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Families of meshes minimizing P1P1P1 interpolation error
for functions with indefinite Hessian

A. AGOUZAL∗, K. LIPNIKOV†, and Yu. VASSILEVSKI‡

Abstract — For a given function, we consider the problem of minimizing the P1 interpolation error
on a set of triangulations with a fixed number of triangles. The minimization problem is reformu-
lated as the problem of generating a mesh which is quasi-uniform in a specially designed metric. For
functions with indefinite Hessian, we show the existence of a set of metrics with highly diverse prop-
erties. This set may include both anisotropic and isotropic metrics, which produce families of different
meshes providing a comparable reduction of interpolation error. The developed theory is verified with
numerical examples.

Let Ωh be a conformal triangulation of a computational domain Ω and I1(u) be a
continuous piecewise linear Lagrange interpolant of a given function u. The inter-
polation error

eh = u−I1(u)

depends on the triangulation. We consider the problem of minimizing this error on
a set of triangulations with a fixed number of triangles. Methods developed for the
solution of this problem can be used to decrease significantly the discretization error
in various applications, including complex fluid flows [12]. A theoretical basis for
this phenomenon exploits the fact that a discretization error can be bounded by the
best interpolation error [9].

In many cases an approximate solution to this minimization problem is suffi-
cient. In [18], we have shown that there exists a sequence of meshes that provide
an asymptotically optimal reduction of the interpolation error in the L∞(Ω)-norm.
These meshes were called quasi-optimal. The theory of quasi-optimal meshes has
been extended to the Lp(Ω)-norm in [2,19] and to the W p

2 (Ω)-norm in [2,3]. In this
paper we focus on the L∞(Ω)-norm of the interpolation error, although an extension
of our main result to the Lp(Ω)-norm is possible.

A constructive approach to generating a quasi-optimal mesh is based on re-
formulating the minimization problem as a problem of building a mesh which is

∗Université Lyon1, Laboratoire d’Analyse Numérique, Bat.101, 69 622 Villeurbanne Cedex,
France

†Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
‡Institute of Numerical Mathematics, Moscow 119333, Russia. E-mail: vasilevs@dodo.inm.ras.ru

This research was partly supported by the Russian Foundation for Basic Research (grant 11-01-
00971), the RAS program ‘Optimal methods for problems of mathematical physics’ and the Federal
program ‘Scientific and pedagogical stuff of innovative Russia’.



338 A. Agouzal, K. Lipnikov, and Yu. Vassilevski

quasi-uniform in a metric field. The metric-based mesh generation has a long and
successful history (see e.g., [5–7,10,12,13,17] and references therein). Many meth-
ods have been developed using the common idea that the mesh size should be small
in the regions of a strong solution gradient. A scalar metric proportional to the norm
of the solution gradient is often called a monitor function [15]. It allows one to gen-
erate adaptive regular meshes for problems with isotropic solution singularities. A
tensor metric derived from the Hessian of a solution is considered one of the best
metrics nowadays [1,7,16–18]. It allows one not only to generate an adaptive mesh,
but also to stretch it in the direction where the gradient is small.

To the best of our knowledge, the first theoretical justification that a Hessian-
based metric results in an approximate solution of the minimization problem has
been done in [1,18]. An upper and a lower bounds have been derived there for func-
tions with indefinite but nonsingular Hessians. Independently, a similar upper bound
has been proved later in [8] for functions with definite Hessians. Upper bounds for
Pk interpolation errors where k > 1 were proved in [16].

In [7,13,18] and similar papers, a Hessian is recovered from a discrete solution.
The major theoretical disadvantage of this approach is that the recovered Hessian
does not converge to the continuous one in the maximum norm on a sequence of re-
fined meshes. An alternative technology has been proposed in [2–4]. There a metric
is recovered from a posteriori error estimates prescribed to the mesh edges. Both
approaches allow one to implement an automatic (black-box) mesh adaptation. The
primary goal of the first approach is to minimize the interpolation error. The second
one tackles the discretization error and is potentially more beneficial in problems
where the discretization and interpolation errors differ significantly.

This paper extends the theory of quasi-optimal meshes to the P1 interpolation
problem. The main focus is on the functions with indefinite Hessian. In this case
the existing theory leads to a single metric based on the spectral module of the
Hessian, and hence to only one type of quasi-optimal meshes. Our new result is the
existence of families of metrics with highly diverse properties. One metric can be
isotropic, while another can be highly anisotropic. The developed theory explains
why meshes quasi-uniform in different metrics still result in the optimal reduction
of the interpolation error. The presented numerical examples show the sequences of
quasi-optimal isotropic and anisotropic meshes where the interpolation errors differ
within 1-3% across the sequences.

The paper outline is as follows. In Section 2 we develop the theory of multiple
metrics that result in quasi-optimal meshes. In Section 3 we verify the theoretical
findings with numerical examples. Concluding remarks are collected in Section 4.

1. Analysis of the P1P1P1 interpolation error

To analyze the interpolation error, eh = u−I1(u), we employ the ‘divide and con-
quer’ approach. First, we prove error bounds for quadratic functions. Then we ex-
tend them to C2(Ω) functions.
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1.1. Bounds for quadratic functions

Let Ω⊂ℜ2 be a bounded polygonal domain and Ωh be its triangulation with N(Ωh)
triangles. Let I1(u) be the continuous piecewise linear Lagrange interpolant of a
given function u on the mesh Ωh and I1,∆(u) be its restriction to triangle ∆.

Let us consider a triangle ∆ with vertices vi, i = 1,2,3, edge vectors ek = vi−v j,
k = 6− i− j, 1 6 i < j 6 3. Let ϕi, i = 1,2,3, be linear functions on ∆ associated
with vertices vi, and bk = ϕiϕ j be quadratic bubble functions associated with edges
ek. We define ϕi by requiring that ϕi(vi) = 1 and ϕi(v j) = 0 for j 6= i. Note that
0 6 ϕi 6 1 and 0 6 bk 6 1/4 inside the triangle ∆.

We start analysis of the interpolation error for a quadratic function u2. The
Hessian H2 of this function is constant. Since the local interpolation error e2 =
u2−I1,∆(u2) is zero at the vertices of the triangle ∆, we obtain easily the following
Taylor formula:

e2(x) =−1
2

3

∑
k=1

(H2ek,ek)bk(x).

Thus, we have

‖e2‖L∞(∆) 6
1
8

3

∑
k=1
|(H2ek,ek)|. (1.1)

The Hessian H2 is a symmetric matrix; therefore there exists a decomposition

H2 =±VT DV (1.2)

where

D =
[

1 0
0 s

]
, s = sgn(det(H2)).

In the sequel, it is sufficient to assume that the Hessian is either positive definite, or
indefinite; thus, we can consider only the plus sign in (1.2). The conclusions made
for a positive definite Hessian will hold true for a negative one. The spectral module
of H2 is defined as follows

|H2|= VT V. (1.3)
If s = 1, we obtain immediately that H2 = |H2|. Since |H2| is positive definite, we
can define a local metric as M∆ = |H2|. This approach has been extensively an-
alyzed in the literature. It can be extended to general functions by approximating
them locally as quadratic functions. The resulting piecewise constant metric M al-
lows one to generate a quasi-optimal mesh. In this paper we look more closely at
the case s = −1 where the Hessian is indefinite. We will show that, in addition to
(1.3), there exist other metrics that produce quasi-optimal meshes with drastically
different properties.

In the approach developed in [2, 18, 19], the maximum norm of e2 is bounded
from above by geometric quantities such as the length of the edges ek in metric |H2|:

3

∑
k=1
|(H2ek,ek)|6

3

∑
k=1

(|H2|ek,ek) =
3

∑
k=1

(VT Vek,ek). (1.4)
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In the case s = 1, the above inequality becomes an identity. Here we try to improve
the upper bound when s = −1 by exploiting the fact that the decomposition H2 =
VT DV is not unique. This results in the constrained minimization problem with
respect to V: Find MO = VT

o Vo such that

3

∑
k=1
|(H2ek,ek)|6

3

∑
k=1

(
VT

o Voek,ek
)

= inf
Ṽ:ṼT DṼ=H2

3

∑
k=1

(
ṼT Ṽek,ek

)
. (1.5)

At this moment, we need to introduce an additional notation and prove a tech-
nical result. Let [a |b] denote a 2×2 matrix with columns a,b ∈ℜ2 and

Q =
[

0 −s
1 0

]
.

Lemma 1.1. Let H2 = VT DV and H2 = ṼT DṼ. Then, there exists a nonsin-
gular matrix Φ = [ϕ |ϕ ′] such that Ṽ = ΦV. Moreover, the vector ϕ ∈ℜ2 satisfies
(Dϕ,ϕ) = 1 and ϕ ′ = Qϕ .

Proof. The two decompositions imply that Ṽ = ΦV and ΦT DΦ = D, which
in turn implies that (det(Φ))2 = 1. Thus, Φ is nonsingular. Moreover, (Dϕ,ϕ) = 1,
(Dϕ ′,ϕ ′) = s and (Dϕ,ϕ ′) = 0. A direct verification shows that ϕ ′ = Qϕ gives the
last two identities. This proves the assertion of the lemma.

An immediate corollary of this lemma is that the local metric defined by (1.3) is
unique when H2 is a positive definite matrix. Indeed, since s = 1, we have (ϕ,ϕ ′) =
0, which implies that Φ is an orthogonal matrix and

ṼT Ṽ = VT V = |H2|= H2.

Theorem 1.1. Let ∆ be a triangle with edges ek. Furthermore, let H2 be an
indefinite matrix and H2 = VT DV be one of the decompositions. Then, the solution
to the minimization problem (1.5) is

MO ≡ VT
o Vo =

1√
µ2−λ 2

VT
[

µ −λ

−λ µ

]
V (1.6)

where

µ =
3

∑
k=1

(Vek,Vek), λ =
3

∑
k=1

(RVek,Vek) (1.7)

and

R =
[

0 1
1 0

]
.
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Proof. Using Lemma 1.1, we obtain the following representation of the matrix
ṼT Ṽ:

ṼT Ṽ = VT [ϕ |ϕ ′]T [ϕ |ϕ ′]V = ‖ϕ‖2VT V+(ϕ,ϕ ′)VT RV. (1.8)

Let ϕ = [ϕ1, ϕ2]T ; hence, ϕ ′ = [ϕ2, ϕ1]T . Direct calculations and Lemma 1.1
give

(ϕ,ϕ)2− (ϕ,ϕ ′)2 = ϕ
4
1 +ϕ

4
2 +2ϕ

2
1 ϕ

2
2 −4ϕ

2
1 ϕ

2
2 = (Dϕ,ϕ)2 = 1.

Therefore, there exists a number z ∈ ℜ1 such that ‖ϕ‖2 = cosh(z) and (ϕ,ϕ ′) =
sinh(z). Inserting this into (1.8), we obtain

ṼT Ṽ = cosh(z)VT V+ sinh(z)VT RV. (1.9)

Combining estimates (1.1) and (1.5) with representation (1.9), we obtain a one-
dimensional minimization problem: Find zo ∈ℜ1 such that

zo = arg inf
z̃∈ℜ1

(
µ cosh(z̃)+λ sinh(z̃)

)
(1.10)

where µ and λ are defined by (1.7).
Let Vek = [v1k,v2k]T . Note that this is a non-zero vector. Then, we have

µ +λ =
3

∑
k=1

(
(Vek,Vek)+(RVek,Vek)

)
=

3

∑
k=1

(
v2

1k + v2
2k +2v1kv2k

)
=

3

∑
k=1

(v1k + v2k)2 > 0

and

µ−λ =
3

∑
k=1

(v1k− v2k)2 > 0.

We note that µ−λ 6= 0, since the equality would imply that v1k = v2k, k = 1,2,3. In
this case, the vectors e1, e2, e3 are collinear, which is possible only for a degenerate
triangle.

Minimization problem (1.10) has the explicit solution:

zo =
1
2

ln
µ−λ

µ +λ
.

The number zo corresponds to the matrix Vo producing the metric

MO ≡ VT
o Vo =

1√
µ2−λ 2

(
µVT V−λVT RV

)
=

1√
µ2−λ 2

VT
[

µ −λ

−λ µ

]
V.
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This proves the theorem.

Note that the metric MO differs from the metric

MV = |H2|= VT V (1.11)

when λ 6= 0, although
detMV = detMO. (1.12)

Thus, we have derived two independent metrics MV and MO yielding bounds (1.4)
and (1.5), respectively. The proof of the theorem implies that there exist many met-
rics ṼT Ṽ produced by various values of z in formula (1.9). Hereafter, we use gen-
eration notation M∆ to indicate any of these metrics, including the special metric
MO.

Combining (1.1) and (1.5), we get an upper bound on the interpolation error:

‖e2‖L∞(∆) 6
1
8
‖∂∆‖2

M∆
(1.13)

where

‖∂∆‖2
M∆

=
3

∑
k=1
‖ek‖2

M∆
, ‖ek‖2

M∆
= (M∆ek,ek).

Thus, the upper bound for the interpolation error includes the geometric quanti-
ties, i.e., the edge lengths ‖ek‖M∆

measured in the constant tensor metric M∆. The
lower bound for the interpolation error can be also expressed as a combination of
geometric quantities associated with the triangle ∆. Let ∆̂ be the image of triangle ∆

under the coordinate transformation x̂ = Vx. The estimate

‖e2‖L∞(∆) > max
k=1,2,3

max
x∈ek
|e2(x)|= 1

8
max

k=1,2,3
|(H2ek,ek)|>

1
2
√

5
|∆̂|

follows from the analysis presented in [11]. Note that

|∆̂|= |∆|det(V) = |∆|
√

det(VT V) = |∆|
√

det(M∆) = |∆|M∆
(1.14)

where |∆| is the area of ∆ and |∆|M∆
is its area in metric M∆. Thus, we have imme-

diately that

‖e2‖L∞(∆) >
1

2
√

5
|∆|M∆

. (1.15)

Estimates (1.13) and (1.15) imply that the interpolation error ‖e2‖L∞(∆) is con-
trolled from above and below by geometric quantities associated with the triangle ∆.
We have proved the following result.
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Theorem 1.2. Let u2 be a quadratic function with a nonsingular Hessian H2 =
VT DV and e2 denote its linear interpolation error on the triangle ∆. Let M∆ =
VT V. Then,

1
2
√

5
|∆|M∆

6 ‖e2‖L∞(∆) 6
1
8
‖∂∆‖2

M∆
. (1.16)

If det(H2) < 0, the specific metric MO provides the best upper bound in (1.16).
The lower bound is the same for any metric M∆, since |∆|M∆

does not depend on
the metric due to (1.14).

1.2. Illustrative example

In order to illustrate the diversity of metrics generated by (1.9), we consider the
bilinear function u2 = xy with the indefinite Hessian

H2 =
[

0 1
1 0

]
.

It is shown in [11] that for a quadratic function with an indefinite Hessian, the inter-
polation error achieves its maximum on the boundary of the triangle ∆:

‖e2‖L∞(∆) =
1
8

max
k=1,2,3

|(H2ek,ek)|.

Let us apply this result to various meshes with a characteristic mesh size h schemat-
ically shown in Fig. 1. Consider a triangle ∆1 from the isotropic mesh, e.g. the one
with vertices v1 = [0,0]T , v2 = [h,h]T , and v3 = [0,h]T . The interpolation error on
this triangle is

‖e2‖L∞(∆1) = |(H2e3,e3)|=
1
4

h2 =
1
2
|∆1|.

Due to the mesh structure, the interpolation error is the same for all triangles.
Consider a triangle ∆2 from the first anisotropic mesh, e.g. the one with vertices

v1 = [0,0]T , v2 = [h,1]T , and v3 = [0,1]T . The interpolation error on this triangle is

‖e2‖L∞(∆2) = |(H2e3,e3)|=
1
4

h =
1
2
|∆2|.

Again, the interpolation error is the same for all triangles in this mesh. Exactly the
same interpolation error holds true for the triangles in the second anisotropic mesh,
e.g., for triangle ∆3 with vertices v1 = [0,0]T , v2 = [1,0]T , and v3 = [1,h]T .

Let all three meshes cover the unit square and have the same number of trian-
gles, N. Then, the interpolation error equals to 1/(2N) in all three examples. These
three meshes represent three different families of meshes yielding the optimal (i.e.
reciprocal to N) reduction of the interpolation error. Thus, these meshes belong to
three different families of quasi-optimal meshes. One family contains shape-regular
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Figure 1. Illustration of one isotropic and two anisotropic meshes.

meshes; while the other two contain anisotropic meshes stretched in x and y direc-
tions, respectively.

Consider the following decomposition of Hessian H2:

H2 = VT
[

1 0
0 −1

]
V, V =

1√
2

[
1 1
1 −1

]
.

Using formula (1.11), we obtain the isotropic metric MV = |H2|= I. Only triangles
from isotropic meshes are shape-regular in metric MV . However, using formulas
(1.6)-(1.7), we obtain

MO(∆1) =
[

1 0
0 1

]
, MO(∆2) =

[
h−1 0
0 h

]
, MO(∆3) =

[
h 0
0 h−1

]
.

Note that the triangles ∆k are shape-regular in the respective metrics MO(∆k), k =
1,2,3.

1.3. Bounds for C2C2C2-functions

Let u be a continuous function and I2,∆(u) be its quadratic Lagrange interpolant
on the triangle ∆. In Theorem 1.2, we have derived the geometric representation
of the L∞-norm of e2,∆ = I2,∆(u)−I1,∆(u). It was shown in [2] that the norm of
e2,∆ provides a good approximation for the corresponding norm of the true error
e∆ = u−I1,∆(u). For completeness, we formulate this result in the next lemma. Let
F be a space of symmetric 2×2 matrices. We define the following quantity:

|‖∂∆|‖2
|H| =

3

∑
k=1
|‖ek|‖2

|H|, |‖ek|‖2
|H| = max

x∈∆

(|H(x)|ek,ek). (1.17)

Lemma 1.2 [2]. Let u ∈C2(∆̄). Then

3
4
‖e2,∆‖L∞(∆) 6 ‖e∆‖L∞(∆) 6 ‖e2,∆‖L∞(∆) +

1
4

inf
F∈F
|‖∂∆|‖2

|H−F|. (1.18)
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The second term in the right inequality is typical for contemporary a posteriori
error analysis. It depends on the triangle and the particular features of the func-
tion u. In many cases it is essentially smaller than ‖e2,∆‖L∞(∆). An example will be
considered at the end of this section.

Local analysis is naturally extended to triangulations. Let M be a piecewise con-
stant metric composed of local metrics M∆. Let N(Ωh) be the number of triangles
in the mesh Ωh. If Ωh is a quasi-uniform mesh with respect to metric M, then all
triangles have approximately the same area measured in this metric:

N(Ωh)−1|Ω|M ' |∆|M∆
' |∂∆|2M∆

∀∆ ∈Ωh

where a ' b means the existence of a constant C independent of the mesh and the
triangle such that C−1 a 6 b 6 C a. Hereafter, C denotes a generic constant. Thus,
the following error estimate is obtained

‖e‖L∞(Ω) = max
∆∈Ωh
‖e‖L∞(∆) 6 C max

∆∈Ωh
|∆|M∆

6 C |Ω|MN(Ωh)−1 (1.19)

which implies the asymptotically optimal error reduction and proves the quasi-
optimality of M-quasi-uniform meshes. We note that different metrics M produce
the same area |Ω|M, since the triangle areas are the same due to (1.14). Therefore,
error estimate (1.19) should be close for the meshes from different families with the
same number of elements N(Ωh).

Let us return to Lemma 1.2 and consider, for instance, a quasi-optimal mesh
Ωh generated by M∆ = MV = |H2| and characterized by the balance between the
volume and the perimeter of its triangles:

|∆|M∆
' ‖∂∆‖2

M∆
∀∆ ∈Ωh.

Using (1.15) and the fact that H2 is a constant Hessian of I2,∆(u), we obtain

‖e2,∆‖L∞(∆) > C−1‖∂∆‖2
M∆

= C−1|‖∂∆|‖2
M∆

.

Therefore, for a function with a nonsingular Hessian, we obtain

inf
F∈F
|‖∂∆|‖2

|H−F|

‖e2,∆‖L∞(∆)
6 C

inf
F∈F
|‖∂∆|‖2

|H−F|

|‖∂∆|‖2
M∆

= C
inf

F∈F
|‖∂∆|‖2

|H−F|

|‖∂∆|‖2
|H2|

= o(1).

This argument justifies the use of the quadratic Lagrange interpolant for the deriva-
tion of the optimal metric for functions u ∈ C2(∆̄) with nonsingular Hessians on
quasi-optimal meshes.

2. Numerical experiments

Generation of a quasi-optimal mesh for a given function u is in general an iter-
ative process. First, we generate an initial mesh with a desirable number of ele-
ments and calculate a piecewise constant metric M. Second, we generate a new
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mesh, which is quasi-uniform in metric M. Also, we require that the number of
triangles in the new mesh is approximately the same as in the initial mesh. To
generate a M-quasi-uniform mesh, we use a sequence of local mesh modifica-
tions described in [18] and implemented in the publicly available package Ani2D
(http://sourceforge.net/projects/ani2d). Frequently, the initial mesh is not related to
the function u, which results in a large interpolation error and a non-optimal metric
M. In this case, the two-step adaptation process can be repeated (see Algorithm 2.1).
A few iterations may be required until the interpolation error is stabilized. The num-
ber of iterations depends on the smoothness of the function u.

Algorithm 2.1. Adaptive mesh generation

1: Generate an initial mesh Ωh and compute the metric M.
2: loop
3: Generate a M-quasi-uniform mesh Ωh with the prescribed number of triangles.
4: Recompute the metric M.
5: If Ωh is M-quasi-uniform, then exit the loop .
6: end loop

In practice, Algorithm 2.1 converges faster and results in a smoother mesh when
the metric is continuous. To define a continuous metric we use the method of shifts.
For every node vi in Ωh, we define the superelement σi as the union of all triangles
sharing vi. Then, M(vi) is defined as one of the metrics in σi with the largest de-
terminant. This method always chooses the worst metric in the superelement. Once
the metric is computed at the nodes of each triangle, it is linearly interpolated inside
the triangles.

We consider three examples of functions with indefinite Hessians. Their isolines
are presented in Fig.2. In the experiments we study the asymptotic behaviour of the
P1 interpolation error for two families of quasi-optimal meshes based on the local
metrics MV = VT V and MO = VT

o Vo, respectively. The matrix V was calculated
using the LAPACK routine DSYEV that computes eigenvalues and eigenvectors of
a real symmetric matrix.

Let Ω be the unit square in all examples. The first function is the canonical
hyperbolic function,

u(1)(x,y) = (x−0.5)2− (y−0.5)2,

with the constant indefinite Hessian H2 = diag{2,−2}. The isolines of this function
are shown in the left pattern in Fig. 2. Figure 3 shows the first two meshes in two se-
quences of quasi-optimal meshes with approximately 4000 and 8000 triangles. The
meshes in the top row are quasi-uniform in the metric M generated by local metrics
MO. The meshes in the bottom row are quasi-uniform in the metric M generated
by local metrics MV . Obviously both sequences are different, one contains strongly
anisotropic meshes stretched along the bisectors of four quadrants, while the other
one contains isotropic meshes. The data in Table 1 also confirm that. The second and
the fifth columns in this table show the maximal ratio of the circumscribed radius
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Figure 2. From left to right: isolines of functions u(1), u(2), and u(3).

Table 1.
Example 1. Interpolation error for two families of quasi-optimal
meshes.

M∆ = MO M∆ = MV

N(Ωh) R/r ‖eh‖L∞(Ω) N(Ωh) R/r ‖eh‖L∞(Ω)

4073 834.2 7.974e-05 3930 15.1 8.195e-05
8267 768.1 4.054e-05 7885 24.6 4.064e-05

16589 1121. 2.047e-05 15813 18.7 2.040e-05
33118 2259. 1.053e-05 31786 27.9 1.018e-05
66557 4794. 5.233e-06 63373 46.2 5.126e-06

rate 0.991 0.936

R to the inscribed radius r across all triangles in the mesh. The interpolation errors
are proportional to N(Ωh)−1, which is the optimal error reduction. Thus, both se-
quences contain quasi-optimal meshes. Moreover, the errors in two sequences differ
by 1–3% only.

The second function is

u(2)(x,y) = (x+ sin(πx))2− (y+ sin(πx))2.

The isolines of this function are shown in the middle pattern in Fig. 2. The Hessian
of this function is indefinite almost everywhere in the computational domain except
for a parabola-shaped region around point (0.6,0.4). This region can be identified
in the top-right pattern in Fig. 4 as the region where the mesh is isotropic. Each row
in this figure shows two meshes with approximately 4000 and 8000 triangles. The
top and bottom rows correspond to local metrics MO and MV , respectively. Clearly,
metric (1.6) results in more stretched meshes.

The interpolation errors presented in Table 2 verify that both metrics result in
quasi-optimal meshes. The error decrease is again proportional to N(Ωh)−1, i.e. both
sequences contain quasi-optimal meshes. The values of the maximal anisotropy ra-
tio, R/r, confirm the visual impression that one sequence of meshes is much more
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Figure 3. Example 1. Quasi-optimal meshes with approximately 4000 (left column) and 8000 (right
column) triangles. The top and bottom rows correspond to two different families of meshes.

Table 2.
Example 2. Interpolation error for two families of quasi-optimal
meshes.

M∆ = MO M∆ = MV

N(Ωh) R/r ‖eh‖L∞(Ω) N(Ωh) R/r ‖eh‖L∞(Ω)

4070 2489. 9.523e-04 3934 62.0 8.818e-04
8097 1492. 5.393e-04 7839 82.6 3.977e-04

16269 937.1 2.281e-04 15761 203. 2.376e-04
32881 2704. 1.209e-04 31478 190. 1.374e-04
65147 4142. 6.427e-05 63031 239. 5.837e-05

rate 0.991 0.936
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Figure 4. Example 2. Quasi-optimal meshes with approximately 4000 (left column) and 8000 (right
column) triangles. The top and bottom rows correspond to two different families of meshes.

Table 3.
Example 3. Interpolation error for two families of quasi-optimal
meshes.

M∆ = MO M∆ = MV

N(Ωh) R/r ‖eh‖L∞(Ω) N(Ωh) R/r ‖eh‖L∞(Ω)

4003 380.1 2.643e-03 3946 19.0 2.562e-03
8087 353.2 1.285e-03 7872 12.8 1.295e-03

16069 652.0 6.502e-04 15776 10.9 6.457e-04
32206 955.7 3.283e-04 31579 11.8 3.254e-04
64478 5291. 1.647e-04 62970 26.3 1.620e-04

rate 0.996 0.996
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Figure 5. Example 3. Quasi-optimal meshes with approximately 4000 (left column) and 8000 (right
column) triangles. The top and bottom rows correspond to two different families of meshes.

stretched than the other. Thus, for this example there exist at least two different
families of quasi-optimal meshes. There is no conclusive evidence that one sequence
of meshes gives a consistently smaller error.

The third function

u(3)(x,y) =
(x−0.5)2− (y+0.2)2

((x−0.5)2 +(y+0.2)2)2

satisfies the Laplace equation. Its isolines are shown in the right pattern in Fig. 2.
Figure 5 is identical to Figs. 3 and 4. The top and bottom rows present the two first
meshes in different sequences of quasi-optimal meshes. One observes the presence
of two anisotropic jet-like structures in the top pattern.

The interpolation errors presented in Table 3 verify that both metrics result in
quasi-optimal meshes. The errors are again proportional to N(Ωh)−1, which is the
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optimal error reduction. As in the first example, they are within 1-3% of one an-
other, which indicates that neither of the sequences is preferable for minimizing the
interpolation error.

3. Conclusion

We have extended the theory of optimal meshes that minimize the P1 interpolation
error for a given function u. When the Hessian of u is indefinite, we have shown
that there exists a family of quasi-optimal meshes that give approximately the same
interpolation error, contain the same number of triangles, but have drastically differ-
ent properties. One mesh can be isotropic, while the other one is anisotropic. These
quasi-optimal meshes are generated by different metric fields. Formally, one of the
metrics can be referred to as an optimal one, since it provides the sharpest bounds
for the local interpolation error. In future, we shall analyze the behaviour of the
discretization error for a family of quasi-optimal meshes.

The existing metric-based mesh generation technology is capable of producing
any quasi-optimal mesh in a family. The result depends on the initial mesh selected
for adaptive iterations. In future, we shall analyze this phenomenon in more detail.
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