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Hessian-based anisotropic mesh adaptation
in domainswith discrete boundaries

Yu. V. VASSILEVSKI} V. G. DYADECHKO,1L and K. N. LIPNIKOV

Abstract — Black-box methodology for generating anisotropic adagptetrahedral meshes in do-
mains with discrete boundaries is described. A new higleordconstruction method for triangular
surface meshes is proposed. The performance of the methadfodel convection—diffusion problem
is demonstrated.

To our Teacher

Adaptive methods greatly reduce the demand for a large nuofhenknowns and
improve the accuracy of simulations via grid adaptatiorr fiee@-scale features of
the solution. In this paper, we consider a tensor metriedaslaptive methodology
[1, 3, 4, 6, 9, 15]. The metric is induced by an approximate siées (matrix of
second derivatives) of the discrete solution. The focusisfpiaper is the treatment
of curved internal and boundary surfaces.

In many applications the exact parameterization of curvethees may be un-
known. In this case the surfaces are described by trianguéshes (e.g., meshes
coming from CAD systems) which reduce the performance gbt@kamethods due
to a limited surface resolution. One possible solution isge the results of adaptive
computations as the feedback for CAD models. This approaahlly requires the
user’s control and becomes too sophisticated for somecapioins. However, if the
underlying surfaces are sufficiently smooth (or piecewiseath), the original tri-
angular meshes carry additional information regardingdtmirfaces. In this paper
we use this fact to design a new surface reconstruction rdethd analyze it both
theoretically and numerically.

There are many methods for higher-order reconstructiomectwise linear sur-
faces (see 7, 10-12) and references therein). In [10, 12}tiace is parameterized
and the desired surface characteristics are computed frerddrivatives of func-
tions specifying the parameterization. In [7, 10] the dé¢ersurface is approximated
by a piecewise quadratic surface using the best fit algorifime method proposed
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in this paper uses the technique of a discrete differenéiahgetry to compute an ap-
proximate Hessian of a piecewise quadratic function regpasy the reconstructed
surface. The Hessian is computed in a weak sense by analtiytheifinite element
methods. The developed method gives the exact solutionufmiratic surfaces.

We demonstrate the efficiency of the new method for solvingreection-diffu-
sion problem simulating transport phenomena around a igphebstacle. The so-
lution has a boundary layer along a part of the obstacle banynds the result, the
accuracy of the discrete solution depends strongly on tberacy of the boundary
representation.

The paper outline is as follows. In Section 2 we describeflgribe Hessian-
based adaptation methodology. In Section 3 we discuss tovmigues for treat-
ment of discrete surfaces. In Section 4 we illustrate oup&ekamethodology with
numerical tests.

1. HESSIAN-BASED MESH ADAPTATION

Let Qp be a mesh wittN(Qp) elements andy, be a discrete piecewise linear solution
computed at the mesh nodes with some numerical method whicdemote by
Pq,. We shall simply write thati, = g, u whereu is an unknown exact solution.
The ideal goal would be to find a mesh (probably anisotroptaicivminimizes the
maximal norm of the discretization errfpn — Zq, U||». In many problems this error

can be majorized by the interpolation errfpn— .7, ul|.., Where.#, is the linear
interpolation operator on the mes§h,. It gives us the following mesh optimization
problem: t
opt H
Q" =arg (Qggglmaxllu ZapUlle 1.1

whereNmax is the maximal number of mesh elements (tetrahedra) defipetieh
user. This problem was analyzed both theoretically and micaily in [1, 15]. In
fact, problem (1.1) was replaced by a simpler problem whichrides a constructive
way for finding an approximate solution of (1.1), or a qugsitmal mesh. The latter
is quasi-uniform in the metri¢H"| derived from the discrete Hessial® of the
discrete solutiomu,. The generation of quasi-uniform meshes is based on themoti
of themesh quality

Let G be a metric generated by a symmetric positive definie83natrix whose
entries depend on the poirte Q. For an elemene in Q, we denote bye|g its
volume in metricG and by|dde|g the total length of its edges (also in met@g.
We define the mesh quality as

Q(Qn) = minQ(e) 1.2)

ecQp

whereQ(e) is the quality of a single elemest

Qe) = 6\‘V§| a'jag F <|aghf|6> . 0<Qe <L (1.3)
G
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Figure 1. Local topological operations for 2D triangular meshes:n@je insertion, (b) edge swap-
ping, (c) node deletion, and (d) node movement.

Here h* is the mesh size in th&-uniform mesh withNnyax elements andr (t) is

a continuous smooth function,Q F(t) < 1, with the only maximum at point 1,
F(1) = 1, and such thaf (0) = F(4) = 0. The last factor in (1.3) controls the
size of the element, whereas the remaining factors corngrehiape.

The optimization of the mes@y, with respect to the mesh quality (1.2) results
in the G-quasi-uniform grid. Since the mesh quality is as good asqtiedity of
its worst element, the mesh improvement can be achieved avgtries oflocal
operations applied to this element. The list of such opamnatincludes alternations
of topology with node deletion/insertion, edge/face svilagpand node movement
(see Fig. 1 for 2D analogs of local operations and [1] for nd=tils).

Such local operations as node deletion/insertion and fdgeswapping are
well described in the literature. The implementation of @gdovement requires
additional comments. It is driven by the minimization of #mooth functional¥ :
R® — R, of the node positiorx, defined as a reciprocal of the mesh quality (1.2),
ie. 1< .7 < o,

Some restrictions have to be imposed on mesh modificatiokedp the mesh
unfolded and to preserve internal and boundary surfaceseXxample, the node
movement should not alter the sign of the oriented volumeiseo$urrounding tetra-
hedra. Additionally, if a node lives on a surface, its movatrshould be restricted
to this surface. In the next section we consider this probiemore detail.

Now we are ready to describe the iterative adaptive algoritbr the approxi-
mate solution of (1.1). Let us assume that an initial meshvisng We begin with
computing a discrete solution, and generating the Hessian-based metré|
which is the symmetric positive definite matrix given by

HY = WA, [H"[ =W AnWY

whereW, is the orthonormal matrix\, = diag{A1, A2, Az} is the diagonal matrix,
and|Ap| = diag{max{|A1|; €}, max{|Az|; €}, max{|As|; €} } with € > 0 being a user-
defined tolerance. Then, we use local operations to build shméich is quasi-
uniform in metric|H"| and proceed with computing a new discrete solution and a
new metric. If the mesh does not require any modificatioms,tiis already quasi-
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uniform, we terminate the adaptation procedure and reféhdaesulting mesh as
the quasi-optimalmesh.

It is proved in [1] that quasi-optimal meshes in polyhedraingins yields the
asymptotically optimal estimate:

u— Fo,ulle ~ N(Qp) 23, (1.4)

In Section 4 we demonstrate numerically that (1.4) holdsrnimoae general case of
curved boundaries. We also show that the optimal estimat®listed when these
boundaries are represented by triangular meshes.

2. TREATMENT OF INTERNAL AND BOUNDARY SURFACES

The distinctive geometrical features of any model are irgkeand boundary sur-
faces {eature surfacgsand their intersectionsdature edgés Let us consider a
particular feature surfadeC R® and a feature edg® C R3. In many cases analytic
information on these geometric features is not availabtetha only way to model
them is to use faces and edges of the original mesh.

Let the discrete feature surfag be the triangulated surface of the original
meshQy, approximatingl” with triangular faceqT}, 'y = U; I't, and the discrete
feature edged, be a polyline formed by the edges ©f, approximating®. We
describe the discrete geometric features using paranspiiceso, -7 and maps
Mo, #r such that

.//@Iy@—)@h, M S — Th.

In this section we consider two techniques for treatmemmt,adnd©y. The first
technique addresses the problem of a node movement alegiguewise linear
surface. The second technigue describes a new surfacesteation method.

2.1. Node movement along a piecewise linear surface

In order to preserve geometrical featu@sandl', during mesh modifications one
has (a) to allow resident nodes to move only over the corratipg discrete fea-
tures and (b) to forbid creation of new edges and faces whitrsect these fea-
tures. Hereafter, we focus on the most complicated constidocal operation, node
movement.

While the global parameterization of the discrete featdige®y, represented by
a polyline is trivial, the definition of the global parametgpaceS- for the discrete
feature surfacd, is pretty tricky. The restrictionZ|r, of the objective function
Z to 'y is expected to have discontinuous normal derivatives oryesfearp edge
between constitutent faces. This complicates the glolanpeterization. However,
the latter is not a priority: we introduce a separate pardmspace for every face
composing j, [8] and use standard numerical tools of smooth optimizatiamove
a node over a constituent face. Once the boundary of the pacametric space is



Hessian-based mesh adaptation 395

hit, the algorithm will use gradient information to make aid®n whether to stay
within a current parametric space or to switch to a new one.

We propose to use kne search method2, 13] for node movement and the
barycentric parameterization of constituent facesfor S-. With barycentric pa-
rameterization, one can easily keep track of the boundefitee triangular face: if
(B1, B2, B3) and (af1,4B2,403) are barycentric coordinates of the node position and
the search direction respectively, then the maximum stapadiowed is

ninligg {max{—Bn/apn; 0} } .

The search over the triangulated surface can be identifieshaof the three
different states:

(1) moving over the face;
(2) moving along the edge;
(3) staying at the vertex.

Whenever the search is in State 1 and the face edge is reatleesteepest
descent direction of#|r, (the restriction of# to ') may guide the further search
either to stick with the current face, or to maintain Statevitching to the adjacent
face, or to continue along the edge (switch to State 2).

In State 2 the node motion is governed by the minimizatiomeffinction.# |,
where/ denotes the mesh edge. If the local minimum is found at onlesoéihds of
¢, the search comes to State 3. Otherwise the local minimuga|ptan be located
within the edge. Once this minimum is reached, one has taat@alone-sided-
normal derivatives of#|r,, one per each adjacent edge. If the objective function
decreases as we approach the edge from either side, thezatich & over: we have
found a local minimum of the# |, . If not, the search should be continued over the
adjacent face which guarantees the steepest descent.

The strategy in State 3 is pretty straightforward: find theeféor edge) that
provides the steepest descent and switch to State 1 (orStaEpectively). If there
is no descent direction found, the search is over: we areedottal minimum.

2.2. Piecewise quadratic extrapolation of piecewise linear surfaces

In this section we consider again the feature surfacko simplify the presentation,
we assume thad is its boundary. We assume also that the nodds,@nd©y, be-
long tol" and®, respectively, although this assumption is not necessapyactice.
The piecewise quadratic extrapolatibpof I is defined as the continuous surface
being the closure of a union of open non-overlapping pi¢gesf local quadratic
extrapolations over facds. _

The local extrapolatiori; is described by a quadratic functignp:. We shall
omit the superscript whenever it does not result in confusion. For our purpoges, i
will be convenient to describe the functign in a local coordinate systefid, &»)
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associated with the plane Bf. In this coordinate system, the 2D multi-point Taylor
formula for a quadratic functiog, with the Hessiai 92 = {H,ﬁ’,’s2 %7321 reads

3
02(8) = — S5 (H®(E —a), (£ —a)) p(€) 2.1)

wherea;, ap, ag are the vertices of the triangla and p;(§) is a piecewise linear
function such thap;(a;) = §;.

In order to recover the Hessiard?, we first assume that numbers; =
(H?24,,¢), i = 1,2,3, representing the projection of this Hessian on ediyexd
;. are given. Hereafter, we ude for both the mesh edge and the corresponding
vector. In the local coordinate system, vectfrare described by two coordinates,
¢ = (I3, 15). We assume that vectdr begins at the verte; and ends at the vertex
a1 with a4 = a;. Then, the definition ofr; gives

o HE (1) [
¢ 92 i o\ =0
Hiz Hz 15 15

which, in turn, results in the system of three linear equmstior the unknown entries
of the matrixH #2:

EHE L I0HS +21H2 — o, 1=1,2,3. (2.2)
Lemma 2.1. The matrix of systerfR.2)is non-singular.

Proof. Let us denote the coefficient matrix of system (2.2Bb\ote that/; +
¢o+¢3 = 0. Using this fact in direct calculations of the determinahinatrix B we
get

|detB| = 2|1112 - 1213 = 161 |* > 0 (2.3)

where|l{| is the area of the trianglle;. This proves the assertion of the lemma.

Secondwe use the results of [1] where the algorithm for computiisgrte
HessiarH"(a;) at a vertexa; of a continuous piecewise linear solution is presented
and analyzed. We defirm as the average of two nodal approximations,

ai = 5((H"@)61, ) + (H@.1)61, ) (2.9
associated with the edde There are two exceptions from this rulealfe ©, and
a1 ¢ Op, thena; is equal to(Hh(aHl)Zi, 4). If & € ©p andaj ;1 € Oy, thena; = 0.
This implies that the nodal approximation of the Hessiaroisracovered at feature
edges and, therefore, the trace$ pfandl"y, on ©;, coincide.

It remains to describe how we recoudf(a;) for every interior nodey; of I'y,.
We begin by introducing a few additional notations. For eachve define the su-
perelements; as a union of all triangles dfy, sharingg;. Then, we define a plane
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approximating in the least square sense the nodes of tresedament and associate
this plane with the local coordinate systéf, &»)-plane. Letd; be the projection
of g; onto the(¢&y, &2)-plane. Further, le$' (&1, &2) be the continuous function rep-
resenting locally™ and¢/,(¢1, &») be the continuous piecewise linear function rep-
resentingg;. We assume that both functions are single-valued 6vefFinally, we
denote the Hessian gfby H?.

The components of the discrete Hesditthare defined in a weak sense by

¢}, oy,
Gi afp 0és

which holds for any continuous piecewise linear functigyvanishing ord g;. Note
that the discrete Hessiail'(a) is a geometric characteristic of the feature surface
at the pointg; (related to its curvature) and, therefore, is invarianthef position of
the projection plane associated with the supereleragrh other words, the value
(HN(&)4, &) is independent of the local transformation of the coordirststem.

In addition to the above invariance and the obvious unigseéH", the spec-
ified extrapolation is exact for quadratic surfaces, as lamnthe triangld; has no
edges or®y,. Indeed, for a quadratic functiah the recovery method (2.5) is exact,
i.e.HDy(a) = His(a). Therefore, for ally; ¢ Oy

(H¢£7 E) = (Hh(ai)f, 6)

for all edges C '\ ©n andH?%2 = H? follows from (2.4) and Lemma 2.1.

Now we consider the approximation property of our extrapoa
method. For every trianglg; we define a superelemeat as a union of superele-
mentsg; corresponding to vertices of ['c. Again, we use the local coordinate sys-
tem (&1, &)-plane associated with the triandle. Let 6t (respectively[';) be the
projection ofa! (respectively) onto the(éy, &)-plane. We define the constant
tensorH:ft for the superelemerd! as

HY = H?(arg Emg>¢detH¢(E)|). (2.6)
eot

&H&mnwmsz—- dS  p,s=1.2 (2.5)

Proposition 2.1. Let the edges of a trianglE; be the interior edges dfy, and
&: be a quasi-uniform triangulation with a size h. Lgeté;, &) be C(d) function
representing locallyr and ¢, = -Z51¢ be a continuous piecewise linear function
representingo. Moreover, let H and H" be the differential and discrete Hessians
of ¢ and ¢y, respectively, such that

1M = H sl < 8 (2.7)

10(¢ — Fa )61 < € (2.8)

Then, the quadratic functiogy, describingf™; by (2.1), (2.2), (2.4)nd(2.5)satisfies
1$ — 92l ¢, < Cle+3h?) (2.9)

where a constant C is independentdofe, h and¢.
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Proof. Hereinafter we shall use notatio@sC; for generic constants having dif-
ferent values in different places. The definition (2.5) & thiscrete Hessian implies

that
/&(HS’S— Hps(@)) ghdS= —/U (¢asp¢h) Z‘é’: ds (2.10)

for any gy, € Py(6;) vanishing ond ;. Now, using the triangle inequality and then
the Cauchy inequality, we get

9(¢ — ¢dn) O
¢ 0és

+ [ s Hps||wh|ds

/|Hcrt ps )||L»Uh|dS < H

Lo(6i L2(6)

Let us evaluate all terms in the above inequality for a paldicchoice ofyy, such
that Yn(a) = 1. The term in the left-hand side is estimated from below Hevis:

| 18 s HRa0 9ndS > CalHS, s~ Hia) 61,

The terms in the right-hand side may be easily estimated fabove using the
quasi-uniformity ofgt and assumption (2.7):

OYn
0&s

<G, /|Hat 25— HEJgndS < C55163].
L2(6i)

Combining the above inequalities, we get

C Cs

e+ 0. (2.11)

HY —HM(a)| <
| ot ,ps ps(a|)| C1|O'|| Cl

Let H?2 be the Hessian of the quadratic functippn The next step in the proof
is to estimate the discrepancy betwebdag} andH?%:. For this purpose, we use the

perturbation analysis and Lemma 2.1. Since both Hesski@nsH %2 are constant,
they are uniquely defined by the right-hand side of syste®) éhd the edges of the
trianglel;. Let a;, a2 and az be the entries of the right-hand side in (2.2) whose
solution ingé, and letg = (H g’te., 4),i=1,2,3. Using definition (2.4), inequality
(2.11), alinear algebra estimate for elgenvalues ot & Pnatrix, and the assumption
of quasi-uniformity ofé!, we get

Lol Bul——l( "(@)4, 6) + (H(a41)6, 6) = 2(HEL, 6)]

Coe Cs 2

— i, 4) < :

2(01 1|n G +C15> (4, 4) <C(e+0dh)
m
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The perturbation analysis states that

|Hg§ B Hg‘,ps| < CMr;i%](B”i:lazX |ai - BI|

16y

3
where the matriB is defined in Lemma 2.1 anklyin(B) is its eigenvalue closest to
zero. The application of the Gershgorin theorem and thei-quef®rmity assump-
tion give the estimate for the maximal eigenvalud3of

1<i<3

Therefore, due to (2.3)

|detB] 16
Afax(B)  Afax(B)
Using the last estimate, we get easily

HE oo — HE2| < C(e/M? +5). (2.12)

at,ps

|)\min(B)| Z >Ch2-

Finally, by virtue of the multi-point Taylor formula for a geral function¢
whose linear interpolangy, vanishes on the trianglg = 't we get:

3
$(§) = —5 S (HOENE-a), E-a)p(E)

where&; (£) is a point insidd ™, £ € Iy. Together with formula (2.1) it gives
3

Zi([H"’(fT) —H")(& - a), (£ —a)) p(&)| <Cle+dh?).

6(8)— 028)| =

This proves the assertion of the proposition.

Generally speaking, the values ©findd depend on the derivatives ¢f. If ¢
is sufficiently smooth, for example it is @3(&1), thene ~ h3 [5], & ~ h and we get
the expected result

1¢ — ¢all,., 7, < Ch.

3. NUMERICAL EXPERIMENTS

We consider the following convection-diffusion equatiantiae model problem:

—0.01Au+b-Ou=0 iInQ (3.2)
u=g onlij,
Ju
% = O Onrout
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@) (b) ()

Figure 2. (a) Mesh trace at the obstacle, (b) mesh cut and (c) isolifisslotion u. on the plane
passing through the center of the obstacle and parallekte, #3-plane.

Hereb = (1,0,0)" is the velocity fieldQ = (0,1)3\ By 5(0.18) is the computational
domain withBgs(r) = {x: 33 ,(% —0.5)2 <r?},Tin={Xx€dQ: x; =0}, Moyt =
{x€0Q: x; =1}, andg(xz,x3) = 16x2(1 — x2)X3(1 — x3) is the standard Poiseile
profile of the incoming flow.

The solutionu to (3.1) possesses a boundary layer along the upwind side of
the spherical obstaclB5(0.18) and is very smooth in the shadow region of this
obstacle. Since the exact solution is not known, in our eérpeErts we replace it
with the piecewise linear finite element solutiancomputed on a very fine adaptive
(quasi-optimal) mesh containing more than 1.28 millionatieédra (see Fig. 2). To
build the adaptive mesh, we used the analytical represemtat 9Q.

In the first set of experiments (Fig. 3a) we demonstrate tigenpwotic result
(1.4) withu, instead ofu. TheL., error fits the analytic curve 60(Qp)~%/2.

In the second set of experiments (Fig. 3b), the bounfarydBy5(0.18) is ap-
proximated with a quasi-uniform me$h. We determine thé., error as a function
of N(Qp) for three different values di. Figure 3 shows the saturation of this error
due to the limited boundary resolution. We observe that #tarated erroif, is
almost reciprocal td?: g5 = 0.20, 8025 = 0.067, andBp o105 = 0.021. This is
probably related to the second-order approximation of theath boundarny™ by
the piecewise linear manifold,.

In the third set of experiments (Fig. 3c), we study the effefcthe piecewise
guadratic extrapolationy, of 'y, on the accuracy of the discrete solution. We com-
pare the saturation errors for three mesHeggos, [N0.0125 and ;1,5 The third
mesh is obtained froMg g125 by projecting its mesh nodes onft@ ops. This mesh
must provide the saturation err6f which is between the saturation errors on the
other two meshes. This is illustrated in Fig. 3 whégg;25 = 0.021, 65,025 = 0.067,
and 6 g;,5= 0.043.

Another approach for building a piecewise linear surfagg, ,s is based on the
uniform refinement of g o25 with a subsequent projection of new mesh nodes onto
INo.025. We use the first approach because it gives the most rigoamgarison of
saturation errors on meshEgo12s andr ;95
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Figure 3. Convergence analysis: (a) using analytic representafidhecobstacle boundary, (b) us-
ing three discrete modelSg o5, 0,025 andl o125 for dBy5(0.18), (c) using piecewise quadratic
extrapolation g g2s.

In practice, the surface reconstruction should be dynamdadsiven by the size
of mesh elements. For convection-diffusion problem (Jh&)durface extrapolation
is required only in the upwind part of the obstacle bounddrg.shall address this
problem in the future.

4. CONCLUSION

We have shown that representation of curved surfaces usangytilar meshes re-
stricts the use of adaptive methods. From the implememntatewpoint, an efficient
technique for node movement over discrete surfaces hasdtaberated. We have
presented an example of such a technique. From the thednagavpoint, the use of
triangular meshes instead of analytic surfaces comp#die analysis of adaptive
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methods. For a particular convection-diffusion probleng, mave shown numeri-
cally that the discretization error is proportional td whereh is the size of the
guasi-uniform mesh approximating the curved surface. We haalyzed theoreti-
cally and numerically a new surface reconstruction teamigvhich improves the
performance of adaptive methods.
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