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Free surface flow modelling on dynamically
refined hexahedral meshes

K. NIKITIN * and Yu. VASSILEVSKF

Abstract — An efficient method for modelling incompressible free sod flows is presented. The
method unites the projection method for solving the NavBéokes equations and the particle level set
method for free surface evolution. The method uses ad&ptigéned hexahedral meshes built on an
enhanced octree data structure.

Free surface flow simulation has increasingly attractezhtitin of the scientific
community. It has applications in diverse disciplines sas geophysics, petroleum
engineering, biology, etc. The method discussed in thigpepdesigned for appli-
cations in computer graphics. It targets modelling, animgatand controlling vis-
cous liquids in a 3D environment.

The objectives of practical computer animation impose rsdyartly controver-
sial requirements on simulation. It should be efficient gjfoto run various scenar-
ios for acceptable time. However, it should retain enoudhib give a realistic
behaviour and the possibility of flow control. Direct nuneatisimulation provides
the desirable realism, since it is based on accurate siimulat physical processes.
However, it is computationally expensive and based on thgragtion that after set-
ting an initial state the fluid is left to flow freely. This ag@arch reduces capabilities
to control the flow locally and globally. A feasible compramibetween complex-
ity, realistic behaviour, and flow control is provided by argmtational technology
which has been developed in the last decade by many resesafth8, 14, 15, 18].
In this paper we present our version of the numerical metloaiihg such tech-
nology. We do not address the issues of flow control here. \&ferjate that this
technology opens several possibilities to control the fliga [5].

The general idea of the method is to use fractional stepsdardo unite the
projection method for solving the Navier—Stokes equatiand the particle level
set method for free surface evolution. The computatiorfadiefcy of the method is
based on two points. First, the pressure projection methode of the most efficient
solvers for the unsteady Navier—Stokes equations [22bi8kdhe particle level set
method is one of the most convenient and efficient approadatsmulation of free
surface evolution [18]. The framework of fractional stefpsves us to combine both
approaches and gives additional control over liquid motion

*Institute of Numerical Mathematics, Russian Academy o&Bcés, Moscow 119333, Russia
This work has been supported in part by RFBR grant 08-01-9@15



470 K. Nikitin and Yu. Vassilevski

The projection scheme traces back to the 1960s [3, 21, 28plits the time
integration into two substeps. At the first substep the maomrequation is solved
in order to advance the velocity field disregarding the flmicoimpressibility. The
momentum equation can be solved in many different ways 2] mention here
the semi-Lagrangian approach [19, 20], since it reducesenigai dissipation and
is simple in implementation. At the second substep, thecitgleector field is pro-
jected onto the subspace of divergence-free vector fumtibhis projection is per-
formed by the solution of the Poisson equation for pressoresction, which is
used for both pressure update and the projection. It shaukirbssed here that the
Poisson equation appears in the scheme as a formal prodthet g€locity diver-
gence and the pressure gradient operator. This remark esribe difficulties of
setting boundary conditions for that equation.

Similarly to the projection technique, the level set metiad a long history
[15]. The method suggests representing a dynamic surfaceetuylevel set of a
special function. The surface evolves in time together withlevel set function. If
the function has the signed distance property, it provides @t useful information,
such as the signed distance from a point to the surface, tmeat®and curvature
of the surface. At each update of the level set functiondsés the signed distance
property. Therefore, it should be recovered by a redistanor reinitialization pro-
cedure, which changes the function to satisfy the signetdmts property, while
freezing its zero isolevel. In mathematical terms, redtization reduces to the solu-
tion of the Eikonal equation. The reinitialization procealis the most difficult step
of the entire technology. Among several methods proposedefitialization, we
choose the fast sweeping method [2] due to its computatieffiziency. Another
technical difficulty of the level set method is a possibleslo$ mass in unsteady
simulations. The accuracy of free surface representatémmedses, as the surface
elements become comparable with the mesh size. For instatesn a region of
liquid breaks away during splashing, it may disappear duesiafficient resolution
by the discrete level set function. In order to improve thefame resolution, we
adopt the particle level set method [4]. It suggests usingsteas particles in order
to correct the position of the free surface where the gridlugi®n is not sufficient.
The strategy of reseeding the particles and their intemagtiith the level set is the
cornerstone of the method.

Although the level set provides the evolution of the fredame, the dynamics
of the liquid body is based on the velocity field, which sagisfihe Navier—Stokes
equations. The computation of the velocity uses a rouglesgmtation of the liquid
body by voxels, where each grid cell is assumed to be eithgtyeor filled com-
pletely with the liquid. A voxelized (MAC, Marker-And-Ce¢lprid was proposed in
[6]. Our discretization of the Navier—Stokes equationsuke concept of staggered
grids [11]. It suggests to assign different points of a cgpid cell to degrees of free-
dom for the pressure and velocity components. The requiteoféhe resolution of
the dynamic surface leads us to the use of dynamic grids,hwhiry be refined or
coarsened according to the surface motion. The requirenfeidita interpolation
and an efficient mesh update at each time step is satisfiedebgrtinical locally
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refined grids. We adopt hexahedral meshes called octree®¢fiees can exploit
a special data structure, which provides a set of efficiecslland global opera-
tions. Being combined with the staggered grid concept, fiteyide an economic
distribution of the degrees of freedom in the computatiatwahain.

These approaches form the basis of our computational té&mynorhe details
of the numerical technique are considered in the rest of #ipep In Section 2 we
present the basic equations of the model. In Section 3 weaughsthe fractional
steps method. In Section 4 we consider discretizationsffd@rdntial operators on
octree meshes. Numerical results demonstrating the eitigief the computational
technology are presented in Section 5.

1. Basic equations

The flow of a viscous incompressible liquid is described leyNiavier—Stokes equa-

tions:

%—vAu+(u-D)u+Dp=f 1.1)

O-u=0 (1.2)

wheret is the timeu = (u,v,w) is the vector velocity fieldp is the pressurd,is the
external force (gravity), and = (9/9x,d/0dy,d/dz)".

The boundangQ of the domairQ occupied by the liquid consists of two parts:
the solid border$ p and the moving free surfade On the solid part of the bound-
ary'p the velocity field satisfies the Dirichlet boundary condititt may be homo-
geneous (no-slip condition) or inhomogeneous (e.g., aovindklocity profile). No
particular boundary condition for the velocity is imposettioe free surface. From
the mathematical standpoint, the pressure function is dgednge multiplier, which
is introduced in order to compensate the additional coimst(4.2) and, therefore,
does not satisfy any boundary condition. On the other hamtthd pressure projec-
tion scheme presented below, the projection to the disdiggrgence-free space
imposes an artificial Dirichlet boundary condition fpron the free surface. More
precisely, the liquid pressure should balance the air pressnd the free surface
tension caused by the surface curvature.

The free liquid surfac€ is defined by the zero isolevel of the level set function:
#(x,y,z) = 0. The domairQ occupied by the liquid is given by < 0, while the air
domainQ; is given by¢ > 0. The evolution of the free surface in space and time
is set by the level set equation [15]:

¢

—+u-U¢ =0. 13

5 tu- 08 (13)
If the level set function possesses the signed distanceepydpl¢ | = 1, it provides
useful geometric characteristics Iof The distance from a point to the surface is
|¢|, the outward unit normal faR isn = O¢ /|0¢|, and the local interface curvature
is 2 = O-n. The latter will be used for modelling surface tension.
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2. Method of fractional steps

Numerical time integration of equations (1.1),(1.2),j1c8n be performed implic-
itly or semi-implicitly via fractional steps. The fully imigit integration provides
unconditional stability at the expense of several neserdtive processes [9]. This
increases considerably the arithmetic complexity of theste. The semi-implicit
integration combines faster algorithms with feasiblerretsbns on the time step. An
example of the semi-implicit scheme is the fractional stegphod [8, 14]. It adopts
several numerical techniques targeting efficient comjutatf the physically rel-
evant discrete solution of (1.1)—(1.3). Each time step efrttethod consists of the
following fractional steps:

1. Update of the velocity field via

(a) Prediction of the velocity via the solution of the momentequation
(advection, diffusion and body forces),

(b) Projection of the predicted velocity onto the divergefiice subspace;

2. Update of the level set function via

(a) Advection along the updated velocity field,
(b) Error correction,
(c) Reinitialization;

3. Update of the liquid volume;

4. Adaptive remeshing of the computational domain and ceéapolation.

A detailed description of the fractional steps will be giverthe next sections.

2.1. Momentum equation

Momentum equation (1.1) is solved in two substeps. At thé sinbstep we advect
the velocity field Qu/ot = —(u-0)u) and at the second substep we apply diffusion
and the body force®{i/dt = vAu — Op—+f).

We use a semi-Lagrangian method for the advection subsédipad®section of
the velocity would be easy to implement if the velocity weredalled as a set
of particles. In this case we would simply have to trace theigdas through the
given velocity field shown in Fig.1la. Assume that each gritlaanter is a particle
and trace it through the velocity field as shown in Fig.1b. tdeo to avoid the
conversion of moved particles back to the grid values, weckdar particles which
over a single time step end up exactly at grid cell centerhass in Fig.1c. The
values of the velocity components that these particles/ @ interpolated from
the neighbouring grid cell centers. In our discretizatitire velocity components
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(a) (b) (©)

Figure 1. Interpretation of semi-Lagrangian advection: (a) the givelocity field, (b) moving the
cell centers forward in time, (c) tracing the cell centerskveard in time.

are stored in grid cell face’s centers and we trace them baaclsato find the points
which end up exactly in these face centers.

At the second substep, diffusion and body forces are addedhei standard
explicit scheme.

2.2. Projection step

The velocity fieldu* generated by the solution of the momentum equation is not
divergence-free, and, therefore, does not characterzéntompressibility of the
liquid. The idea of the projection step is to use a pressureection @p) for the
projection of the velocity onto the divergence-free subspa

u=u*—At(dp)

p=p"+dp
whered p satisfies the Poisson equation

—0-(0dp) = —E(D u). (2.1)
At

Equation (2.1) is to be considered as a constituent of thiegifon operator; at the
discrete level, it may appear from algebraic argumentseratian from an approx-
imation of a boundary value problem. The discrete Laplaciperator in (2.1) is
defined as a product of two sparse matrices: discrete diveegend discrete gradi-
ent. The details of these discretizations are presentdteisubsequent sections. It
is well known that the finite difference discretization orifarm grids results in the
product matrix which approximates the Laplacian with Neam&oundary con-
ditions. In general, any pressure projection scheme pegvalweak convergence
towards the exact pressure function. Therefore, any ‘bayndondition’ for the
pressure correction is applicable if the projection to tisemdte divergence-free
subspace is valid. Modifications of the product matrix edato the change of the
‘boundary condition’ for pressure can give additional cohof the velocity field

[1].
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The symmetry of the product matrix depends on the methodssofatization
of the divergence and gradient operators. In general, thiexwd the linear system
for &p may be nonsymmetric. For the iterative solution we adopsthbilized bi-
conjugate gradient method [16] with the preconditionereldasn the second-order
incomplete factorization [10].

2.3. Evolution of free surface

Once the discrete divergence-free velocity field computed, the level set function
is evolved according to (1.3). To this end, we adopt the deamgirangian method dis-
cussed earlier. The location of the free surface evolvds thé level set functionp.
Using only the level set advection, however, can cause aedtile loss of the liquid
volume. This is observed when regions of liquid break awayndusplashing and
then disappear because they are too small to be resolvee tgviid set function.

The loss of volume can be reduced in several ways: refiningdhgutational
grid, a more accurate time integration of equation (1.3)intmoduction of parti-
cles. The first and the second approaches may increase emididthe arithmetic
complexity and/or memory requirements. We adopt the ttppt@ach known as the
particle level set method [4, 8]. The idea of the method isge special massless
marker particles near the interface in order to correctéhellset function when it
is needed.

The position of the particles evolves over time by simplesation, &,/dt = u,
whereuy, is the fluid velocity at point,. The particle velocity is computed by
interpolation from the velocity grid. The second-order BewKutta integration is
used to move particles in the velocity field.

To each particle we assign its coordinakgssigns, and radius ,. The particle
sign is the sign of the level set function in the region whaeegarticle was initially
placed. Since particles can move in the close-to-intenfagen occupied by air, the
velocity field has to be defined there. The particle radiuseddp on the level set
function:

I'max, Sp® (Xp) > Imax
rp=14 Sp®(Xp)s Tmin < Spd (Xp) < rmax
Fmin, Spd (Xp) < Imin

and assigns a spherical level set function

$p(X) =Sp(rp—[X—Xp|).

Herermin andrmax are equal to one tenth and one half of the local grid size. Note
that the radius of a particle changes in time, since the gbarthoves in thep-
field. The radius of the particle is chosen so that particiendary be tangent to the
free surface whenever possible. In other words, the suffaseepresented by the
multiscale sampling by particles. Particles do not inteesch other and thus may
overlap.

A particle is calledescapedif it has been brought to the region whapehas
the opposite sign, and the distance from the particle to tinace is greater than
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its radius. For all escaped particles we initiate #mor correction procedure re-
building the¢ > 0 region andp < 0 region. We comparg,, values at the eight grid
points of the cell containing the particle, with the currgatues of¢ and take the
maximum value (in magnitude) as the corrected level settimmcin other words,
we initialize two functionsp™ = ¢ — by ¢ and calculate separately for the escaped
positive particle€€™ and the escaped negative partidies

¢" = max(¢p, ¢")

peE+

T =min(¢p,¢7).
¢~ = min(¢p,97)
These calculations providevo corrected level set functiong™®, ¢~ representing
the corrected regiong > 0, ¢ < 0. These functions are merged to a single level set

function according to
5 {¢+, 971<1¢ |
¢, 197> 197
This formula provides the minimum deviation from the orairsurface position
due to the error correction procedure. In other words, thar eorrection procedure
updates the free surface by dragging it to match locg@jyfor selected escaped
particles.

The efficiency of the particle level set method is based orctimepromise be-
tween the accuracy of the surface resolution due to the esrogction and the arith-
metical complexity of the particle motion. Particles stibbk used in the vicinity
of the surface patches where the curvature is large enonghe Ineighbourhood of
low curvature patches the accuracy of the level set reptatsem is high and there
is no need to use particles there. The value of the curvadwedd as the weighting
factor for particle density. The maximum number of parscie a grid cell is set
equal to 30. Particles are reseeded in the vicinity of th&asarafter every 20 time
steps.

Both the level set advection and the error correction cagedwe function to
loose its signed distance property. For its recovery welshmerform a redistancing
step, or reinitialization. The signed distance propertpimalized by a specialized
Eikonal equation:

O6(x)| =1, Xx€ QU (2.2)

with the boundary condition on the interfate
p(x)=0, xer.

Prior to the solution of (2.2), the interfadeshould be determined explicitly.
We recoverl cellwise. For each cell a local internal surface triangatats built us-
ing the marching cubes technique [12]. Remarkably, thagréted approximation
M of I turns to be a conformal triangulation in space.
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In all grid cells intersecting " the equation (2.2) is solved explicitly: the level
set¢ at the cell nodes is defined as a minimal distancE"tand marked with the
proper sign.

In the other grid cells we apply the fast sweeping method TBe method is
based on the nature of the Eikonal equation: at any grid keelsblution depends
on the neighbours with smaller valuesgofFor a cubic cell there can be only eight
possible combinations of neighbours with smaller valueg .0Each combination
corresponds to three cell’s faces sharing a vertex and trossfa stencil direction
emanating from that vertex. Since the solution of (2.2) gittee minimum distance
to ", we can solve all eight stencil directions and take the mimmof the potential
solutions. If we were able to sweep over a sequence of callsthiat each of them
had three neighbours with the known solution, this wouldraeéi direct method of
the solution of (2.2). Since such sequence is not avail#tiefast sweeping method
suggests iteration over all cells and stencil directions. d&fine a sweep as the
cellwise solution of (2.2), assuming a stencil directiomgiigen. The outer iterative
loop is the loop over stencil directions. The order in whilé tells are visited can
be arbitrary, although it may impact the convergence oftidmations.

In spite of its usual fast convergence, the fast sweepindiodethay stagnate.
Therefore, the stopping criterion for the above iteratiensot based on the residual
of (2.2): the method is terminated if map"1(x) — ¢"(x)| < &, € =103

In practice, the fast sweeping method can be complementecanither method
of the solution of (2.2). The idea behind this method is torien(2.2) as a time-
dependent partial differential equation in the form

79+ sar(4o) (791 ~1) =0 23)

with the homogeneous boundary condition on the interfadesgn being a smeared
sign function:
o

sgn(¢o) = m
0

This equation is assumed to converge towards a stable steee\il¢ (x)| = 1.
Therefore, one can solve (2.3) by an explicit scheme to gesttution of (2.2).
However, the duration of stabilization and stability rietitons on pseudo-time steps
make the method far more expensive compared to the fast vwgemethod.

2.4. Update of the liquid volume

The fractional step method has two representations ofdgo@lidomairQ. The level
set zero isosurface is used for the accurate descriptidredit-water interfac€. It
forms the basis for the geometric characteristics of thexrfiate and related physical
effects (surface tension) and the visualization techriqkstance to the surface,
normals).
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The second representation is approximation by voxels, evbach grid cell is
assumed to be either empty or filled completely with the dgdihe voxelized grid
is called MAC (Marker-And-Cell) grid [6]. In the case of calgrid cells, this dis-
cretization gives a crude (first order) approximation ofititerface. The advantage
of such approach is the simple treatment of equations (hdJk2). The details of
their discretization on staggered MAC grids will be giveridae Here we just re-
mark that the velocity components are associated with théaoes of a staggered
grid.

The combination of both representations allows us to olatadhtrack a smooth,
temporally coherent liquid surface on the basis of simp#giapdiscretizations.

The update of the liquid volume is thus reduced to the updateeovoxels and
setting the velocity in newly filled voxels. A voxel is set te filled with liquid if its
intersection with the domaith < 0 is non-empty. The velocities in the newly filled
voxels have to be set in such a way that the normal and tamgjetrésses be zero on
the faces between empty and liquid cells. In other wordsathshould not inhibit
the motion of the liquid, which can flow freely into empty &elllhis is achieved
by explicitly enforcing incompressibility [1] within eaatewly filled cell. In order
to define the unknown velocities at cell faces, we have torasshat in some cell
faces the velocities are known. This leads us to the CFLicéstr onto the motion
of the free surface: within a time step only one-cell layervakels may be newly
filled with the liquid.

As it was mentioned earlier, the use of positive particlesiires velocities in the
air domainQj,. Particles may fly away from the free surface up to a few gritsce
Therefore, the velocity field has to be defined in this vigimit the free surface. By
analogy with (2.3), the extrapolated velocitigg can be computed via the solution
of unsteady partial differential equation

wherer is fictitious time.

2.5. Adaptive remeshing and data interpolation

The accuracy of the free surface representation and nuamhgrioperties of the
scheme (numerical dissipation) require a small enough wigsh. Our experience
shows that visually acceptable results can be obtained oesh mvithh smaller
than one per cent of the characteristic size of the liquid @lamThe use of uni-
form grids is prohibitively expensive in this case. Localkfined meshes demand
less computational resources. The dynamic behaviour ofrégesurface requires
adaptive remeshing in the course of simulation. On the dihed, the use of cu-
bic cells is appealing due to the economic distribution &f degrees of freedom
on staggered meshes. These considerations motivate tted astree meshes [7],
which are non-conformal hexahedral hierarchical mesheyposed of cubic cells.
The octree meshes can be locally refined and derefined. Datpdtation between
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Figure 2. Simple adaptive mesh refinement.

Figure 3. Coarsening and refinement of the mesh cell.

two consecutive meshes is efficient and straightforwardieldeer, due to the hier-
archical structure, efficient multilevel techniques caratepted in the solution of
linear systems [13].

Our strategy of adaptive refinement and derefinement is baseatiree prin-
ciples. First, we assume that at each time step the octrebh bezomes refined
towards the free surface. The degree of refinement is ctedrbl the user-defined
parametehnin. Cells located far from the surface can be coarsened up tsizke
hmax. Second, the ratio of the sizes of any two neighbouring cealisot exceed 2.
This requirement stems from discretization methods dgemisn the next section.
Third, the refinement has priority over coarsening. This msehat surface-driven
splitting of a cell is imperative and thus it can cause spgttof the cell’s neigh-
bours. However, surface-driven merging cells can be chattdl the coarsening
neighbouring cells violate the second principle.

The three principles of mesh adaptation form the genereddweork of refine-
ment. Several strategies may be suggested within this Wanke The simplest one
is to split a cell with different signs a in the cell vertices, provided that its size
is larger tharhnin. Such aggressive refinement demonstrates a fast transitibe
coarsest mesh sidgnax (see Fig. 2). This saves a lot of degrees of freedom, but
deteriorates the quality of discretization in the closesuoface layers.

An alternative to the aggressive refinement is to split éelisnarrow layer sur-
rounding the surface. We take advantage of the propertyedéttel set function that
|¢ (x)] is the distance to the surface. The average valy¢ ©f)| in a cell provides a
sound criterion for cell splitting.

A complementary method for both strategies may be additimfamement in
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Figure 4. Interpolation ofw into the marked node.

the neighbourhood of surface patches with a high local ¢urga

The conventional data structure for octree meshes holdsaontll tree with-
out connections of cells to nodes. For the sake of interjpolaif nodal data in the
fractional step method, the data structure has to be entialmcaddition to the tree
of cells, we also store nodes and all node-to-cell and oetletde connections. The
interpolation between two meshes at the consecutive tieps stses this additional
information (see Fig. 3). In the remeshing step all the cotioes are changed lo-
cally, so that the complexity of both the data structure tgaad the interpolation
procedure is negligible.

We briefly illustrate the efficiency of the interpolation pealure using the exam-
ple of velocity interpolation. As it was mentioned alreatifie velocity components
are stored at cell mid-faces. In particular, the verticahponentw is assigned to
horizontal faces. The interpolation wfto the node shown in Fig. 4 uses the barycen-
ters of the horizontal faces surrounding the node and lyintpé same horizontal
plane. These faces are easy to find, since one has a fast &wsassny node to
the surrounding cells. Then the nodal velocity componegglsulated by inverse
distance weighting [17].

3. Discretization of differential operators

The staggered grid discretization implies that pressugeeds of freedom are as-
signed to cell centers, the velocity componaris assigned to the centers of faces
which are orthogonal ta-axis, the velocity componentsandw are assigned to
faces orthogonal tg- andz-axes, respectively. Within each cell, the componeist
assumed to be linear in thedirection and constant in the andz-directions. The
components andw satisfy similar assumptions. The level set functfois assumed
to be a continuous, cellwise trilinear function with nodabdees of freedom.

Discretization of the divergence operator is based on thes&dDstrogradskii
formula applied to a ceW

/\/D-ud\/:/dv(u-n)ds 3.1)

wheren represents the outward unit normal to the cell boundary.dfid face is
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Figure 5. Bordering different sized cells.
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Figure 6. Discretization stencil for pressure gradient.

shared by cells of different sizes, the corresponding ¥lammponent may be
piecewise constant on this face. This should be taken intowst by the formula
(3.1). For instance, in the case shown in Fig. 5, one writes fe (u,0,0)"

AXAYAZ U = UpAp + UzAz + UsAq + UsAs — U1 A
A=A3=A1=As=A1/4, A1=AyAz

The pressure gradient discretization is based on the Téydoula. Due to the
second principle of mesh refinement, for any interior facrdhcan be only two
topological cases. In the first case the face is shared by dqwal €ells, and we use
the standard central finite difference for the correspandjradient component. In
the second case the sizes of the cells sharing the face &reedif For the sake of
simplicity, we discuss the discretization of tkeomponent of the gradient operator
at the face cente’ shown in Fig. 6. We consider the centers of five surrounding
cellsay,. .. ,as and expand the pressure valpig;) with respect tgp(a):

p(a) = p(@) +Op(@) - (& — &) +O([a — & ?).

Neglecting the second-order term we obtain a system of &diaquations with 4
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unknowns .
a

Y plaa)

1 % 00 &(a’) p(az)

1 2 %30 op, . | =] p(as) 3.2)

A A 0_(8')

1 4 o0 4 44 p(au)

AR VAR -G p(as)

whereA = Ax = Ay = Az The least squares solution of (3.2) is

p(E)

ap 12 11 _1 p(ae)
/

ox @) i1 2| @

@(a/) - o -1 1 _1 1 p(as)

ay % A1 1A % p(a4)

P d R S p(as)

5;@)

Therefore, the stencil for-component of the gradient is

17} 1
a—z(a’) ~ Q(Pz%- Pz + Pa+ Ps —4p1).

Discretization of the Laplacian operator for the velocimponents is based
on the discrete Laplacian for the pressure. The latter ine@fas the product of the
discrete divergence and gradient operators. Interpoldtimm cell centers to face
centers and its transpose operation define the Galerkirgtimy of the discrete
pressure Laplacian onto the velocity space.

The numerical model includes a differential operator eslato the free sur-
face curvatures. The free surface tensiomsc depends on the surface tension co-
efficient and the second derivatives of a parametric reptasen ofl". However,
the use of the signed distangeprovides a simple formula for estimation &f,
»=0-(0¢/|0¢|). The curvaturer is obtained by computing the derivativesdof
in the cell nodes to obtain the nornrak= (¢ /|C¢ |, averagingh components on the
cell faces, averaging these values to the cell center tezg€he surface tension is
incorporated into the model via the ‘boundary conditior’ fiwe pressure function.
In our implementation we set Dirichlet valugs; + 0« in the air cells bordering
the water.

The presented numerical model suggests several ways tmktr fluid mo-
tion. It may be boundary conditions for the velocity field anan pressure (in the
sense of the pressure projection scheme). The body fore ¢enventionally rep-
resented by gravity and the pressure gradient may be moddieidrcing liquid
motion. Another approach is to set explicitly the velocitgldi of particular small
pockets of liquid before the mass conservation (Poissoat&m) calculation. This
allows us to smooth out physical incorrectness in the agpiedocities before using
them in equations (1.3), (1.1).
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Table 1.
Mass loss depending on the mesh size and mesh gg. and Nyater denote
the total number of cells and the number of cells filled withevarespectively.

hmax Pmin o loss Ntotal Nwater
1671 321 0 4% 12524 1168
3271 321 0 3.86 % 51920 1532
1671 6471 0 0.84 % 19160 5012
3271 6471 0 0.82% 57408 5168
1671 641 3271 0.81 % 20868 5712
1671 12871 0 0.42 % 45760 21764
1671 1281 6471 0.40 % 54160 25308
1671 25671 0 0.14 % 154 428 91052
1671 25671 12871 0.12 % 186320 106 256
1671 5121 0 0.05 % 585 236 375706

1671 5121 25671 0.04 % 713441 436 620

4. Numerical experiments

In this section, we consider several test cases which denatmshe properties of
the method.

In the first test we examine the mass losses in the scheme. Wg&leo an in-
viscid liquid drop of radius 0.2 centered @5, 0.5,0.6) which falls in a unit cube
(0,1)3. The time of the motion is 0.1, the initial velocity is zermdathe accelera-
tion is (0,0, —1). The surface tension coefficieot= 0.0001. We performed 20 time
steps withAt = 0.005 and measured the mass loss during the simulation. We-exam
ined meshes with different extents of refinemdni, hmin) and different strategies
of refinement:d = 0 implies the aggressive refinemeat> 0 means that the mesh
is refined towards the interi@-layer of the drop surface. The data presented in Ta-
ble 1 show that the parametas;, is the most critical factor for the mass loss. The
type of refinement makes a small impact on the mass loss, areffttt of the size
of the coarsest cells is negligible. We observe that fine gihooneshes may provide
mass loss which is acceptable in the simulation.

In the second test case we model the same drop falling in the sait cube.
However, 20% of the cube is filled with the same liquid, anditfital position of
the drop center i$0.5,0.5,0.45). In Table 2 we present the typical CPU time mea-
surements of a single time step and fractional substepsdshes with different ex-
tents and strategies of refinement. The simulation was eeid on a PC Pentium
D, 2.8 GHz. The following notations for the CPU time measugatrare used here:
momentum equation solutidpom, projection to divergence-free subspags, ve-
locity extrapolation and evolution of the level $gf,, particles integration and error
correctiontpar, reinitialization by the fast sweeping methigh;, update of the lig-
uid volume and remeshingmesh total time of the time stefiyia. The table proves
the arithmetic scalability of each fractional substep wéhkpect to the number of
cells filled with waterNyater. The most expensive procedure 40%) is the reini-
tialization step. The solution of the stiff problem (2.1)thwthe ILU preconditioner
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Table 2.

CPU time (in seconds) of a single time step and individuakgs against the number of cells.
Pmax 1671 1671 1671 1671 1671 1671

Nrmin 6471 6471 12871 12871 25671 51271

) 0 321 0 6471 0 0

Niotal 31592 41567 96 440 141919 352997 1379239
Nwater 11636 19572 63994 67277 243534 729624

tmom (%) 0.06 (5.8%) 0.08 (6.2%) 0.25(6.3%) 0.30(5.7%) 1.03%9.3 3.56 (5.7%)
tproj (%) 0.17 (17.6%) 0.28 (20.9%) 1.02 (25.0%) 1.12 (21.1%) 42303%) 11.90 (19.1%)
tagv (%)  0.05 (4.8%) 0.06 (4.5%) 0.17 (4.2%) 0.23 (4.4%) 0.73%).5 2.96 (4.7%)
tpart (%)  0.16 (16.7%) 0.16 (12.3%) 0.74 (18.3%) 0.71 (13.4%) 21969%) 12.97 (20.8%)
treinit (%) 0.44 (44.6%) 0.62 (46.3%) 1.5 (38.2%) 2.43 (45.8%) 63B15%) 24.32 (38.9%)
tremesn(%0) 0.10 (10.6%) 0.13 (9.8%) 0.33 (8.0%) 0.51(9.6%) 1.46%8. 6.75 (10.8%)

tiotal 0.98 1.34 4.07 5.30 16.47 62.46

Figure 7. A box being filled with liquid. Time stepd; =0,t, =1.5,t3=3,t4=7.
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does not exceed 25% of the overall overheads. Therefore, ihao need to use the
asymptotically optimal multilevel preconditioner [13]his particular simulation.
Nevertheless, the use of the multilevel methods may fuidkeelerate the solution
process.

In the third test case we simulate filling an empty containién an almost invis-
cid liquid. Several obstacles are put on the floor of the doataFigure 7 exhibits a
few frames of the corresponding animation movie. The eimiubf the free surface
is complicated by the presence of obstacles.

5. Conclusions

We have presented an efficient computational technologydersurface flow simu-
lation. Its arithmetical scalability is based on the frantl steps method and the use
of octrees, i.e., dynamically refined and coarsened hexahertshes. The technol-
ogy provides a toolkit which may be useful in computer graplpplications.
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