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Free surface flow modelling on dynamically
refined hexahedral meshes

K. NIKITIN � and Yu. VASSILEVSKI�
Abstract — An efficient method for modelling incompressible free surface flows is presented. The
method unites the projection method for solving the Navier–Stokes equations and the particle level set
method for free surface evolution. The method uses adaptively refined hexahedral meshes built on an
enhanced octree data structure.

Free surface flow simulation has increasingly attracted attention of the scientific
community. It has applications in diverse disciplines, such as geophysics, petroleum
engineering, biology, etc. The method discussed in this paper is designed for appli-
cations in computer graphics. It targets modelling, animating, and controlling vis-
cous liquids in a 3D environment.

The objectives of practical computer animation impose several partly controver-
sial requirements on simulation. It should be efficient enough to run various scenar-
ios for acceptable time. However, it should retain enough detail to give a realistic
behaviour and the possibility of flow control. Direct numerical simulation provides
the desirable realism, since it is based on accurate simulation of physical processes.
However, it is computationally expensive and based on the assumption that after set-
ting an initial state the fluid is left to flow freely. This approach reduces capabilities
to control the flow locally and globally. A feasible compromise between complex-
ity, realistic behaviour, and flow control is provided by a computational technology
which has been developed in the last decade by many researchers [1, 8, 14, 15, 18].
In this paper we present our version of the numerical method forming such tech-
nology. We do not address the issues of flow control here. We just note that this
technology opens several possibilities to control the fluidflow [5].

The general idea of the method is to use fractional steps in order to unite the
projection method for solving the Navier–Stokes equationsand the particle level
set method for free surface evolution. The computational efficiency of the method is
based on two points. First, the pressure projection method is one of the most efficient
solvers for the unsteady Navier–Stokes equations [22]. Second, the particle level set
method is one of the most convenient and efficient approachesin simulation of free
surface evolution [18]. The framework of fractional steps allows us to combine both
approaches and gives additional control over liquid motion.�Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow 119333, Russia
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The projection scheme traces back to the 1960s [3, 21, 23]. Itsplits the time
integration into two substeps. At the first substep the momentum equation is solved
in order to advance the velocity field disregarding the fluid incompressibility. The
momentum equation can be solved in many different ways [22].We mention here
the semi-Lagrangian approach [19, 20], since it reduces numerical dissipation and
is simple in implementation. At the second substep, the velocity vector field is pro-
jected onto the subspace of divergence-free vector functions. This projection is per-
formed by the solution of the Poisson equation for pressure correction, which is
used for both pressure update and the projection. It should be stressed here that the
Poisson equation appears in the scheme as a formal product ofthe velocity diver-
gence and the pressure gradient operator. This remark removes the difficulties of
setting boundary conditions for that equation.

Similarly to the projection technique, the level set methodhas a long history
[15]. The method suggests representing a dynamic surface byzero level set of a
special function. The surface evolves in time together withthe level set function. If
the function has the signed distance property, it provides alot of useful information,
such as the signed distance from a point to the surface, the normals and curvature
of the surface. At each update of the level set function, it looses the signed distance
property. Therefore, it should be recovered by a redistancing or reinitialization pro-
cedure, which changes the function to satisfy the signed distance property, while
freezing its zero isolevel. In mathematical terms, reinitialization reduces to the solu-
tion of the Eikonal equation. The reinitialization procedure is the most difficult step
of the entire technology. Among several methods proposed for reinitialization, we
choose the fast sweeping method [2] due to its computationalefficiency. Another
technical difficulty of the level set method is a possible loss of mass in unsteady
simulations. The accuracy of free surface representation decreases, as the surface
elements become comparable with the mesh size. For instance, when a region of
liquid breaks away during splashing, it may disappear due toinsufficient resolution
by the discrete level set function. In order to improve the surface resolution, we
adopt the particle level set method [4]. It suggests using massless particles in order
to correct the position of the free surface where the grid resolution is not sufficient.
The strategy of reseeding the particles and their interaction with the level set is the
cornerstone of the method.

Although the level set provides the evolution of the free surface, the dynamics
of the liquid body is based on the velocity field, which satisfies the Navier–Stokes
equations. The computation of the velocity uses a rough representation of the liquid
body by voxels, where each grid cell is assumed to be either empty or filled com-
pletely with the liquid. A voxelized (MAC, Marker-And-Cell) grid was proposed in
[6]. Our discretization of the Navier–Stokes equations uses the concept of staggered
grids [11]. It suggests to assign different points of a cubicgrid cell to degrees of free-
dom for the pressure and velocity components. The requirement of the resolution of
the dynamic surface leads us to the use of dynamic grids, which may be refined or
coarsened according to the surface motion. The requirementof data interpolation
and an efficient mesh update at each time step is satisfied by hierarchical locally
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refined grids. We adopt hexahedral meshes called octrees [7]. Octrees can exploit
a special data structure, which provides a set of efficient local and global opera-
tions. Being combined with the staggered grid concept, theyprovide an economic
distribution of the degrees of freedom in the computationaldomain.

These approaches form the basis of our computational technology. The details
of the numerical technique are considered in the rest of the paper. In Section 2 we
present the basic equations of the model. In Section 3 we discuss the fractional
steps method. In Section 4 we consider discretizations of differential operators on
octree meshes. Numerical results demonstrating the efficiency of the computational
technology are presented in Section 5.

1. Basic equations

The flow of a viscous incompressible liquid is described by the Navier–Stokes equa-
tions:

∂u
∂ t

�ν∆u+(u �∇)u+∇p= f (1.1)

∇ �u= 0 (1.2)

wheret is the time,u= (u;v;w) is the vector velocity field,p is the pressure,f is the
external force (gravity), and∇ = (∂=∂x;∂=∂y;∂=∂z)T .

The boundary∂Ω of the domainΩ occupied by the liquid consists of two parts:
the solid bordersΓD and the moving free surfaceΓ. On the solid part of the bound-
aryΓD the velocity field satisfies the Dirichlet boundary condition. It may be homo-
geneous (no-slip condition) or inhomogeneous (e.g., an inflow velocity profile). No
particular boundary condition for the velocity is imposed on the free surfaceΓ. From
the mathematical standpoint, the pressure function is the Lagrange multiplier, which
is introduced in order to compensate the additional constraint (1.2) and, therefore,
does not satisfy any boundary condition. On the other hand, in the pressure projec-
tion scheme presented below, the projection to the discretedivergence-free space
imposes an artificial Dirichlet boundary condition forp on the free surface. More
precisely, the liquid pressure should balance the air pressure and the free surface
tension caused by the surface curvature.

The free liquid surfaceΓ is defined by the zero isolevel of the level set function:
ϕ(x;y;z) = 0. The domainΩ occupied by the liquid is given byϕ < 0, while the air
domainΩair is given byϕ > 0. The evolution of the free surface in space and time
is set by the level set equation [15]:

∂ϕ
∂ t

+u �∇ϕ = 0: (1.3)

If the level set function possesses the signed distance property j∇ϕ j= 1, it provides
useful geometric characteristics ofΓ. The distance from a pointx to the surface isjϕ j, the outward unit normal forΩ is n=∇ϕ=j∇ϕ j, and the local interface curvature
is{ = ∇ �n. The latter will be used for modelling surface tension.
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2. Method of fractional steps

Numerical time integration of equations (1.1),(1.2),(1.3) can be performed implic-
itly or semi-implicitly via fractional steps. The fully implicit integration provides
unconditional stability at the expense of several nested iterative processes [9]. This
increases considerably the arithmetic complexity of the scheme. The semi-implicit
integration combines faster algorithms with feasible restrictions on the time step. An
example of the semi-implicit scheme is the fractional step method [8, 14]. It adopts
several numerical techniques targeting efficient computation of the physically rel-
evant discrete solution of (1.1)–(1.3). Each time step of the method consists of the
following fractional steps:

1. Update of the velocity field via

(a) Prediction of the velocity via the solution of the momentum equation
(advection, diffusion and body forces),

(b) Projection of the predicted velocity onto the divergence-free subspace;

2. Update of the level set function via

(a) Advection along the updated velocity field,

(b) Error correction,

(c) Reinitialization;

3. Update of the liquid volume;

4. Adaptive remeshing of the computational domain and data interpolation.

A detailed description of the fractional steps will be givenin the next sections.

2.1. Momentum equation

Momentum equation (1.1) is solved in two substeps. At the first substep we advect
the velocity field (∂u=∂ t =�(u �∇)u) and at the second substep we apply diffusion
and the body forces (∂u=∂ t = ν∆u�∇p+ f).

We use a semi-Lagrangian method for the advection substep. Self-advection of
the velocity would be easy to implement if the velocity were modelled as a set
of particles. In this case we would simply have to trace the particles through the
given velocity field shown in Fig.1a. Assume that each grid cell center is a particle
and trace it through the velocity field as shown in Fig.1b. In order to avoid the
conversion of moved particles back to the grid values, we search for particles which
over a single time step end up exactly at grid cell centers as shown in Fig.1c. The
values of the velocity components that these particles carry are interpolated from
the neighbouring grid cell centers. In our discretization,the velocity components
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Figure 1. Interpretation of semi-Lagrangian advection: (a) the given velocity field, (b) moving the
cell centers forward in time, (c) tracing the cell centers backward in time.

are stored in grid cell face’s centers and we trace them backwards to find the points
which end up exactly in these face centers.

At the second substep, diffusion and body forces are added via the standard
explicit scheme.

2.2. Projection step

The velocity fieldu� generated by the solution of the momentum equation is not
divergence-free, and, therefore, does not characterize the incompressibility of the
liquid. The idea of the projection step is to use a pressure correction (δ p) for the
projection of the velocity onto the divergence-free subspace:

u = u��∆t∇(δ p)
p= p�+δ p

whereδ p satisfies the Poisson equation�∇ � (∇δ p) =� 1
∆t
(∇ �u�): (2.1)

Equation (2.1) is to be considered as a constituent of the projection operator; at the
discrete level, it may appear from algebraic arguments rather than from an approx-
imation of a boundary value problem. The discrete Laplacianoperator in (2.1) is
defined as a product of two sparse matrices: discrete divergence and discrete gradi-
ent. The details of these discretizations are presented in the subsequent sections. It
is well known that the finite difference discretization on uniform grids results in the
product matrix which approximates the Laplacian with Neumann boundary con-
ditions. In general, any pressure projection scheme provides a weak convergence
towards the exact pressure function. Therefore, any ‘boundary condition’ for the
pressure correction is applicable if the projection to the discrete divergence-free
subspace is valid. Modifications of the product matrix related to the change of the
‘boundary condition’ for pressure can give additional control of the velocity field
[1].
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The symmetry of the product matrix depends on the methods of discretization
of the divergence and gradient operators. In general, the matrix of the linear system
for δ p may be nonsymmetric. For the iterative solution we adopt thestabilized bi-
conjugate gradient method [16] with the preconditioner based on the second-order
incomplete factorization [10].

2.3. Evolution of free surface

Once the discrete divergence-free velocity fieldu is computed, the level set function
is evolved according to (1.3). To this end, we adopt the semi-Lagrangian method dis-
cussed earlier. The location of the free surface evolves with the level set functionϕ .
Using only the level set advection, however, can cause a noticeable loss of the liquid
volume. This is observed when regions of liquid break away during splashing and
then disappear because they are too small to be resolved by the level set function.

The loss of volume can be reduced in several ways: refining thecomputational
grid, a more accurate time integration of equation (1.3), orintroduction of parti-
cles. The first and the second approaches may increase considerably the arithmetic
complexity and/or memory requirements. We adopt the third approach known as the
particle level set method [4, 8]. The idea of the method is to use special massless
marker particles near the interface in order to correct the level set function when it
is needed.

The position of the particles evolves over time by simple advection, dxp=dt = up
whereup is the fluid velocity at pointxp. The particle velocity is computed by
interpolation from the velocity grid. The second-order Runge–Kutta integration is
used to move particles in the velocity field.

To each particle we assign its coordinatesxp, signsp and radiusrp. The particle
sign is the sign of the level set function in the region where the particle was initially
placed. Since particles can move in the close-to-interfaceregion occupied by air, the
velocity field has to be defined there. The particle radius depends on the level set
function:

rp =8<:rmax; spϕ(xp)> rmax
spϕ(xp); rmin6 spϕ(xp)6 rmax
rmin; spϕ(xp)< rmin

and assigns a spherical level set function

ϕp(x) = sp(rp�jx�xpj):
Herermin andrmax are equal to one tenth and one half of the local grid size. Note
that the radius of a particle changes in time, since the particle moves in theϕ-
field. The radius of the particle is chosen so that particle boundary be tangent to the
free surface whenever possible. In other words, the surfaceΓ is represented by the
multiscale sampling by particles. Particles do not interact each other and thus may
overlap.

A particle is calledescaped, if it has been brought to the region whereϕ has
the opposite sign, and the distance from the particle to the surface is greater than
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its radius. For all escaped particles we initiate theerror correction procedure re-
building theϕ > 0 region andϕ < 0 region. We compareϕp values at the eight grid
points of the cell containing the particle, with the currentvalues ofϕ and take the
maximum value (in magnitude) as the corrected level set function. In other words,
we initialize two functionsϕ+ = ϕ� by ϕ and calculate separately for the escaped
positive particlesE+ and the escaped negative particlesE�

ϕ+ = max
p2E+(ϕp;ϕ+)

ϕ� = min
p2E�(ϕp;ϕ�):

These calculations providetwo corrected level set functionsϕ+, ϕ� representing
the corrected regionsϕ > 0, ϕ < 0. These functions are merged to a single level set
function according to

ϕ =�ϕ+; jϕ+j6 jϕ�j
ϕ�; jϕ+j> jϕ�j:

This formula provides the minimum deviation from the original surface position
due to the error correction procedure. In other words, the error correction procedure
updates the free surface by dragging it to match locallyϕp for selected escaped
particles.

The efficiency of the particle level set method is based on thecompromise be-
tween the accuracy of the surface resolution due to the errorcorrection and the arith-
metical complexity of the particle motion. Particles should be used in the vicinity
of the surface patches where the curvature is large enough. In the neighbourhood of
low curvature patches the accuracy of the level set representation is high and there
is no need to use particles there. The value of the curvature is used as the weighting
factor for particle density. The maximum number of particles in a grid cell is set
equal to 30. Particles are reseeded in the vicinity of the surface after every 20 time
steps.

Both the level set advection and the error correction can cause the function to
loose its signed distance property. For its recovery we should perform a redistancing
step, or reinitialization. The signed distance property isformalized by a specialized
Eikonal equation: j∇ϕ(x)j= 1; x 2 Ω[Ωair (2.2)

with the boundary condition on the interfaceΓ:

ϕ(x) = 0; x 2 Γ:
Prior to the solution of (2.2), the interfaceΓ should be determined explicitly.

We recoverΓ cellwise. For each cell a local internal surface triangulation is built us-
ing the marching cubes technique [12]. Remarkably, the triangulated approximation
Γh of Γ turns to be a conformal triangulation in space.
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In all grid cells intersectingΓh the equation (2.2) is solved explicitly: the level
setϕ at the cell nodes is defined as a minimal distance toΓh and marked with the
proper sign.

In the other grid cells we apply the fast sweeping method [2].The method is
based on the nature of the Eikonal equation: at any grid cell the solution depends
on the neighbours with smaller values ofϕ . For a cubic cell there can be only eight
possible combinations of neighbours with smaller values ofϕ . Each combination
corresponds to three cell’s faces sharing a vertex and thus forms a stencil direction
emanating from that vertex. Since the solution of (2.2) gives the minimum distance
to Γh, we can solve all eight stencil directions and take the minimum of the potential
solutions. If we were able to sweep over a sequence of cells such that each of them
had three neighbours with the known solution, this would define a direct method of
the solution of (2.2). Since such sequence is not available,the fast sweeping method
suggests iteration over all cells and stencil directions. We define a sweep as the
cellwise solution of (2.2), assuming a stencil direction isgiven. The outer iterative
loop is the loop over stencil directions. The order in which the cells are visited can
be arbitrary, although it may impact the convergence of the iterations.

In spite of its usual fast convergence, the fast sweeping method may stagnate.
Therefore, the stopping criterion for the above iterationsis not based on the residual
of (2.2): the method is terminated if maxx jϕn+1(x)�ϕn(x)j 6 ε , ε = 10�3.

In practice, the fast sweeping method can be complemented with another method
of the solution of (2.2). The idea behind this method is to rewrite (2.2) as a time-
dependent partial differential equation in the form

∂ϕ
∂τ

+sgn(ϕ0)(j∇ϕ j�1) = 0 (2.3)

with the homogeneous boundary condition on the interface and sgn being a smeared
sign function:

sgn(ϕ0) = ϕ0q
ϕ2

0 +(∆x)2 :
This equation is assumed to converge towards a stable state where j∇ϕ(x)j = 1.
Therefore, one can solve (2.3) by an explicit scheme to get the solution of (2.2).
However, the duration of stabilization and stability restrictions on pseudo-time steps
make the method far more expensive compared to the fast sweeping method.

2.4. Update of the liquid volume

The fractional step method has two representations of the liquid domainΩ. The level
set zero isosurface is used for the accurate description of the air-water interfaceΓ. It
forms the basis for the geometric characteristics of the interface and related physical
effects (surface tension) and the visualization techniques (distance to the surface,
normals).
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The second representation is approximation by voxels, where each grid cell is
assumed to be either empty or filled completely with the liquid. The voxelized grid
is called MAC (Marker-And-Cell) grid [6]. In the case of cubic grid cells, this dis-
cretization gives a crude (first order) approximation of theinterface. The advantage
of such approach is the simple treatment of equations (1.1) and (1.2). The details of
their discretization on staggered MAC grids will be given below. Here we just re-
mark that the velocity components are associated with the cell faces of a staggered
grid.

The combination of both representations allows us to obtainand track a smooth,
temporally coherent liquid surface on the basis of simple spatial discretizations.

The update of the liquid volume is thus reduced to the update of the voxels and
setting the velocity in newly filled voxels. A voxel is set to be filled with liquid if its
intersection with the domainϕ < 0 is non-empty. The velocities in the newly filled
voxels have to be set in such a way that the normal and tangential stresses be zero on
the faces between empty and liquid cells. In other words, theair should not inhibit
the motion of the liquid, which can flow freely into empty cells. This is achieved
by explicitly enforcing incompressibility [1] within eachnewly filled cell. In order
to define the unknown velocities at cell faces, we have to assume that in some cell
faces the velocities are known. This leads us to the CFL restriction onto the motion
of the free surface: within a time step only one-cell layer ofvoxels may be newly
filled with the liquid.

As it was mentioned earlier, the use of positive particles requires velocities in the
air domainΩair. Particles may fly away from the free surface up to a few grid cells.
Therefore, the velocity field has to be defined in this vicinity of the free surface. By
analogy with (2.3), the extrapolated velocitiesuair can be computed via the solution
of unsteady partial differential equation

∂uair

∂τ
+n �∇uair = 0

whereτ is fictitious time.

2.5. Adaptive remeshing and data interpolation

The accuracy of the free surface representation and numerical properties of the
scheme (numerical dissipation) require a small enough meshsizeh. Our experience
shows that visually acceptable results can be obtained on a mesh withh smaller
than one per cent of the characteristic size of the liquid domain. The use of uni-
form grids is prohibitively expensive in this case. Locallyrefined meshes demand
less computational resources. The dynamic behaviour of thefree surface requires
adaptive remeshing in the course of simulation. On the otherhand, the use of cu-
bic cells is appealing due to the economic distribution of the degrees of freedom
on staggered meshes. These considerations motivate the useof octree meshes [7],
which are non-conformal hexahedral hierarchical meshes composed of cubic cells.
The octree meshes can be locally refined and derefined. Data interpolation between
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Figure 2. Simple adaptive mesh refinement.

Figure 3. Coarsening and refinement of the mesh cell.

two consecutive meshes is efficient and straightforward. Moreover, due to the hier-
archical structure, efficient multilevel techniques can beadopted in the solution of
linear systems [13].

Our strategy of adaptive refinement and derefinement is basedon three prin-
ciples. First, we assume that at each time step the octree mesh becomes refined
towards the free surface. The degree of refinement is controlled by the user-defined
parameterhmin. Cells located far from the surface can be coarsened up to thesize
hmax. Second, the ratio of the sizes of any two neighbouring cellscannot exceed 2.
This requirement stems from discretization methods discussed in the next section.
Third, the refinement has priority over coarsening. This means that surface-driven
splitting of a cell is imperative and thus it can cause splitting of the cell’s neigh-
bours. However, surface-driven merging cells can be cancelled if the coarsening
neighbouring cells violate the second principle.

The three principles of mesh adaptation form the general framework of refine-
ment. Several strategies may be suggested within this framework. The simplest one
is to split a cell with different signs ofϕ in the cell vertices, provided that its size
is larger thanhmin. Such aggressive refinement demonstrates a fast transitionto the
coarsest mesh sizehmax (see Fig. 2). This saves a lot of degrees of freedom, but
deteriorates the quality of discretization in the close-to-surface layers.

An alternative to the aggressive refinement is to split cellsin a narrow layer sur-
rounding the surface. We take advantage of the property of the level set function thatjϕ(x)j is the distance to the surface. The average value ofjϕ(x)j in a cell provides a
sound criterion for cell splitting.

A complementary method for both strategies may be additional refinement in
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Figure 4. Interpolation ofw into the marked node.

the neighbourhood of surface patches with a high local curvature.
The conventional data structure for octree meshes holds only a cell tree with-

out connections of cells to nodes. For the sake of interpolation of nodal data in the
fractional step method, the data structure has to be enhanced. In addition to the tree
of cells, we also store nodes and all node-to-cell and cell-to-node connections. The
interpolation between two meshes at the consecutive time steps uses this additional
information (see Fig. 3). In the remeshing step all the connections are changed lo-
cally, so that the complexity of both the data structure update and the interpolation
procedure is negligible.

We briefly illustrate the efficiency of the interpolation procedure using the exam-
ple of velocity interpolation. As it was mentioned already,the velocity components
are stored at cell mid-faces. In particular, the vertical componentw is assigned to
horizontal faces. The interpolation ofw to the node shown in Fig. 4 uses the barycen-
ters of the horizontal faces surrounding the node and lying in the same horizontal
plane. These faces are easy to find, since one has a fast accessfrom any node to
the surrounding cells. Then the nodal velocity component iscalculated by inverse
distance weighting [17].

3. Discretization of differential operators

The staggered grid discretization implies that pressure degrees of freedom are as-
signed to cell centers, the velocity componentu is assigned to the centers of faces
which are orthogonal tox-axis, the velocity componentsv andw are assigned to
faces orthogonal toy- andz-axes, respectively. Within each cell, the componentu is
assumed to be linear in thex-direction and constant in they- andz-directions. The
componentsv andw satisfy similar assumptions. The level set functionϕ is assumed
to be a continuous, cellwise trilinear function with nodal degrees of freedom.

Discretization of the divergence operator is based on the Gauss–Ostrogradskii
formula applied to a cellV Z

V
∇ �udV = Z

∂V
(u �n)ds (3.1)

wheren represents the outward unit normal to the cell boundary. If agrid face is
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shared by cells of different sizes, the corresponding velocity component may be
piecewise constant on this face. This should be taken into account by the formula
(3.1). For instance, in the case shown in Fig. 5, one writes for u= (u;0;0)T

∆x∆y∆z ∇u= u2A2+u3A3+u4A4+u5A5�u1A1

A2 = A3 = A4 = A5 = A1=4; A1 = ∆y∆z:
The pressure gradient discretization is based on the Taylorformula. Due to the

second principle of mesh refinement, for any interior face there can be only two
topological cases. In the first case the face is shared by two equal cells, and we use
the standard central finite difference for the corresponding gradient component. In
the second case the sizes of the cells sharing the face are different. For the sake of
simplicity, we discuss the discretization of thex-component of the gradient operator
at the face centera0 shown in Fig. 6. We consider the centers of five surrounding
cellsa1;: : : ;a5 and expand the pressure valuep(ai) with respect top(a0):

p(ai) = p(a0)+∇p(a0) � (ai �a0)+O(jai �a0j2):
Neglecting the second-order term we obtain a system of 5 linear equations with 4
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unknowns 0BBBBBB� 1 �∆
2

∆
4

∆
4

1 ∆
4 0 0

1 ∆
4

∆
2 0

1 ∆
4 0 ∆

2

1 ∆
4

∆
2

∆
2

1CCCCCCA
0BBBBBBB� p(a0)

∂ p
∂x

(a0)
∂ p
∂y

(a0)
∂ p
∂z

(a0)
1CCCCCCCA=0BBBBB� p(a1)

p(a2)
p(a3)
p(a4)
p(a5)

1CCCCCA (3.2)

where∆ � ∆x= ∆y= ∆z. The least squares solution of (3.2) is0BBBBBBB� p(a0)
∂ p
∂x

(a0)
∂ p
∂y

(a0)
∂ p
∂z

(a0)
1CCCCCCCA=0BBB� 1

3
2
3

1
6

1
6 �1

3� 4
3∆

1
3∆

1
3∆

1
3∆

1
3∆

0 � 1
∆

1
∆ � 1

∆
1
∆

0 � 1
∆ � 1

∆
1
∆

1
∆

1CCCA0BBBBB� p(a1)
p(a2)
p(a3)
p(a4)
p(a5)

1CCCCCA :
Therefore, the stencil forx-component of the gradient is

∂ p
∂x

(a0)� 1
3∆

(p2+ p3+ p4+ p5�4p1):
Discretization of the Laplacian operator for the velocity components is based

on the discrete Laplacian for the pressure. The latter is defined as the product of the
discrete divergence and gradient operators. Interpolation from cell centers to face
centers and its transpose operation define the Galerkin projection of the discrete
pressure Laplacian onto the velocity space.

The numerical model includes a differential operator related to the free sur-
face curvature{. The free surface tensionσ{ depends on the surface tension co-
efficient and the second derivatives of a parametric representation ofΓ. However,
the use of the signed distanceϕ provides a simple formula for estimation of{,{ = ∇ � (∇ϕ=j∇ϕ j). The curvature{ is obtained by computing the derivatives ofϕ
in the cell nodes to obtain the normaln=∇ϕ=j∇ϕ j, averagingn components on the
cell faces, averaging these values to the cell center to get{. The surface tension is
incorporated into the model via the ‘boundary condition’ for the pressure function.
In our implementation we set Dirichlet valuespair+σ{ in the air cells bordering
the water.

The presented numerical model suggests several ways to control the fluid mo-
tion. It may be boundary conditions for the velocity field andeven pressure (in the
sense of the pressure projection scheme). The body force term conventionally rep-
resented by gravity and the pressure gradient may be modifiedfor forcing liquid
motion. Another approach is to set explicitly the velocity field of particular small
pockets of liquid before the mass conservation (Poisson equation) calculation. This
allows us to smooth out physical incorrectness in the applied velocities before using
them in equations (1.3), (1.1).
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Table 1.
Mass loss depending on the mesh size and mesh type.Ntotal andNwater denote
the total number of cells and the number of cells filled with water, respectively.

hmax hmin δ loss Ntotal Nwater

16�1 32�1 0 4 % 12 524 1 168
32�1 32�1 0 3.86 % 51 920 1 532
16�1 64�1 0 0.84 % 19 160 5 012
32�1 64�1 0 0.82 % 57 408 5 168
16�1 64�1 32�1 0.81 % 20 868 5 712
16�1 128�1 0 0.42 % 45 760 21 764
16�1 128�1 64�1 0.40 % 54 160 25 308
16�1 256�1 0 0.14 % 154 428 91 052
16�1 256�1 128�1 0.12 % 186 320 106 256
16�1 512�1 0 0.05 % 585 236 375 706
16�1 512�1 256�1 0.04 % 713 441 436 620

4. Numerical experiments

In this section, we consider several test cases which demonstrate the properties of
the method.

In the first test we examine the mass losses in the scheme. We consider an in-
viscid liquid drop of radius 0.2 centered at(0:5;0:5;0:6) which falls in a unit cube(0;1)3. The time of the motion is 0.1, the initial velocity is zero, and the accelera-
tion is(0;0;�1). The surface tension coefficientσ = 0:0001. We performed 20 time
steps with∆t = 0:005 and measured the mass loss during the simulation. We exam-
ined meshes with different extents of refinement (hmax;hmin) and different strategies
of refinement:δ = 0 implies the aggressive refinement,δ > 0 means that the mesh
is refined towards the interiorδ -layer of the drop surface. The data presented in Ta-
ble 1 show that the parameterhmin is the most critical factor for the mass loss. The
type of refinement makes a small impact on the mass loss, and the effect of the size
of the coarsest cells is negligible. We observe that fine enough meshes may provide
mass loss which is acceptable in the simulation.

In the second test case we model the same drop falling in the same unit cube.
However, 20% of the cube is filled with the same liquid, and theinitial position of
the drop center is(0:5;0:5;0:45). In Table 2 we present the typical CPU time mea-
surements of a single time step and fractional substeps for meshes with different ex-
tents and strategies of refinement. The simulation was performed on a PC Pentium
D, 2.8 GHz. The following notations for the CPU time measurement are used here:
momentum equation solutiontmom, projection to divergence-free subspacetproj, ve-
locity extrapolation and evolution of the level settadv, particles integration and error
correctiontpart, reinitialization by the fast sweeping methodtreinit, update of the liq-
uid volume and remeshingtremesh, total time of the time stepttotal. The table proves
the arithmetic scalability of each fractional substep withrespect to the number of
cells filled with waterNwater. The most expensive procedure (� 40%) is the reini-
tialization step. The solution of the stiff problem (2.1) with the ILU preconditioner
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Table 2.
CPU time (in seconds) of a single time step and individual substeps against the number of cells.

hmax 16�1 16�1 16�1 16�1 16�1 16�1

hmin 64�1 64�1 128�1 128�1 256�1 512�1

δ 0 32�1 0 64�1 0 0

Ntotal 31 592 41 567 96 440 141 919 352 997 1 379 239
Nwater 11 636 19 572 63 994 67 277 243 534 729 624

tmom (%) 0.06 (5.8%) 0.08 (6.2%) 0.25 (6.3%) 0.30 (5.7%) 1.03 (6.3%) 3.56 (5.7%)
tproj (%) 0.17 (17.6%) 0.28 (20.9%) 1.02 (25.0%) 1.12 (21.1%) 4.00(24.3%) 11.90 (19.1%)
tadv (%) 0.05 (4.8%) 0.06 (4.5%) 0.17 (4.2%) 0.23 (4.4%) 0.73 (4.5%) 2.96 (4.7%)
tpart (%) 0.16 (16.7%) 0.16 (12.3%) 0.74 (18.3%) 0.71 (13.4%) 2.96(17.9%) 12.97 (20.8%)
treinit (%) 0.44 (44.6%) 0.62 (46.3%) 1.5 (38.2%) 2.43 (45.8%) 6.34 (38.5%) 24.32 (38.9%)
tremesh(%) 0.10 (10.6%) 0.13 (9.8%) 0.33 (8.0%) 0.51 (9.6%) 1.40 (8.5%) 6.75 (10.8%)

ttotal 0.98 1.34 4.07 5.30 16.47 62.46

Figure 7. A box being filled with liquid. Time steps:t1= 0, t2 = 1:5, t3 = 3, t4 = 7.
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does not exceed 25% of the overall overheads. Therefore, there is no need to use the
asymptotically optimal multilevel preconditioner [13] inthis particular simulation.
Nevertheless, the use of the multilevel methods may furtheraccelerate the solution
process.

In the third test case we simulate filling an empty container with an almost invis-
cid liquid. Several obstacles are put on the floor of the container. Figure 7 exhibits a
few frames of the corresponding animation movie. The evolution of the free surface
is complicated by the presence of obstacles.

5. Conclusions

We have presented an efficient computational technology forfree surface flow simu-
lation. Its arithmetical scalability is based on the fractional steps method and the use
of octrees, i.e., dynamically refined and coarsened hexahedral meshes. The technol-
ogy provides a toolkit which may be useful in computer graphics applications.
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