
speci�c tissues, and therefore various protocols are used to capture speci�c properties of patient body. Usu-
ally, regardless of the protocol, imaging data are represented by scalar, vector or tensor volumetric arrays in
DICOM format.

All the above imagingmodalities are patient-speci�c andnon-invasive. Invasive study suchashistology is
more accurate and less comfortable: it requires sampling, �xation, mounting, and microscopic examination
of the tissue. Histology studies are patient-speci�c and allow to recover anisotropic structure of the tissues.
We also mention the Visible Human Project (VHP) [56] directed to complete, anatomically detailed 3D repre-
sentations of the normalmale and female humanbodies. For that purpose transverse CT,MRI and cryosection
images of representative male and female cadavers were obtained. These data sets provide detailed informa-
tion on the human anatomic structure, theymay be used for the preparation of a reference anatomicalmodel.



188 | Yu. V. Vassilevski et al., Patient-speci�c anatomical models

1.2 Medical image processing

A discrete anatomical model can be obtained from medical images or from custom 3D geometric models.
Medical images are personalized data whereas custom 3D geometric models are reference, or averaged, data.

An anatomically accurate geometric 3D model of a body or its part represents organs and tissues as 3D
subdomains with given boundaries. Geometric models are designed for the study of anatomy via 3D visual-
ization and therefore can provide medical images. An example of a geometric model is the Plastic Boy model
[55]. A geometric model can serve as the basis for the construction of a reference discrete model of a body or
its parts. The reference discrete model can be further adapted for patient body or its parts, see Section 1.3. For
instance, in Section 1.3.2 we consider a graph representation of a reference vascular network [12] extracted
from the geometric database [55]. The reference graph can be adapted regionally to individual data by spe-
ci�c black-box algorithms. We note that 3D geometric models of internal body structures can hardly be used
in simulations without tedious preprocessing. Indeed, the model should provide the desired level of spec-
i�cation, it should be anatomically correct: the internal tissues and organs should not intersect, and there
should not exist void regions between the tissues inside the body.

In the remaining part of this section we consider the methods for generation of a discrete anatomical
model from patient-speci�c medical images. The �rst stage of medical image processing is image segmenta-
tion. In segmented image the set of voxels with the same label represents the speci�c tissue. Since all voxels
are labeled with unique tissue labels, the segmented tissues do not intersect and do not leave void regions in-
side the body. The segmented volume array can serve as a patient-speci�c geometric model. Also, it provides
all necessary information for generation of a discrete anatomicalmodel: in Section 1.2.1wediscuss generation
of a 3D computational mesh for a whole body, in Section 1.2.2 we discuss generation of a 1D computational
graph for a vascular network.

1.2.1 Full body reconstruction

We used Visible Human Project (VHP) [56] data to construct the discrete full body model. The initial segmen-
tationwas performed for the torso region of the humanbody [7]. The original volume array of the human torso
was derived from themale data. The initial segmentedmodel of the VHPman torso is an array of 567×305×843
colored voxels with the 1×1×1 mm resolution [16]. This model has been produced primarily for visualization
purposes and contained a signi�cant amount of unclassi�ed tissues. We performed further semi-automatic
processing of the whole body using ITK-SNAP segmentation software program [51]. At the �nal stage, we used
several post-processing algorithms for �lling the gaps between tissues and �nal segmented data smoothing.
The obtained segmentedmodel contains 32 materials and e�ective resolution of 1mm [7]. Similar anatomical
model is also constructed for the VHP female data set.

The segmented image may be treated as a 3D array of integers. Each value is associated with certain
material. Correct resolution of small scale structures may require improvement of input data resolution. This
is achieved by splitting the initial multi-labeled segmented array into several binary layers associated with
distinctmaterials. Image upscaling and smoothing operators are applied to eachmaterial layer separately. As
the result, the binary data may become rational values. The material layers are assembled to the joint multi-
labeled segmented image by assigning to each voxel the material whose layer has the largest rational value
at this location.

A computational mesh may be generated by several methods, including marching cubes algorithm for
surface reconstruction [47], surface triangulation smoothing and coarsening [41, 46], 3D Delaunay triangula-
tion [10], and advancing front technique for volume mesh generation [5, 10]. We suggest using the Delaunay
triangulation algorithm from the CGAL-Mesh library [35]. This algorithm enables de�ning a speci�cmesh size
for each model material. In order to preserve geometric features of the segmented model while keeping the
number of vertices feasible, we assign a smaller mesh size to blood vessels and a larger mesh size to fat and
muscle tissues. An example of unstructured gridwith high adaptation to heart ventricles is presented in Fig. 1.
An optional skin layer may be added to the surface of the constructed mesh. The boundary triangulation is
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(a) (b)

Figure 1. Unstructured tetrahedral mesh for VHP reference model with aggressive adaptation to heart ventricles, 2049945 tetra-
hedra, 370242 vertices: (a) sagittal cross-section, (b) coronal cross-section.

used to create a prismatic mesh on the surface, and then each prism is split into three tetrahedra resulting
in a conformal mesh. Mesh cosmetics algorithms from the Ani3D library [54] are used to improve mesh qual-
ity. This essential step reduces the error of the �nite element discretization and the condition number of the
resulted matrices.

1.2.2 Vascular network reconstruction

The vascular network is a 3D tubular structure composed of vessels and their bifurcations (junctions). In this
section we discuss how the discrete model (1D computational graph) of the vascular network can be con-
structed. In ceMRA/CTA data appropriate voxels are characterized by high brightness. Automatic segmen-
tation methods exploit the basic geometric feature of network vessels, a tube-like structure, which can be
detected by the image Hessian analysis. The most powerful and anatomically correct method is the Frangi
vesselness �lter [9]: it is applicable even for discontinuous structures which are produced by the moving ves-
sels such as coronary arteries. The alternative centerline trackingmethod [22] combines series of fast local 2D
Hessian eigenanalysis in vessels and series of fast local 3D Hessian eigenanalysis in bifurcations. The local
analyses provide much faster performance compared to the global 3D Frangi �lter and thus are applicable to
automatic segmentation of extensive networks in large data sets. We shall address bothmethods and present
their application to segmentation, skeletonization and centerline tracking of coronary and main leg arteries
yielding 1D computational graphs of these regional networks.

The Frangi �lter measures similarity of a 3D object to a tubular structure with the Hessian eigenanalysis.
The method refers to a measurement scale associated with a certain range of vessel diameter. Let an image
be given as a function of coordinates x and its Hessian matrix Hσ(x0) be computed at scale σ at point x0 in
accordance with the linear scale space theory [8]. Let |λ1| ≤ |λ2| ≤ |λ3| bemoduli of eigenvalues and v1, v2, v3
be eigenvectors of Hσ(x0). The Frangi �lter of bright tubular structures is based on the following Hessian
features:

|λ1| ≈ 0, |λ1| � |λ2|, λ2 ≈ λ3 < 0

the eigenvector v1 indicates the direction along the tube with approximate radius σ, whereas the eigen-
vectors v2, v3 span the cross-section of the tube. Frangi de�ned the line vesselness measure Vσ(x0) =
Vσ(x0, λ1, λ2, λ3, α, β, c) associated to the scale σ. Parameters α, β, c are thresholds controlling sensitivity
[9] of the line �lter to the Frangi measures. The scale σ allows to identify vessels whose radius is approxi-
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(a) (b)

Figure 2. Segmentation of coronary arteries, CT data with resolution 512x512x401: (a) aorta is segmented with IDT-based algo-
rithm and coronary arteries are segmented with the Frangi �lter, (b) skeletonized coronary network.

mately equal to σ. The multiscale Frangi �lter is computed in range of scales σmin ≤ σ ≤ σmax to identify the
vessels of all sizes:

Vmult(x0) = max
σmin≤σ≤σmax

Vσ(x0).

The Frangi �lter is a computationally costly procedure. For large data sets with a large variety of vessel
diameters it can be very expensive, although for regional vascular networks it is robust and e�cient. For
instance, segmentation of coronary arteries by the vesselness �lter takes less than 3 minutes on PC for CT
data sets with 512×512×401 voxels, the segmented vessels are presented in Fig. 2a.

With the use of the Frangi �lter we developed an automated technology [4] for segmentation of coronary
arteries. Similar to [42, 48], the technological chain consists of three stages: aorta segmentation, ostia points
detection and segmentation of coronary arteries. The aorta segmentation algorithm is based on the Isoperi-
metric Distance Trees (IDT)method [15] andworks onlywith amask (masked voxels). The algorithm initializes
the mask containing the aorta, cuts the initial mask at bottlenecks, smooths and denoises the �nal submask.
For details we refer to [4]. The next stage is Frangi �ltering with the parameters α = 0.5, β = 0.5, c = 500
at three scales σ = 1, 2, 3. Ostia points are detected as two distinct local maxima of Frangi vesselness inside
the aorta mask. The coronary arteries are de�ned as components of vascular trees rooting at ostia points, see
Fig. 2a. From segmented arteries we extract centerlines by the use of skeletonization and speci�c denoising
algorithms [4]. The �nal skeleton (coronary centerlines) is shown in Fig. 2b.

Another approach, the centerline tracking is based on the local structure analysis algorithm [22]. The
algorithm can provide either segmentation or centerlines (a sequence of seeds and associated radii) without
segmentation. The algorithm reduces the problem of identi�cation of a tubular structure to a sequence of
identi�cations of its cross-sections ordered along the tube centerline. The above trunk analysis is applicable
between bifurcations of vessels, trunk segmentation being amenable via thresholding in each cross-section.
In bifurcation region a 3D Hessian-based bifurcation �lter is to be applied. The bifurcation analysis inputs
a bifurcation cross-section of already identi�ed vessel and outputs initial seeds for two other uninitialized
vessels. The algorithm can not identify junctions of more than 3 vessels and junctions of vessels with large
ratio of diameters.

In order to start trunk analysis, we need an initial seed, direction and approximate radius r0. The local 3D
Hessian eigendecomposition at scale r0 gives a cross-section plane at the seed spanned by the eigenvectors
v2 and v3. By using the Canny edge �lter we detect the vessel border and the local adaptive threshold which
can be used for trunk segmentation. Since the initial seed is only an approximation of the center of vessel
cross-section, we correct the seed coordinates by the use of 2D Hessian analysis [22]. To adjust the vessel
radius rp, one computes the diameters d2 and d3 of the vessel along the vectors v2 and v3, respectively, and
sets rp = (d2 + d3)/4. The initial seed for the next cross-section is found by shifting the current seed along
the vessel direction v1 as shown in Fig.3a.
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(a) (b) (c)

Figure 3. Centerline tracking: (a) trunk analysis: blue vectors span tube cross-sections, red vectors direct along the tube, (b) an
example of extracted centerlines for leg arteries, (c) vessel segmentation in region that is restricted by the rectangle in (b).

The re�nement of seed coordinates is based on the circleness enhancement ratio

CR(x) =
|λ2D,1(x) + λ2D,2(x)|
|λ2D,2(x)| − |λ2D,1(x)|

attaining its maximum at the center of the cross-section. To account the noisy nature of medical images, we
de�ne the circleness function as follows:

C(x) =
(
1 − e−(CR(x)α)

2)(
1 − e−(λ

2
2D,1(x)+λ

2
2D,2(x))/(2β

2)
)
.

Here α controls the increase rate of the width of the Gaussian pro�le of circleness C, and β regulates the e�ect
of noise. The re�ned seed coordinates correspond to the maximum of circleness C in the cross-section.

The trunk analysis stops when the cross-section intersects a bifurcation or if the new initial seed falls
outside the vessel (i.e. λ2 ≥ 0 or λ3 ≥ 0). The latter means termination of the vessel due to insu�cient CT
resolution. The criterion for the bifurcation intersection is a prolate shape of the vessel cross-section. For
typical arteries the cross-section is circular, I ≡ max{d2, d3}/ min{d2, d3} ≤ 1.2. The bifurcation cross-
section is the�rst cross-section in the trunk iterationswhere I > 1.9 andat least oneof previous cross-sections
have parameter I ≤ 1.2. Our criterion for bifurcation intersection is more stable than the criterion proposed
in [22].

The application of the Frangi vesselness measure for bifurcation analysis does not provide anatomically
correct segmentation of the bifurcation in all cases. We use a 3D Hessian-based �lter [23] for the bifurcation
analysis and segmentation. The modi�ed vesselness at scale σ is

V̂σ =
(
1 − |λ3| − |λ2||λ2| + |λ3|

)(
2
3 λ1 − λ2 − λ3

)(
1 − e−(λ

2
1+λ

2
2+λ

2
3)/(2β

2)
)

and the modi�ed multiscale vesselness is

V̂mult = max
σmin≤σ≤σmax

V̂σeσ/2.

It provides the instruments for the bifurcation analysis. Here σmax is the halvedmaximal diameter of incident
vessels, σmin is set less than σmax/3, the exponential term normalizes the vessel response peak at all scales.
The two next initial seeds are localized on the bifurcation cross-section at two distinct maxima of the mod-
i�ed vesselness V̂mult. The bifurcation is segmented using thresholding of the modi�ed vesselness values.
Cholesterol plaques have much higher intensity than inner voxels of vessels, and it is necessary to shade the
plaques prior the bifurcation analysis.

Once the centerlines are extracted, the 1D computational graph is generated by automatic postprocess-
ing of the centerlines [4] which completes the construction of the personalized discrete model of coronary
arteries.

The examples of extracted centerlines and segmented vascular region are presented in Figs. 3b and 3c,
respectively.



192 | Yu. V. Vassilevski et al., Patient-speci�c anatomical models

1.3 Patient-speci�c adaptation of reference 3D models

1.3.1 Adaptation of reference full body model

The development of a new personalized segmented model of a whole body from scratch is a very time con-
suming process. Assuming we already have a segmented model of some individual, we propose methods for
patient-oriented adaptation. In contrast to atlas-based segmentation methods, where the segmentation of
full body CT/MRI data is obtained from the atlas of presegmented images of other individuals, our approach
is based on the assumption, that patient imaging information is limited to only several transverse images.

The most simple approach is the anthropometric rescaling of the model. We split the reference model in
several parts, and adjust their height according to the heights of the related parts of the patient. After that
we also adjust the width of these parts according to the patient measurements. As a rule, this operation is
not su�cient. The patient may have di�erent body constitution: fat/muscle ratio, pathologies, anatomical
features, etc.

In this case we propose transformation of the segmented reference model using several control planes
and control points. At �rst, the user selects several control planes, and tries to adapt the reference model in
these planes.Model adaptation in the plane is based onpiecewise a�nemapping de�ned by the set of control
points. The user marks the same set of control points both on the reference image and on the patient image.
Then one maps the reference image to the patient image shifting the control points from original positions
to the new ones. The control points may represent the anatomical features of the human body. We assume
that the anatomical structure of segmented images of the reference model and the patient model is the same
whereas the size and the form of the individual tissues may vary.

(a)

(b)

Figure 4. Piecewise a�ne mapping of reference model on the left to the patient-speci�c on the right: (a) 3D mapping recon-
structed from several axial control planes, (b) piecewise a�ne mapping of segmented axial plane and Delaunay triangulation
constructed from control points.
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The piecewise a�ne transformation is constructed on the basis of the Delaunay triangulation of the con-
trol points from the patient image. The same triangulation with the identical topology is constructed using
the corresponding control points in the reference image. Assuming the latter triangulation is not tangled, we
can construct the piecewise a�ne mapping of each triangle from one mesh to the corresponding triangle in
the secondmesh. Once we constructed the transformations on two parallel control planes, we can de�ne the
transformation on any plane between these planes using the linear combination of these two transforma-
tions.

An example of 3D transformation based on several control planes is presented in Fig. 4. This transforma-
tion was de�ned by the dozen of axial control planes, only several are presented for visualization purposes.
Each plane has a set of control points. These points are placed in the way to transform organs and tissues in
thorax region. The detailed algorithm for mapping transformation is presented in [6, 44].

1.3.2 Adaptation of reference vascular network

The reconstruction of entire vascular network on the basis of CT or MRI data is a time consuming procedure.
Moreover, only a negligible part of CT/MRI clinical cases provides data for the full body of the patient. The
vast majority of CT/MRI clinical cases are focused on detailed individualized analysis of regional or local part
of cardiovascular network. Many applications allow to describe the rest of the network in less details.

According to this conceptwepropose to use anatomically correct data [55] as the reference common struc-
ture for all individual cases. The local region of interest is replaced by patient speci�c CT or MRI data. The
reference data can be adapted by the individual data once the respective 1D network structures are recovered
in terms of 3D graphs. A 3D graph T = (V , E) is composed by nodes V and edges E sets. Each node attributes
coordinates (x, y, z), whereas each edge is presented by a vessel centerline (a sequence of central points and
associated vessel mean radii). Basing on anatomical evidence we assume that adaptation of the global ref-
erence graph reduces to merging certain nodes of the local patient-speci�c graph and certain nodes of the
global reference graph and eliminating edges of the local reference subgraph.

We developed a black box algorithm for local patient-speci�c adaptation of the reference vascular net-
work. The algorithm is a speci�c realization of a general approach whose detailed description and applica-
tions are given in [4]. The approach is based on inexact graph matching [25, 29] and considers similarities
between geometric and topological features.

Let a global reference graph Tr = (Vr , Er) and a local patient-speci�c graph Tp = (Vp , Ep) be given. The
global adapted graph Tr′ is built on the basis of the association set Vrp for elements from Vr and Vp. Vrp
contains pairs of similar nodes from Vr and Vp which are detected by a function fs, 0 ≤ fs ≤ 1, specifying
similarity between nodes:

Vrp =
{
{vr , vp} ∈ Vr × Vp | fs(vr , vp) ≥ ∆

}
(1.1)

where 0.5 ≤ ∆ ≤ 0.7 is a threshold parameter. The closer similarity function fs is to 1, the stronger similarity
between elements vr , vp is. In this application we design fs basing on local properties of branching nodes as
follows.

Let Ev denote the set of edges adjacent to the graph node v and rv(e) is the local radius of the vessel
corresponding to edge e near the node v. We de�ne R1(v) = maxe∈Ev (rv(e)) as the maximal value of rv(e) for
the node v and R2(v), R3(v) as the second largest and the third largest values of rv(e). If the node v has only
0 < k < 3 adjacent edges then Ri(v) = 0 for i > k. Our function fs of similarity between the branching nodes
is:

fs(vr , vp) =
3∏
i=1

(
1 − |Ri(vr) − Ri(vp)|

max(R1(vr), R1(vp))

)
. (1.2)

Function fs measures similarity of two junctions of three vessels associated with the graphs Tr and Tp. Let
E r̂ be the subset of Er containing edges on all possible shortest paths in the reference graph Tr between the
nodes contributing to Vrp, and V r̂ be the set of nodes of edges from E r̂ not contributing to Vrp. To de�ne the
global adapted graph Tr′ = (Vr′ , Er′ ), we �rst set Er′ = Er \ E r̂ and Vr′ = Vr \ V r̂, and merge Er′ with Ep, and Vr′
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(a) (b)

Figure 5. Patient-speci�c adaptation of a simple reference arterial network: (a) simple reference arterial network with two el-
ementary coronary vessels, (b) adapted arterial network (vessels with indexes more than 19 correspond to patient-speci�c
coronary arteries).

(a) (b) (c)

Figure 6. Patient-speci�c adaptation of a reference arterial network: (a) reference arterial network, (b) individual coronary net-
work, (c) adapted arterial network (zoom).

withVp. Mergingnodes implies that the nodes fromVp not contributing toVrp are added toVr′ . Merging edges
implies that the edges from Ep are added to Er′ with simultaneous replacement of the nodes contributing to
Vrp with their pair associates.

The function fs does not take into account spatial positions of the reference and the local patient-speci�c
graphs. Therefore, it is applicable for de�ning association between 3D graphs constructed from di�erent data
sets corresponding to the same anatomical regions with anthropometric similarity.

The adaptation of a simple reference arterial network (Fig. 5a) by a patient-speci�c coronary network
(Fig. 2) is shown in Fig.5b. Adaptation of a more complex reference arterial network (Fig. 6a) by a patient-
speci�c coronary network (Fig. 6b) is presented in Fig. 6c. Both reference arterial networks are recovered
from geometric 3D data [55] on the basis of algorithm proposed in [12].

2 Applications

2.1 Patient-speci�c computation of fractional flow reserve

In this sectionwe apply the patient-speci�c arterial network presented in Fig. 5b to personalized computation
of the fractional �ow reserve (FFR) at di�erent stenosis degrees by the 1Dnetworkblood�owmodel [39]. Apart
of geometric patient-speci�c data (length and diameter of vessels, individual network structure), the blood
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�ow model requires elastic properties of the vessels and hydraulic resistance coe�cients. Individual elastic
properties are beyond the reach of routine examinations, thus we exploit typical values from clinical studies
[1, 36] categorized according to age, physical conditions, etc. Hydraulic resistance coe�cients are adjusted
by �tting model linear velocity to individual ultrasound measurements. The main individual component for
patient-speci�c FFR assessment is the 3D structure of the vascular network which can be recovered from
CT/MRI data by the methods discussed in Section 1.2.2.

The model of blood �ow in vascular network considers unsteady �ows of viscous incompressible �uid
in the network of elastic tubes. The model accounts systemic arteries and veins of the reference network.
Patient-speci�c coronary tree is recovered by the methods from section 1.2.2. The model accounts the active
vessel wall response (autoregulation) function. Below we outline the basic features of the model, the details
can be found in [13, 38, 45].

The �ow in every vessel is described by mass and momentum balance equations

∂Sk/∂t + ∂(Skuk) /∂x = 0 (2.1)

∂uk/∂t + ∂
(
u2k /2 + pk/ρ

)
/∂x = ffr

(
Sk/S0k , uk

)
, (2.2)

where k is the index of the vessel, t is the time, x is the coordinate along the vessel, ρ is the blood density,
Sk(t, x) is the vessel cross-section area, S0k is the unstressed vessel cross-section area, pk is the blood pressure,
uk(t, x) is the linear velocity averaged over the cross-section, ffr is the friction force. The elastic properties of
the vessel wall material are incorporated as pk(Sk) relation

pk(Sk) − p*k = ρc
2
k f (Sk) (2.3)

where f (Sk) is amonotone S-like function, p*k is the pressure in the tissues surrounding the vessel, ck is small
disturbances propagation velocity in the vessel wall.

At the vessels junctions the Poiseuille’s pressure drop and mass conservation conditions are applied

pk (Sk (t, x̃k)) − plnode (t) = εkR
l
kSk (t, x̃k) uk (t, x̃k) , k = k1, k2, . . . , kM (2.4)∑

k=k1 ,k2 ,...,kM

εkSk (t, x̃k) uk (t, x̃k) = 0 (2.5)

where M is the number of the connected tubes, {k1, . . . , kM} is the range of the indexes of the connected
tubes, l is the node index, plnode(t) is the pressure at the l-th junction point, ε = 1 and x̃k = Lk for incoming
tubes, ε = −1 and x̃k = 0 for outgoing tubes, Rlk is the hydraulic resistance. The set (2.4)–(2.5) is closed by
�nite di�erences approximation of compatibility conditions along outgoing characteristics [38].

At the entry point of the vascular network the blood �ow is given by the heart ejection

u(t, 0) S(t, 0) = QH (t) (2.6)

where function QH(t) for normal heart rate (60 beats per minute) is known [14]. We consider di�erent heart
rates and scaleQH(t) so that the volumeof bloodejected inone cardiac cycle (stroke volume) remains constant
(60ml), see Fig. 7.

The autoregulation (the adaptation of the vessel wall elasticity to the changes of average �ow) introduces
essential deviations from the response of passive elastic tubes. In themodel we account the autoregulation as
dependence of ck in (2.3) from average pressure pk [38]. The value ck is updated every heart cycle according
to

ck(t) = ck,old + γ
t − T3
T4 − T3

(ck,new − ck,old) (2.7)

where

ck,new = ck,old

√
pk,new
pk,old

, (2.8)

pk,new = 1
(T3 − T2)lk

T3∫
T2

lk∫
0

p(x, t) dx dt, pk,old =
1

(T2 − T1)lk

T2∫
T1

lk∫
0

p(x, t) dx dt
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Figure 7. Aortic blood flow time pro�les at di�erent heart rates in bpm (beats per minute).

Figure 8. Numerical FFR calculated for selected degrees of stenosis α at di�erent heart rates.

while lk is the length of k-th vessel; T1, T2, T3, T4 are the initial moments of the successive cardiac cycles,
0 6 γ 6 1 is the parameter controlling the autoregulation response rate. We associate γ = 1 with the normal
vessel state and γ = 0.1 with the impact of vasodilator administration.

An additional important feature of coronary haemodynamics is the compression of a part of coronary
arteries during diastole when the main myocardial perfusion occurs [37]. We account this feature by setting
variable external pressure p*(t) = Pcorext (t) in (2.3). The shape of the function Pcorext (t) is similar to the heart
out�ow time pro�le presented in Fig. 7. The peak value is normalized by the ventricular pressures that give
120 mm Hg and 30 mm Hg for branches of left and right coronary artery, respectively [13].

We introduce a stenosis in themodel as separate vessel No. 28 (Fig. 5) and compute the FFR as the ratio of
average pressure in coronary artery downstream the stenosis (vessel No. 29) to average aortic pressure during
vasodilator administration [52]:

FFR = P29
Paor

.

To imitate the stenosis as shown in Fig. 5b, we set

L28 = 0.3 cm, S028 = (1 − α)S027 , R28 =
1

(1 − α)2
L28
L27

R27

where α is the stenosis fraction, α = 0.3, 0.5, 0.7, 0.9. For neighbouring healthy vessels we set L26 = L27 =
1.075 cm, S026 = S027 = 0.0109 cm2, R26 = R27 = 7200 bar/(s · cm3). Vasodilator administration is imitated
by doubling S0 in all coronary vessels, decreasing resistance R by a factor of 5 and setting γ = 0.1 in (2.7). For
each degree of stenosis and each heart rate pro�le (Fig. 7) we calculate the FFR on the basis of the numerical
pressures. The computed FFR are presented in Fig. 8.
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From Fig. 8 we conclude that FFRmay depend on the heart rate. In particular, FFR for the patient in quiet
conditions with the normal heart rate may overrate FFR at high heart rates, and the larger is the stenosis, the
larger overestimation is given at high heart rates. Increased heart rates may occur outside the hospital due to
various reasons including psychological stress and physical activity. This risk should be considered by clini-
cians making decision on invasive (surgical intervention) or non-invasive (therapeutic) stenosis treatment.

Since FFRvalues for normal and intensive heart rate are di�erent and clinicalmeasurements are available
in quiet conditions only, it is important to evaluate individual FFR in silico. The presentedmodel andmethods
of the patient-speci�c vascular network reconstruction allow to achieve this goal.

2.2 Anatomical models in cardiac electrophysiology

In this section we study the application of anatomical models in cardiac electrophysiology. We couple two
electrophysiologymathematical models, and produce the preliminary results of ECGmodelling as a proof-of-
concept.

There are three commonly used formulations of tissue-level cardiac electrophysiology: themonodomain
formulation,which provides the trans-membrane voltage Vm throughout the tissue as a function of space and
time; the more sophisticated bidomain formulation, which provides voltage Vm and extracellular potential
φe; andbidomain casewhere an extra-cardiac electrically conductive bath (e.g. torso) is alsomodelled,which
we will refer to as the bidomain-with-bath formulation.

The following two bidomain equations are used [24]:

∇ · ((σi + σe)∇φe) = −∇ · (σi∇Vm) + Is1 (2.9)

∇ · (σi∇Vm) +∇ · (σi∇φe) = Am
(
Cm

∂Vm
∂t + Iion

)
− Is2 (2.10)

whereVm = φi−φe is the transmembranepotential,φi andφe are the intracellular andextracellular electrical
potentials, respectively, σi and σe are the intracellular and extracellular conductivity tensors, respectively,
Is1 and Is2 are the extracellular and intracellular external stimulus currents, respectively, Am is the surface
to volume ratio of the cell membrane, Cm is the membrane capacitance per unit area, and Iion is the sum of
all ionic currents calculated from the cellular model.

The extracellular domain is sometimes assumed to be highly conducting (σe ∼∞) or the domains are as-
sumed to be equally anisotropic (σi = λσe) in the e�ort to reduce the bidomain equations to a single equation,
hence reducing the amount of computational e�ort required to solve the problem. The simpli�ed equation is
known as the monodomain equation and can be written as

∇ · (σ∇Vm) = Am
(
Cm

∂Vm
∂t + Iion

)
− Is (2.11)

where the transmembrane potential is equal to the intracellular potential. Here σ = σi/(1 + λ) and Is =
Is1/(1 + λ) + Is2. We note that the case σe ∼ ∞ is equivalent to λ = 0. In the monodomain formulation
we assume no connection between the intracellular domain and any surrounding media, so the following
boundary condition is imposed to prevent current �ow out of the myocardial domain:

(σ∇Vm) · n = 0 (2.12)

where n is an external unit normal vector.
The governing equations for the problem of calculating the potential distribution within the torso are the

Maxwell’s equations. These equations may be simpli�ed by the quasi-static assumption [31]. For the range
of frequencies over which bioelectric signals are generated, the capacitive, inductive and propagation e�ects
of the body may be ignored leaving the torso to be modelled as a passive volume conductor. Under these
assumptions we reuse our numerical model from [7] for electrical �elds distribution during bioimpedance
measurements and derive the following Laplace equation:

∇ · (σo∇φo) = 0 in T (2.13)
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with the boundary conditions
σo∇φo · n = 0 on ∂T\ΓH (2.14)

φo = Vm on ΓH (2.15)

where T is the extracardiac part of the human torso (computational domain), ∂T is its boundary, ΓH is the
heart-torso interface, n is the external unit normal vector for T, φo is the electric potential, σo is the conduc-
tivity tensor. Equation (2.13) determines the distribution of electric �eld in the domain with heterogeneous
conductivity σo. Equation (2.14) de�nes the no-�ow condition on the external boundary. The use of Dirich-
let boundary conditions on ΓH (2.15) decouples equations in the heart and T. Coupled equations (2.9)–(2.10)
and (2.13)-(2.14) imply the continuity of both current density and extracellular potential on the surface ΓH
and constitute the bidomain-with-bath model.

In the current work we use the monodomain cardiac equation and the Laplace equation in torso. The
accuracy of the results depends on two factors: the actual coupling/decoupling technique used and the type
of potential continuity φo = φe or φo = Vm. The simpli�ed condition (2.15) provides only qualitative but not
quantitative results. In future work we will use more accurate bidomain-with-bath model. The monodomain
simulation is performed with the open source simulation package Chaste [26, 30]. The P1 �nite element dis-
cretization of equations (2.13)–(2.14) on unstructured tetrahedral meshes is performed with the open source
package Ani3D [54]. In our study we assume that the electrical current does not �ow from the heart to the
torso, i.e. that the heart is isolated from the torso. This approximation decouples the Laplace equation in the
torso from the monodomain equation in the heart, which allows reducing the size of the linear systems to be
solved.

The anatomical model of the heart used for this study is a publicly available human ventricular tetra-
hedral mesh derived from CT data [2]. For reference heart models myocardial �bers orientation can be com-
puted algorithmically [32, 40] and used as anisotropy source in cardiac electrophysiological models. We note
that the patient-speci�c ventricular mesh may be constructed from segmented ventricular images, and the
patient-speci�c �bre orientation may be obtained from MR-DTI imaging [18].

In the absence of the Purkinje network, a time-dependent initial stimulus was applied on the endo-
cardium to mimic a realistic electrical activation sequence in the heart. The duration of the intra-cellular
stimulus was 2 ms, and its strength was 80 mA cm−3. The membrane parameters are Am = 1400 cm−1 and
Cm = 1 µF cm−2, the Luo–Rudy cardiac cell model was used. The anisotropic conductivity parameters are
σ = 1.75 mS cm−1 in �bre direction and σ = 0.19 mS cm−1 in the transverse and normal directions [3, 43].

The distribution of transmembrane voltage Vm is obtained at time step t = 50 ms after heart excitement
and it is used as the boundary condition to the Laplace equation. Since the monodomain and the Laplace
computational meshes do not match on the surface ΓH , the piecewise linear interpolation is used to transfer
numerical solution from cardiac mesh to the full body mesh. The conductivity tensor in the torso is assumed
isotropic. The range of frequencies over which bioelectric signals are generated is low, thus we select conduc-
tivity parameters at 10 Hz frequency from the database of dielectric properties of human tissues [11].

In our ECGmodelling scenario we examine the impact of the anatomical structure in the thorax region to
ECG readings. We used the same computational cardiac mesh and cardiac electrophysiological parameters,
andweused twodi�erent torsomodels: the originalVHPmodel and themodi�edmodel fromSection 1.3.1 (see
Fig. 4). The computed surface potential �elds are presented in Fig. 9, where one can observe high sensitivity
of ECG signals to the position of the heart as well as to the anatomical structure of surrounding tissues. In
the modi�ed anatomical model the distance from heart to the body surface is almost twice shorter, and thus
maximum potential value on the surface is bigger.

These preliminary results indicate importance of accurate individual thorax reconstruction. The patient-
speci�c segmentation for ECG modelling should be focused on cardiac and surrounding tissues. Although
the decoupling approach proposed above is very appealing in terms of the computational cost, additional
numerical studies are needed to verify and re�ne of ECG signals modelling and adopt the coupled bidomain-
with-bath electrophysiological problem.
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Figure 9. Qualitative comparison of surface electrical potential �eld φo at time 50ms from excitation for di�erent anatomical
models: (a) reference anatomical model, (b) modi�ed anatomical model. The legend is given in arbitrary units.

3 Conclusions
We presented our approach to patient-speci�c simulation of human physiological processes. The foundation
of the approach is formed by the set of the methods for individualized 3D reconstruction of body anatomical
components on the basis of the medical images and the algorithms for generation of discrete patient-speci�c
anatomical models represented by computational meshes or graphs. Applicability of the approach is pre-
sented for the �rst stage solutions of two medical challenges, the computational evaluation of the fractional
�ow reserve in coronary arteries and the computer simulations of electrocardiographic measurements.
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