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Hessian-based anisotropic mesh adaptation
in domains with discrete boundaries

Yu. V. VASSILEVSKI�, V. G. DYADECHKO†, and K. N. LIPNIKOV†

Abstract — Black-box methodology for generating anisotropic adaptive tetrahedral meshes in do-
mains with discrete boundaries is described. A new high-order reconstruction method for triangular
surface meshes is proposed. The performance of the method for a model convection–diffusion problem
is demonstrated.

To our Teacher

Adaptive methods greatly reduce the demand for a large number of unknowns and
improve the accuracy of simulations via grid adaptation near fine-scale features of
the solution. In this paper, we consider a tensor metric-based adaptive methodology
[1, 3, 4, 6, 9, 15]. The metric is induced by an approximate Hessian (matrix of
second derivatives) of the discrete solution. The focus of this paper is the treatment
of curved internal and boundary surfaces.

In many applications the exact parameterization of curved surfaces may be un-
known. In this case the surfaces are described by triangularmeshes (e.g., meshes
coming from CAD systems) which reduce the performance of adaptive methods due
to a limited surface resolution. One possible solution is touse the results of adaptive
computations as the feedback for CAD models. This approach usually requires the
user’s control and becomes too sophisticated for some applications. However, if the
underlying surfaces are sufficiently smooth (or piecewise smooth), the original tri-
angular meshes carry additional information regarding these surfaces. In this paper
we use this fact to design a new surface reconstruction method and analyze it both
theoretically and numerically.

There are many methods for higher-order reconstruction of piecewise linear sur-
faces (see 7, 10–12) and references therein). In [10, 12] thesurface is parameterized
and the desired surface characteristics are computed from the derivatives of func-
tions specifying the parameterization. In [7, 10] the discrete surface is approximated
by a piecewise quadratic surface using the best fit algorithm. The method proposed�Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow GSP-1, 119991,
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in this paper uses the technique of a discrete differential geometry to compute an ap-
proximate Hessian of a piecewise quadratic function representing the reconstructed
surface. The Hessian is computed in a weak sense by analogy with the finite element
methods. The developed method gives the exact solution for quadratic surfaces.

We demonstrate the efficiency of the new method for solving a convection-diffu-
sion problem simulating transport phenomena around a spherical obstacle. The so-
lution has a boundary layer along a part of the obstacle boundary. As the result, the
accuracy of the discrete solution depends strongly on the accuracy of the boundary
representation.

The paper outline is as follows. In Section 2 we describe briefly the Hessian-
based adaptation methodology. In Section 3 we discuss two techniques for treat-
ment of discrete surfaces. In Section 4 we illustrate our adaptive methodology with
numerical tests.

1. HESSIAN-BASED MESH ADAPTATION

Let Ωh be a mesh withN(Ωh) elements anduh be a discrete piecewise linear solution
computed at the mesh nodes with some numerical method which we denote byPΩh. We shall simply write thatuh =PΩhu whereu is an unknown exact solution.
The ideal goal would be to find a mesh (probably anisotropic) which minimizes the
maximal norm of the discretization errorku�PΩhuk∞. In many problems this error
can be majorized by the interpolation error,ku�IΩhuk∞, whereIΩh is the linear
interpolation operator on the meshΩh. It gives us the following mesh optimization
problem:

Ωopt
h = arg min

N(Ωh)<Nmax

ku�IΩhuk∞ (1.1)

whereNmax is the maximal number of mesh elements (tetrahedra) defined by the
user. This problem was analyzed both theoretically and numerically in [1, 15]. In
fact, problem (1.1) was replaced by a simpler problem which provides a constructive
way for finding an approximate solution of (1.1), or a quasi-optimal mesh. The latter
is quasi-uniform in the metricjHhj derived from the discrete HessianHh of the
discrete solutionuh. The generation of quasi-uniform meshes is based on the notion
of themesh quality.

Let G be a metric generated by a symmetric positive definite 3�3 matrix whose
entries depend on the pointx 2 Ω. For an elemente in Ωh, we denote byjejG its
volume in metricG and byj∂∂ejG the total length of its edges (also in metricG).
We define the mesh quality as

Q(Ωh) = min
e2Ωh

Q(e) (1.2)

whereQ(e) is the quality of a single elemente,

Q(e) = 6 4
p

2
jejGj∂∂ ej3GF

� j∂∂ ejG
6h� � ; 0< Q(e)6 1: (1.3)
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Figure 1. Local topological operations for 2D triangular meshes: (a)node insertion, (b) edge swap-
ping, (c) node deletion, and (d) node movement.

Hereh� is the mesh size in theG-uniform mesh withNmax elements andF(t) is
a continuous smooth function, 06 F(t) 6 1, with the only maximum at point 1,
F(1) = 1, and such thatF(0) = F(+∞) = 0. The last factor in (1.3) controls the
size of the element, whereas the remaining factors control its shape.

The optimization of the meshΩh with respect to the mesh quality (1.2) results
in the G-quasi-uniform grid. Since the mesh quality is as good as thequality of
its worst element, the mesh improvement can be achieved witha series oflocal
operations applied to this element. The list of such operations includes alternations
of topology with node deletion/insertion, edge/face swapping, and node movement
(see Fig. 1 for 2D analogs of local operations and [1] for moredetails).

Such local operations as node deletion/insertion and edge/face swapping are
well described in the literature. The implementation of node movement requires
additional comments. It is driven by the minimization of thesmooth functionalF :R3 ! R, of the node positionx, defined as a reciprocal of the mesh quality (1.2),
i.e. 16F < ∞.

Some restrictions have to be imposed on mesh modifications tokeep the mesh
unfolded and to preserve internal and boundary surfaces. For example, the node
movement should not alter the sign of the oriented volumes ofthe surrounding tetra-
hedra. Additionally, if a node lives on a surface, its movement should be restricted
to this surface. In the next section we consider this problemin more detail.

Now we are ready to describe the iterative adaptive algorithm for the approxi-
mate solution of (1.1). Let us assume that an initial mesh is given. We begin with
computing a discrete solutionuh and generating the Hessian-based metricjHhj
which is the symmetric positive definite matrix given by

Hh =WhΛhW
T
h ; jHhj=WhjΛhjWT

h

whereWh is the orthonormal matrix,Λh = diagfλ1; λ2; λ3g is the diagonal matrix,
andjΛhj= diagfmaxfjλ1j;εg;maxfjλ2j;εg;maxfjλ3j;εgg with ε > 0 being a user-
defined tolerance. Then, we use local operations to build a mesh which is quasi-
uniform in metricjHhj and proceed with computing a new discrete solution and a
new metric. If the mesh does not require any modifications, i.e. it is already quasi-
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uniform, we terminate the adaptation procedure and refer tothe resulting mesh as
thequasi-optimalmesh.

It is proved in [1] that quasi-optimal meshes in polyhedral domains yields the
asymptotically optimal estimate:ku�IΩhuk∞ � N(Ωh)�2=3: (1.4)

In Section 4 we demonstrate numerically that (1.4) holds in amore general case of
curved boundaries. We also show that the optimal estimate isviolated when these
boundaries are represented by triangular meshes.

2. TREATMENT OF INTERNAL AND BOUNDARY SURFACES

The distinctive geometrical features of any model are internal and boundary sur-
faces (feature surfaces) and their intersections (feature edges). Let us consider a
particular feature surfaceΓ� R3 and a feature edgeΘ� R3. In many cases analytic
information on these geometric features is not available and the only way to model
them is to use faces and edges of the original mesh.

Let the discrete feature surfaceΓh be the triangulated surface of the original
meshΩh approximatingΓ with triangular facesfΓtg, Γh = S

t Γt , and the discrete
feature edgeΘh be a polyline formed by the edges ofΩh approximatingΘ. We
describe the discrete geometric features using parametricspacesSΘ,SΓ and mapsMΘ,MΓ such that MΘ : SΘ ! Θh; MΓ : SΓ ! Γh:

In this section we consider two techniques for treatment ofΓh andΘh. The first
technique addresses the problem of a node movement along this piecewise linear
surface. The second technique describes a new surface reconstruction method.

2.1. Node movement along a piecewise linear surface

In order to preserve geometrical featuresΘh andΓh during mesh modifications one
has (a) to allow resident nodes to move only over the corresponding discrete fea-
tures and (b) to forbid creation of new edges and faces which intersect these fea-
tures. Hereafter, we focus on the most complicated constrained local operation, node
movement.

While the global parameterization of the discrete feature edgeΘh represented by
a polyline is trivial, the definition of the global parametric spaceSΓ for the discrete
feature surfaceΓh is pretty tricky. The restrictionF jΓh of the objective functionF to Γh is expected to have discontinuous normal derivatives on every sharp edge
between constitutent faces. This complicates the global parameterization. However,
the latter is not a priority: we introduce a separate parametric space for every face
composingΓh [8] and use standard numerical tools of smooth optimizationto move
a node over a constituent face. Once the boundary of the localparametric space is
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hit, the algorithm will use gradient information to make a decision whether to stay
within a current parametric space or to switch to a new one.

We propose to use aline search method[2, 13] for node movement and the
barycentricparameterization of constituent facesΓt for SΓ. With barycentric pa-
rameterization, one can easily keep track of the boundariesof the triangular face: if(β1;β2;β3) and(∆β1;∆β2;∆β3) are barycentric coordinates of the node position and
the search direction respectively, then the maximum step size allowed is

min
n=1;2;3fmaxf�βn=∆βn;0gg :

The search over the triangulated surface can be identified asone of the three
different states:

(1) moving over the face;
(2) moving along the edge;
(3) staying at the vertex.

Whenever the search is in State 1 and the face edge is reached,the steepest
descent direction ofF jΓh (the restriction ofF to Γh) may guide the further search
either to stick with the current face, or to maintain State 1 switching to the adjacent
face, or to continue along the edge (switch to State 2).

In State 2 the node motion is governed by the minimization of the functionF j`
where` denotes the mesh edge. If the local minimum is found at one of the ends of`, the search comes to State 3. Otherwise the local minimum ofF j` can be located
within the edge. Once this minimum is reached, one has to evaluate one-sided̀-
normal derivatives ofF jΓh, one per each adjacent edge. If the objective function
decreases as we approach the edge from either side, then the search is over: we have
found a local minimum of theF jΓh. If not, the search should be continued over the
adjacent face which guarantees the steepest descent.

The strategy in State 3 is pretty straightforward: find the face (or edge) that
provides the steepest descent and switch to State 1 (or State2, respectively). If there
is no descent direction found, the search is over: we are at the local minimum.

2.2. Piecewise quadratic extrapolation of piecewise linear surfaces

In this section we consider again the feature surfaceΓ. To simplify the presentation,
we assume thatΘ is its boundary. We assume also that the nodes ofΓh andΘh be-
long toΓ andΘ, respectively, although this assumption is not necessary in practice.
The piecewise quadratic extrapolationΓ̃h of Γh is defined as the continuous surface
being the closure of a union of open non-overlapping piecesΓ̃t of local quadratic
extrapolations over facesΓt .

The local extrapolatioñΓt is described by a quadratic functionϕ2;t . We shall
omit the superscriptt whenever it does not result in confusion. For our purposes, it
will be convenient to describe the functionϕ2 in a local coordinate system(ξ1; ξ2)
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associated with the plane ofΓt . In this coordinate system, the 2D multi-point Taylor
formula for a quadratic functionϕ2 with the HessianHϕ2 = fHϕ2

psg2
p;s=1 reads

ϕ2(ξξξ ) =�1
2

3

∑
i=1

(Hϕ2(ξξξ �ai); (ξξξ �ai)) pi(ξξξ ) (2.1)

wherea1, a2, a3 are the vertices of the triangleΓt and pi(ξξξ ) is a piecewise linear
function such thatpi(a j) = δi j .

In order to recover the HessianHϕ2; we first assume that numbersαi =(Hϕ2`i; `i), i = 1;2;3, representing the projection of this Hessian on edges`i of
Γt are given. Hereafter, we usèi for both the mesh edge and the corresponding
vector. In the local coordinate system, vectors`i are described by two coordinates,`i = (l i

1; l i
2). We assume that vector`i begins at the vertexai and ends at the vertex

ai+1 with a4 = a1. Then, the definition ofαi gives  
Hϕ2

11 Hϕ2
12

Hϕ2
12 Hϕ2

22

! 
l i
1

l i
2

! ; l i
1

l i
2

!!= αi

which, in turn, results in the system of three linear equations for the unknown entries
of the matrixHϕ2:

l i
1l i

1Hϕ2
11 + l i

2l i
2Hϕ2

22 +2l i
1l i

2Hϕ2
12 = αi ; i = 1;2;3: (2.2)

Lemma 2.1. The matrix of system(2.2) is non-singular.

Proof. Let us denote the coefficient matrix of system (2.2) byB. Note that̀ 1+`2+ `3 = 0. Using this fact in direct calculations of the determinantof matrix B we
get jdetBj= 2jl1

1 l2
2� l2

1l1
2j3 = 16jΓt j3 > 0 (2.3)

wherejΓt j is the area of the triangleΓt . This proves the assertion of the lemma.

Second, we use the results of [1] where the algorithm for computing discrete
HessianHh(ai) at a vertexai of a continuous piecewise linear solution is presented
and analyzed. We defineαi as the average of two nodal approximations,

αi = 1
2
((Hh(ai)`i ; `i)+(Hh(ai+1)`i ; `i)) (2.4)

associated with the edge`i . There are two exceptions from this rule. Ifai 2 Θh and
ai+1 =2Θh, thenαi is equal to(Hh(ai+1)`i ; `i). If ai 2Θh andai+1 2Θh, thenαi = 0.
This implies that the nodal approximation of the Hessian is not recovered at feature
edges and, therefore, the traces ofΓh andΓ̃h on Θh coincide.

It remains to describe how we recoverHh(ai) for every interior nodeai of Γh.
We begin by introducing a few additional notations. For eachai , we define the su-
perelementσi as a union of all triangles ofΓh sharingai . Then, we define a plane
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approximating in the least square sense the nodes of this superelement and associate
this plane with the local coordinate system(ξ1; ξ2)-plane. Letσ̂i be the projection
of σi onto the(ξ1; ξ2)-plane. Further, letϕ i(ξ1; ξ2) be the continuous function rep-
resenting locallyΓ andϕ i

h(ξ1; ξ2) be the continuous piecewise linear function rep-
resentingσi. We assume that both functions are single-valued overσ̂i . Finally, we
denote the Hessian ofϕ by Hϕ .

The components of the discrete HessianHh are defined in a weak sense byZ
σ̂i

Hh
ps(ai)ψh dS=�Z

σ̂i

∂ϕ i
h

∂ξp

∂ψh

∂ξs
dS; p;s= 1;2 (2.5)

which holds for any continuous piecewise linear functionψh vanishing on∂ σ̂i. Note
that the discrete HessianHh(ai) is a geometric characteristic of the feature surfaceΓ
at the pointai (related to its curvature) and, therefore, is invariant of the position of
the projection plane associated with the superelementσi. In other words, the value(Hh(ai)`i ; `i) is independent of the local transformation of the coordinate system.

In addition to the above invariance and the obvious uniqueness ofHh, the spec-
ified extrapolation is exact for quadratic surfaces, as longas the triangleΓt has no
edges onΘh. Indeed, for a quadratic functionϕ the recovery method (2.5) is exact,
i.e. Hh

ps(ai) = Hϕ
ps(ai). Therefore, for allai =2 Θh(Hϕ`; `) = (Hh(ai)`; `)

for all edges̀ � ΓhnΘh andHϕ2 = Hϕ follows from (2.4) and Lemma 2.1.
Now we consider the approximation property of our extrapolation

method. For every triangleΓt we define a superelementσ t as a union of superele-
mentsσi corresponding to verticesai of Γt . Again, we use the local coordinate sys-
tem (ξ1; ξ2)-plane associated with the triangleΓt . Let σ̂ t (respectively,Γ̂t) be the
projection ofσ t (respectively,Γt) onto the(ξ1; ξ2)-plane. We define the constant
tensorHϕ

σ t for the superelement̂σ t as

Hϕ
σ t = Hϕ(arg max

ξ2σ̂ t
jdetHϕ(ξ )j): (2.6)

Proposition 2.1. Let the edges of a triangleΓt be the interior edges ofΓh and
σ̂t be a quasi-uniform triangulation with a size h. Letϕ(ξ1; ξ2) be C2(σ̂ t) function
representing locallyΓ and ϕh = Iσ̂ t ϕ be a continuous piecewise linear function
representingσ t . Moreover, let Hϕ and Hh be the differential and discrete Hessians
of ϕ andϕh, respectively, such thatkHϕ

ps�Hϕ
σ t ;pskL∞(σ̂ t) < δ (2.7)k∇(ϕ �Iσ̂ t ϕ)kL2(σ̂ t) < ε : (2.8)

Then, the quadratic functionϕ2 describingΓ̃t by (2.1), (2.2), (2.4)and(2.5)satisfieskϕ �ϕ2kL∞(Γ̂t) 6C(ε +δh2) (2.9)

where a constant C is independent ofδ , ε , h andϕ .
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Proof. Hereinafter we shall use notationsC, Ci for generic constants having dif-
ferent values in different places. The definition (2.5) of the discrete Hessian implies
that Z

σ̂i

(Hϕ
ps�Hh

ps(ai))ψh dS=�Z
σ̂i

∂ (ϕ �ϕh)
∂ξp

∂ψh

∂ξs
dS (2.10)

for any ψh 2 P1(σ̂i) vanishing on∂ σ̂i. Now, using the triangle inequality and then
the Cauchy inequality, we getZ

σ̂i

jHϕ
σ t ; ps�Hh

ps(ai)jjψhjdS 6 ∂ (ϕ �ϕh)
∂ξp


L2(σ̂i)∂ψh

∂ξs


L2(σ̂i)+Z

σ̂i

jHϕ
σ t ;ps�Hϕ

psjjψhjdS:
Let us evaluate all terms in the above inequality for a particular choice ofψh such
thatψh(ai) = 1. The term in the left-hand side is estimated from below as follows:Z

σ̂i

jHϕ
σ t ;ps�Hh

ps(ai)jψh dS>C1jHϕ
σ t ;ps�Hh

ps(ai)jjσ̂i j:
The terms in the right-hand side may be easily estimated fromabove using the
quasi-uniformity ofσ̂ t and assumption (2.7):∂ψh

∂ξs


L2(σ̂i) 6C2; Z

σ̂i

jHϕ
σ t ; ps�Hϕ

psjψh dS6C3δ jσ̂i j:
Combining the above inequalities, we getjHϕ

σ t ; ps�Hh
ps(ai)j6 C2

C1jσ̂ijε +C3

C1
δ : (2.11)

Let Hϕ2 be the Hessian of the quadratic functionϕ2. The next step in the proof
is to estimate the discrepancy betweenHϕ

σ t andHϕ2. For this purpose, we use the
perturbation analysis and Lemma 2.1. Since both HessiansHϕ

σ t , Hϕ2 are constant,
they are uniquely defined by the right-hand side of system (2.2) and the edges of the
triangleΓt . Let α1, α2 andα3 be the entries of the right-hand side in (2.2) whose
solution isHϕ2

ps, and letβi = (Hϕ
σ t`i ; `i), i = 1;2;3. Using definition (2.4), inequality

(2.11), a linear algebra estimate for eigenvalues of a 2�2 matrix, and the assumption
of quasi-uniformity ofσ̂ t , we getjαi �βij = 1

2
j(Hh(ai)`i ; `i)+(Hh(ai+1)`i ; `i)�2(Hϕ

σ t`i ; `i)j6 2

0� C2ε
C1 min

i=1;2;3 jσ̂ij +C3

C1
δ

1A(`i ; `i)6C(ε +δh2):
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The perturbation analysis states thatjHϕ2
ps �Hϕ

σ t ;psj6Cjλ�1
min(B)j max

i=1;2;3 jαi �βij
where the matrixB is defined in Lemma 2.1 andλmin(B) is its eigenvalue closest to
zero. The application of the Gershgorin theorem and the quasi-uniformity assump-
tion give the estimate for the maximal eigenvalue ofB:

λmax(B)6 2 max
16i63

j`ij26Ch2:
Therefore, due to (2.3)jλmin(B)j> jdetBj

λ 2
max(B) = 16jΓt j3

λ 2
max(B) >Ch2:

Using the last estimate, we get easilyjHϕ
σ t ; ps�Hϕ2

psj6C(ε=h2+δ ): (2.12)

Finally, by virtue of the multi-point Taylor formula for a general functionϕ
whose linear interpolantϕh vanishes on the trianglêΓt = Γt we get:

ϕ(ξξξ ) =�1
2

3

∑
i=1

(Hϕ(ξξξ �i )(ξξξ �ai); (ξξξ �ai)) pi(ξξξ )
whereξξξ �i (ξξξ ) is a point insidêΓt , ξξξ 2 Γt . Together with formula (2.1) it givesjϕ(ξξξ )�ϕ2(ξξξ )j= 1

2

����� 3

∑
i=1

([Hϕ(ξξξ �i )�Hϕ2℄(ξξξ �ai); (ξξξ �ai)) pi(ξξξ )�����6C(ε +δh2):
This proves the assertion of the proposition.

Generally speaking, the values ofε andδ depend on the derivatives ofϕ . If ϕ
is sufficiently smooth, for example it is inC3(σ̂ t), thenε � h3 [5], δ � h and we get
the expected result kϕ �ϕ2kL∞(Γ̂t) 6Ch3:
3. NUMERICAL EXPERIMENTS

We consider the following convection-diffusion equation as the model problem:�0:01∆u+b �∇u = 0 in Ω (3.1)
u = g onΓin

∂u
∂n

= 0 onΓout

u = 0 on∂Ωn (Γin[Γout):
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(a) (b) (c)

Figure 2. (a) Mesh trace at the obstacle, (b) mesh cut and (c) isolines of solution u� on the plane
passing through the center of the obstacle and parallel to the x1x2-plane.

Hereb = (1;0;0)T is the velocity field,Ω = (0;1)3nB0:5(0:18) is the computational
domain withB0:5(r) = fx : ∑3

i=1(xi �0:5)26 r2g, Γin = fx 2 ∂Ω : x1 = 0g, Γout =fx 2 ∂Ω : x1 = 1g, andg(x2;x3) = 16x2(1� x2)x3(1� x3) is the standard Poiseile
profile of the incoming flow.

The solutionu to (3.1) possesses a boundary layer along the upwind side of
the spherical obstacleB0:5(0:18) and is very smooth in the shadow region of this
obstacle. Since the exact solution is not known, in our experiments we replace it
with the piecewise linear finite element solutionu� computed on a very fine adaptive
(quasi-optimal) mesh containing more than 1.28 million tetrahedra (see Fig. 2). To
build the adaptive mesh, we used the analytical representation of ∂Ω.

In the first set of experiments (Fig. 3a) we demonstrate the asymptotic result
(1.4) withu� instead ofu. TheL∞ error fits the analytic curve 60N(Ωh)�2=3.

In the second set of experiments (Fig. 3b), the boundaryΓ = ∂B0:5(0:18) is ap-
proximated with a quasi-uniform meshΓh. We determine theL∞ error as a function
of N(Ωh) for three different values ofh. Figure 3 shows the saturation of this error
due to the limited boundary resolution. We observe that the saturated errorθh is
almost reciprocal toh2: θ0:05 = 0:20, θ0:025 = 0:067, andθ0:0125= 0:021. This is
probably related to the second-order approximation of the smooth boundaryΓ by
the piecewise linear manifoldΓh.

In the third set of experiments (Fig. 3c), we study the effectof the piecewise
quadratic extrapolatioñΓh of Γh on the accuracy of the discrete solution. We com-
pare the saturation errors for three meshes:Γ0:025, Γ0:0125 and Γ�

0:0125. The third
mesh is obtained fromΓ0:0125 by projecting its mesh nodes ontoΓ̃0:025. This mesh
must provide the saturation errorθ�h which is between the saturation errors on the
other two meshes. This is illustrated in Fig. 3 whereθ0:0125= 0:021,θ0:025= 0:067,
andθ�0:0125= 0:043.

Another approach for building a piecewise linear surfaceΓ�
0:0125 is based on the

uniform refinement ofΓ0:025 with a subsequent projection of new mesh nodes onto
Γ̃0:025. We use the first approach because it gives the most rigorous comparison of
saturation errors on meshesΓ0:0125 andΓ�

0:0125.
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Figure 3. Convergence analysis: (a) using analytic representation of the obstacle boundary, (b) us-
ing three discrete modelsΓ0:05, Γ0:025, andΓ0:0125 for ∂B0:5(0:18), (c) using piecewise quadratic
extrapolationΓ̃0:025.

In practice, the surface reconstruction should be dynamic and driven by the size
of mesh elements. For convection-diffusion problem (3.1) the surface extrapolation
is required only in the upwind part of the obstacle boundary.We shall address this
problem in the future.

4. CONCLUSION

We have shown that representation of curved surfaces using triangular meshes re-
stricts the use of adaptive methods. From the implementation viewpoint, an efficient
technique for node movement over discrete surfaces has to beelaborated. We have
presented an example of such a technique. From the theoretical viewpoint, the use of
triangular meshes instead of analytic surfaces complicates the analysis of adaptive
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methods. For a particular convection-diffusion problem, we have shown numeri-
cally that the discretization error is proportional toh2 whereh is the size of the
quasi-uniform mesh approximating the curved surface. We have analyzed theoreti-
cally and numerically a new surface reconstruction technique, which improves the
performance of adaptive methods.

Acknowledgement

The authors are very grateful to N. L. Zamarashkin for valuable comments.

REFERENCES

1. A. Agouzal, K. Lipnikov, and Yu. Vassilevski, Adaptive generation of quasi-optimal tetrahedral
meshes.East-West J. Numer. Math.(1999)7, No. 4, 223–244.
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