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Structuring preconditioners for unstructured meshes”
V.G. DYADECHKO! YU.I ILIASH! and YU.V. VASSILEVSKI'

Abstract - An application of a fictitious space technique to the construction of preconditioners for stiffness
matrices generated by finite element method on completely unstructured meshes is considered in the paper.
Numerical tests for model elliptic operators are presented.

In recent years a number of efficient multilevel techniques [1,3,4,11] have been
proposed for either solving or preconditioning systems of grid equations approximating
second-order elliptic boundary value problems. Many of these methods are widely
used in research and industrial problems. However, multilevel and multigrid methods
deal with meshes possessing certain structure or hierarchy. It is the hierarchy which
provides efficiency of the method. The multilevel methods, in general, reduce the
problem to be solved on a complicated or rather fine mesh to a set of problems which
are easy to solve.

In many scientific and engineering applications there is a necessity to solve
problems in domains with complicated geometry where it is very hard or even
impossible to construct a hierarchical grid. Thus, the finite; element discretizations
should be performed on completely unstructured grids composed either of triangles in
2D or of tetrahedra in 3D. This is also dictated by available adaptive mesh generators
used for discretization of computational domain, which allows a significant reduction
of the number of grid nodes (i.e. number of unknowns) while maintaining the quality
of approximation.

Recently, several efficient multigrid-type algorithms for finite element elliptic
systems associated with the unstructured grid have been presented in [2,5]. They are
based on the specific construction of the grid hierarchy for a given unstructured mesh
and the application of a multigrid scheme on the produced sequence of grids,

For preconditioning a discrete model operator associated with unstructured
triangulation we apply several types of multilevel structured preconditioners taking
advantage of the fictitious space technique [18]. Given an unstructured mesh, we
generate a structured hierarchical grid which ‘approximates’ the original mesh in some
sense. With special interpolation operators we reduce the problem of constructing a
preconditioner in a space associated with the unstructured mesh to the problem of
constructing the preconditioner in a fictitious space corresponding to the structured
grid. Within a fictitious space we apply multilevel preconditioners of three types:
domain decomposition, multigrid, and BPX. A multilevel local refinement pre-
conditioner [3,21] has been chosen as one of domain decomposition algorithms. An
algebraic multigrid/substructuring preconditioner [8,11] and BPX preconditioner [4]
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present a multigrid technique and an additive multilevel method, respectively. Since
each of the above preconditioners is defined for its own type of structured mesh and
fictitious space, we compare the efficiency of the resulting preconditioners on unstruc-
tured meshes in terms of the experimental condition number of the preconditioned
stiffness matrix and the ratio of CPU time for solving a system with a preconditioner
to CPU time for stiffness matrix-vector multiplication.

The paper is organized as follows. In Section 1 we pose the problem to be
considered and introduce a fictitious space technique. In Sections 2, 3, and 4 we give
descriptions of multilevel methods and related fictitious spaces for the case of algeb-
raic multigrid, BPX, and multilevel local refinement preconditioners, respectively. In
Section 5 when considering several types of completely unstructured regular triangula-
tions of a unit square, we make a comparison of the results of numerical experiments
for the above preconditioners.

1. FICTITIOUS SPACE TECHNIQUE

Let I7 be a unit square and I7* be its regular unstructured triangulation [6]. Define
a finite element space V" of functions which are continuous in I7, linear at each

triangle 7; from IT h and vanish at oIT.
Let N, be a number of interior nodes in IT" and let Nyx N, symmetric positive

definite stiffness matrix 4, be defined by
(Aqusv) = IH Vubwvhdx Yl vt e vh (1.1)

where u,v € RMNo are reétrictions of finite element functions u”v* € V7.

Our goal is to construct a symmetric positive definite operator B, called a
preconditioner for A, such that the condition number of the matrix By lAO is
bounded by a constant independent of IT" and the system with the matrix B, is easy
to solve.

Lemma 1.1 [18). Let H, and H be Hilbert spaces with the scalar product
(MO,VU)HO and (u,v)y, respectively, and let A, and A be selfadjoint positive definite

and continuous operators in the spaces H, and H:
Ay Hy—=H,, A:H—-H.

Let R be a linear operator such that

R:H—H,
(1.2)
(AURV,Rv)‘,L‘,r0 <cAvyv)y VWveH.
Furthermore, let there exist an operator T such that
T HG—-H, RTuy=u,
(1.3)

cp(ATuy, Tuy)y < (Aouo,uo)ﬁo Yu, € H;.

Here c, and c, are positive constants.

Figure 1. Unstructur

Then
CT(Ao"lu

Here R" is the
and (u,v)h. such

In what follov
types of an origir
and a multilevel
introduce interpc
satisfying conditio

Now, given t|
structured mesh
fictitious space. S
four equal subcel
obtain a new se
unsplitted cell has
as this is possibl
structure [14], ea
one vertex from
bounded from abc

2, ALGEBRAIC M
Denote the numt
HD =RM and a

that there is a on
(RM) and the inte
its ‘north —east’ di:
the cell in a stand:

(A




ctively. Since
red mesh and
rs On unstruc-
reconditioned
reconditioner

oblem to be
and 4 we give
case of algeb-
spectively. In
ilar triangula-
1 experiments

n [6]. Define
inear at each

letric positive

(1.1)

B, called a
ix By A, is
rix By is easy

calar product
sitive definite

(1.2)

(13)

Structuring preconditioners for unstructured meshes 141

[T H T
T H]

aanasail
1503 el

Figure 1. Unstructured mesh 7T * and initial structured mesh Q“'.

Then
CT(AEIHO’HO)H.] < (RA_lR'uo,un)Ho <cl(Ay 1“(}’”0)1-10 Vuse Hy.  (1.4)

Here R* is the operator adjoint to R with respect to the scalar products (u,,) Ho
and (u,v)y such that

R:Hy—H

(Rug,V)g = (uo,Rv)HO.

In what follows, along with structured preconditioners we shall consider several
types of an original space H|, and a fictitious space H related with the operator A,
and a multilevel preconditioner B for the operator A4, respectively. We shall also
introduce interpolation operators R: H—H, and their right inverses T: Hy—H
satisfying conditions (1.2), (1.3).

Now, given the unstructured mesh IT", we dwell on the construction of a
structured mesh Q" connected with IT", which is an initial point for defining the
fictitious space. Starting from the single cell coinciding with T we split this cell into
four equal subcells, provided that the cell has more than one vertex from IT k. and
obtain a new set of cells. Then we apply the above splitting procedure to each
unsplitted cell having more than one vertex from IT" and repeat the process as long
as this is possible. Thus, we have constructed a mesh Q" possessing quad-tree
structure [14], each elementary (i.e. unsplitted) cell of Q" containing no more than
one vertex from IT" (see Fig.1). It is clear that the number of elementary cells is
bounded from above by 4N},

2. ALGEBRAIC MULTIGRID PRECONDITIONER

Denote the number of interior nodes in Q" by N and define an original space
H, =RM and a fictitious space H =R™N with Eucledian scalar products, assuming
that there is a one-to-one correspondence between the entries of vectors from RN
(RN) and the interior nodes from " (Q"). Split each elementary cell g, of 0" vy
its ‘north—east’ diagonal into two triangles and introduce a local stiffness matrix A4, in
the cell in a standard FEM way:

(A t,v,) = L Vulwlidx Vv €R%, s, =124 2.1)
k .
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where s, = 1,2,4 stands for the cells possessing 1, 2 or 4 interior nodes, respectively,
and ui‘, vf are piecewise linear extensions (with zero traces on 9IT) of vectors
uk,vkERj“. Let us assume that rectangular matrices NkeR’k"N have nonzero
entries equal to 1 and provide a correspondence between the vertices of g, and RN.
The matrix A4 generating an energy scalar product in the fictitious space H is defined

by
A=3 NIAN,
qk

where the summation is performed over all elementary cells g, from Q" According
to the construction of the structured mesh Q" we have a one-to-one correspondence
between the nodes from IT" and the subset of all elementary cells in Q". Thus, we
can set a mapping r of all vertices x; from IT" onto the so-called reference nodes y,
in Q", which are the ‘south —west’ corners of reference cells. Then the interpolation
operator R: H— H) is easy to define:

(Ru)x;) = u[r(x)] (2.2)

for all interior nodes x, from IT", where a[x)) denotes the value of a vector a entry

associated with the node x;.
There are several ways of defining an operator T. We shall use the simplest one:

ulr~Y(y)]  if y is a reference node
(Tu)ly) = (2.3)

u[r‘ICyk)] otherwise, y, is the closest reference node to ).

It can be shown that there exist constants cp > 0, ¢, > 0 depending on minimal angle
of regular triangulation 7" such that conditions (1.2), (1.3) are satisfied. The
technique for proving it can be found, for instance, in [15-18]. Now, based on the
fictitious space lemma statement one can use an operator RAIRT as a pre-
conditioner for A 1 However, the matrix 4 is not easily invertible and therefore we
have to substitute it by its preconditioner.

Preparatory to considering a multigrid preconditioner for A, we first discuss a
two-grid one. Suppose we have two structured meshes Qf_l and Q;’, the latter being
obtained from Q:h-l by partitioning several elementary cells of minimal size into
smaller subcells (see Fig. 2).

Split all the nodes from Q;‘ into 3 groups. The first group is formed by the nodes
from th—v the second one contains ‘new’ nodes which belong to edges from Qf'_l,
while the third one contains the rest.

In accordance with the splitting, the stiffness matrix A® associated with Qf‘ can
be represented in the block form:

0] 0]
All A12 0

® ®
B Ay Ay
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Figure 2. The ‘coarse’ and the ‘fine’ grids Qﬁl, Q;‘.

Introduce a matrix B¢ by the formula:

(-1) Q]
34 0 0 24 0 0
! e [ [
BO=fT| o BY o |, F=|BY14Y 9 0
[ 74 il ! [
o S Al 0 ARG i

where :}?), j=1,2,3, are identity matrices of the corresponding orders, ng is certain

diagonal matrix (for more details, see [9-11]), AU s a matrix resulting from the
assembling of local stiffness matrices A, , related to elementary cells g, over all g,
from Q;‘_ 1+ The matrix B® s referred to as a two-grid preconditioner [10,11], since
to solve a system with the matrix B® one has to solve a system with A¢-D)
corresponding to a ‘coarse’ grid and several systems with the diagonal matrices B,j,
A%,

Let hy, be a size of the smallest cell in the structured mesh Q" corresponding to
" and M = logzhﬁ}l. Let us take s > 1 to be some integer. Define sequentially the
matrices for 1 =2,3,...,M:

aU-1)
B}, 0 0
§(’_1}=1-}T 0 Bg 0 |F, B =g
®
0 0 Azy
AMG
called the algebraic multigrid preconditioner for the matrix A4 =AM)_ For 5>2 the

algorithm for solving the system with the matrix B, . can be viewed schematically as
s-fold W-cycle., 3

where 1}_(") are the known iterative parameters [10,11]. The matrix B =B™) js
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The following statement holds true [10, 11].

Theorem 2.1. If s=2, then the condition number of the matrix B;MIGA is
estimated by

-]
condB ;A4 <3+ 2V3.

This estimate is independent of oh.

Corollary 2.1. Let the structured mesh Q" be generated on the basis of regular
triangulation IT h. Define a preconditioner By, via its inverse By 1-RB A'N}GRT. Then

c
-1 R
condBO Ay < -CT (3+2V3)

where the constants c,, ¢, depend on the minimal angle of 8

Denote by n, I=1,...,M, the number of interior nodes in all (not only
elementary) cells of size 2-! in Q". The arithmetical complexities, w,,,, and Wp,» of
solving systems with the matrices B, and B, respectively, can be estimated by the
formula

Wg, = Wamc <Clmyg+s(my_q + styy_p* -2 -

Hereinafter we denote by C a generic positive constant.
Consider three types of regular triangulations s

(1) " is quasi-uﬁiform, then n,/n;_, =4 for almost all /, and

Wg, = Wamc <CN,;

(2) " is refined towards an arbitrary curve, the splitting of the curve being
quasi-uniform. Then n;/n;_, > 2 for almost all /, and Wgy = WaMG < CN,log, Ny;

(3) Ir h is refined towards a set of isolated points. In this case the computational
cost of the algebraic multigrid preconditioner may be rather large, and there is no
point in using it when n,=n;_; for many . However, certain improvement of the

preconditioner seems to be possible. This may be a subject of further investigations.

3. ADDITIVE MULTILEVEL PRECONDITIONER

Since the BPX preconditioner [4,19] has been introduced by using finite element
spaces, we will choose both fictitious and original spaces as finite element spaces. For
the original space we take Hj = yh equipped with L, scalar product. Now we dwell
on the construction of the fictitious space. The vertices of the structured mesh o"
can be grouped as nodes contributing degrees of freedom into a space of continuous
functions which are bilinear at each elementary cell from Q", and the rest is called
‘slave’ nodes. A slave node appears when an interior edge point for some elementary
cell becomes a vertex of another elementary cell from Qh. Following the construction
in the previous section we associate each reference cell from the structured mesh o"
with its ‘south—west’ corner. However, if the reference node is a slave one, we divide
the reference cell into four equal subcells and make the middle of the cell a reference

node. The resulting structured mesh O" is a basis for the construction of the fictitious

space H whicl
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space H which is a space W" consisting of the functions which are continuous in 17,
piecewise linear at each elementary cell from Q" and vanish at 8I7. To specify the
shape of the basis function from W" associated with a non-slave node, we split each
elementary cell from Q" by its two diagonals into four triangles and define the basis
function as follows. It is continuous in I7, linear at each triangle, and is equal to 1 at
the corresponding node, 0 at other O" nodes, and 0.25 at the support cell centres.
Since the mapping from a set of reference nodes onto a set of vertices of unstructured
triangulation " is explicitly given, we can define the interpolation operator
R: W"— V" and its right inverse T: y* — Wwh via their matrix formulation as it is
done in the previous section. Let N X N-matrix A be a stiffness matrix associated with
W™, then the operators R and T satisfy conditions (1.2), (1.3) with the constants c,

and ¢, depending on minimal angle of triangulation Vool
Preparatory to specifying the BPX preconditioner for_the matrix A, we first
introduce a nodal basis function sﬁl." of level 1. The mesh Q" is a composition of M
uniform grids Q{’, I=1,...,M, which are unions of all the cells of size 2/ from Q.
Denote by ﬁl the geometric locus of points belonging to closures of cells from Q;‘
and by 9‘=ﬁ‘.\6ﬁl, =1, 2000 Tt H«}h, I=1,...,M, be a finite element space
consisting of the functions (see above) which are continuous in £, piecewise linear at
each cell from Qf’ and vanish at 98, For any node xf from Q,", xl.‘eag!, we
introduce a nodal basis function &eW, &/(x)=9; The BPX multilevel
preconditioner [4,19] is defined via its inverse ]
Bl =¥ 5 (eluhel )

BPX =1 QIEH‘E"‘ §? i i
where (a)" is the extension of the vector a € RN 1o Wh.

Theorem 3.1 ([19], see also references therein). The condition number of the matrix

BB'P}{A is bounded from above by the constant Cg,, independent of O":

-1
condBBPxA < CBPX’

The numerical solution of a system with the BPX preconditioner can be realized as
a V-cycle [4], therefore the arithmetical cost of the preconditioning N x N-matrix A is

O(N) ops.

Corollary 3.1. For the fictitious space preconditioner B, defined via its inverse
B;'=RBy\RT, the following estimate holds true:
condB; 14y < £ C
vy cp BPX

where CBPx is a positive constant independent of H", oo by AT8 positive constants
depending on the minimal angle of 1", while the arithmetical complexity of solving a
system with the preconditioner B is proportional to Nj,.
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4. MULTILEVEL LOCAL REFINEMENT PRECONDITIONER

We have chosen the multilevel local refinement technique [3,21] as one of domain
decomposition algorithms. The distinguishing feature of these methods is that we
solve discrete boundary value problems in subdomains of an initial domain. A
peculiarity of the multilevel local refinement preconditioner is that it should be
defined on the structured meshes with moderate changes in local sizes of cells forming
a mesh. More precisely, the sizes of any two adjacent elementary cells may differ by
no more than two times. These meshes are referred to as balanced. Given an initial
structured mesh Q", using certain balancing procedure we obtain the balanced mesh
éh with the arithmetical cost proportional to the number of elementary cells in oh.
We define the multilevel local refinement preconditioner on the basis of a finite
element space and hence we apply to Q" the procedure of exhausting slave nodes
from the set of reference ones, as it was described in the previous section. On
repeating the balancing procedure we obtain a balanced structured mesh Q" with
reference nodes which are not slaves. We split each elementary cell of O" by its
‘north—east’ diagonal and produce a triangulation &@" which is a basis for
construction of a fictitious space. The fictitious space H is a finite space wh
equipped with L, scalar product and consisting of the functions which are continuous
in I7, linear at each triangle from @", and vanish at dI7. The original space Hy is
chosen to be V" (see the previous section).

We define a NxN-matrix A as a stiffness matrix related to W"*. Note that
N < CN,. The interpolation operator R and its right inverse T are defined via their
matrix counterparts in Section 2. By construction Qh is finer, than O" in the above
section and therefore the operators R and T satisfy conditions (1.2) and (1.3) with
the same positive constants c, and ;.

In order to specify a multilevel local refinement preconditioner for 4, we introduce
the following notation. Let O, be a set of all the cells oféize 27t 1=1,...,M, from
o VQ{ be a set of their vertices (except slave nodes), £, be a geometric locus of

points belonging to the closures of elements from Q, (i.e. maximal ‘subdomain’ of IT,
where the elementary cell size does not exceed 27!). Denote by m the maximal I, for
which ©,=11. We split the set

into the sum of subsets:

Vm
Vp cI,,=8,n8,,\ol

g m m m

Fi1 S 01 ™ ﬁm+1\Fm\ﬁm+2\6H

V,
Ty

Vi € Oy = QAT \OT -

<y, =6y N Y TT
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This splitting generates the following block representation of the matrix A:

m m, Dy,
Af'm,m Af’m Afm,m+1
A A A
+1,I, +1 +1,0,,
e mblem T 0 e ot . (41
Armnsm"‘l Armﬂ
AFM-]_:M
L i Ay
For each subdomain £, j=m+1,...,M, we consider uniform meshes thf and
Q}f'). | with the cell size h jEh- 7 ancl 1=k =217/, respectively.

The multilevel local reflnernent preconditioner [21] can be defined by the matrix

i _‘
oty
0 ,
— ~ 4
B,,=A+ SJ,}NI-SI,-W1 4.2)
SFMI SFM 1
0
where
ol 1’\
Sf} F AI',;+1 jH1j+ 1,15
b
SF AI" AF,]+1A;+1A)+1F
and the matrices
4 ’ 4 A
Ciwak. T el ey DM
A_j+1,I} Aj+1 Aj+1,[} Aj+1
M-1.

are the stiffness matrices on Q."Jr1 1 and Q;’H j respectively, j =m,...,
Assumption 4. 1. The spectrum Sp B, lA belongs to the interval
SpBaA € [cpp1]

where the constant ¢, >0 is independent of O". The numerical experiments show
that Cn_nl <1.5;
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It can be shown that the procedure for solving the system with the matrix By, has
the form of V-cycle, at each node of which one solves the systems with the matrices
ﬁ;, I=M,...m+1mm+1,...M, where ﬁm is the stiffness}\matrix associated with
Q,,. However, to obtain the exact solutions of systems with A4, 1=M,...,m+1, may
be very expensive due to shape irregularity of the subdomain Q,. That is why we

introduce the preconditioner B, . which differs algorithmically from B in that the

preconditioner provides approximate solutions of systems with matrices ﬁl, I=M,...,
m + 1, with certain precision &> 0.
Let Spﬁl c [4p4,), 4> 0, I =M,...,m+ 1. Introduce the operator [1,20]

A ~ Vi ~ -1
- s iy
a=afi- A 54 43)
where 1, ; is the reciprocal of the roots of the polynomial

AI+AI—2x AI+.1,
P‘,I(x)z 1+Tv, _—_ﬁ_Az')v /1+Tw Al_)‘l

specially arranged [13] to avoid the instability of the iterative process.
The number of iterations at I-level depends on ¢, 4, A;

= [ ] o
o logpf 2 o \//-1;4_\/]‘—1

Theorem 4.1. Let p(A~Y), p(ﬁf) be spectral radii of the matrices A~! and 21!
1 =m,...,M, respectively. If there exists 6 > 0 such that

M ~ ~ ~ A.
gé<1, a=p(A'1)!Z p(A), A<AI<(1+0)4, l=m,...,.M 4.4)
=m

then

C 1
Sp(B-1 A)c [ Db ___. ]
PBoo,e ) 1+c,,00’ 1-09
where the constant ¢ is taken from Assumption 4.1.

Corollary 4.1. Let the hypotheses of Theorem 4.1 hold, then for the fictitious space
preconditioner B, specified by the relation By Ya RBr;nl sRT, the following estimate
is valid: :

Cr

condB"A € —
0 0 " ¢, (1-00)¢y,

1 +CDD06

where ¢, ¢, are the positive constants depending on the minimal angle of .

Since further refinement of the structured mesh Qh does not increase the ratio
cg/ Cp» We can change the shape of the domain £, Q,1=M,..m+1, for the sake
of the efficiency of A, solver. We propose an empiric algorithm which minimizes the
arithmetical cost of V-cycle. Starting from the most expensive discrete boundary value

problem solvers at the finest mesh level, the algorithm modifies O" (if it makes
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Figure 3. () An initial structured balanced mesh and (b) a final modified mesh.

sense) by extending the connected parts of £, to minimal covering rectangles (see
Fig. 3) and employs a fast direct solver there (see, for example, [12]). This procedure
is performed over all the levels [ =M,...,m+ 1, which are used in the preconditioner,
and is rather expensive since it evaluates the arithmetical cost for an inexact solver of
any discrete boundary value problem, which appears in the algorithm. However, the
above procedure is called only at the initialization step and therefore it does not affect
the computational efficiency of the preconditioner B, ,. Since the proposed multi-
level preconditioner exploits inexact solvers on subdomains, its efficiency depends on
the precision & (4.4) of inexact solvers. In our numerical experiments we use
5=0.01-0.05 that yields both the small condition number of Br;n?, A and
reasonable efficiency.

In general, it is next to impossible to make a rational estimate for the arithmetical
complexity wp, o of the above preconditioner. However, for certain classes of
unstructured meshes H:‘ we can evaluate the efficiency of the method. Let n, be
orders of the matrices A4, I = M,...,m. Consider three types of regular triangulations
mh:

(1) IT" is a quasi-uniform triangulation with a mesh parameter h. Then the computa-
tional cost of solving a system with the preconditioner in the fictitious space is less
(due to the optimization procedure) than the cost on the uniform grid with the
meshstep equal to the smallest cell size in Q", which is proportional to A. Since the
fast direct solver requires O(nlog,n) operations, where n is the number of nodes in
the uniform grid, n = O(h ~2), we can easily obtain

W W < CNylog,N,;

(2) IT" is a regular triangulation with isotropic refinements towards a set of isolated
points. In this case one can construct a structured mesh which is finer than that
produced by the algorithm and is a composition of uniform meshes in a set of squares
surrounding the refinement points, with the number of nodes in the above meshes
being proportional to n, at each level of refinement /=m,...,M. For this type of
structured mesh, fast direct solvers can be applied, which yields the estimate for less
expensive preconditioner produced by the optimization algorithm

M
o Nl T <C !ZZm n,log,n, < CN,log,Ny;
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Table 1. Properties of structured preconditioners for quasi-uniform meshes. Table 2. F
n:," 1 2 3 4 q“
ho 0.1 0.05 0.025 0.01 ko
Decrement 0 0 0 0 Decremer
Nygh 149 529 2100 12784 N
AMG
N 295 1001 3887 18226 N
(B, 1)/7(4,) 2.1 %1 2.2 1.9 (B, ")/
w(Q™)/7(4,) 13 1.4 1.3 1.2 7(Q")/x
cond B; A, 9.6 12.8 9.1 10.8 cond B, !
BPX
N 211 822 3592 17064 N
(B, )/*(4,) 1.2 1.2 1.2 1.0 (B, 1)/
w(e")/(4,) 2.7 2.1 1.9 2.1 w(Q"/r
condB‘; IAO 6.5 7.1 8.3 8.6 conclBE]
1 DD, & =0.05 G
N ‘ 231 978 4000 17086 N
(B, )/7(4,) 1.4 1.7 2.1 1.8 (B ")/
1(Q")/7(4,) 31 24 35 58 w(Q")/2
cond B, 4, 3.6 43 4.1 5.4 cond B,

A\
)

§$¢¢A¢A¢A¢¢ . e
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"V Ve#“"%ﬂ& V‘¢ ‘gs KX
D AVAVAVAVAVAVAVA RasEs
A Av VA "" .‘%l"&"j‘helvifﬁ"& FAYAYAYAYA ‘h i“;n‘u 7
AVA) /N AV e AT ATAVAYAVAYATAVAVAVAVAVAAAYAVAVAYAYY 4“,‘ o
» ‘v " FAYS v.;u!h'.t'gu‘h' AWAVAVAVAVAVAY. [
AVAVAVAY: % AT ASATATAVAVAVAAYAVAS] SKIREE
' ‘} "‘ A ey 4";‘"AT.";Y"&Y‘!'#Y.‘?%'#U#Y ¥ v= s’? 4?.““":
\VAVAY; <>/ NN ORI RN e
k YA ‘) " A=A#‘#&#A‘A“"T"‘f"""‘_ A‘A"ge‘v A" AKX
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FAVAVAVAYA = NNAVA R e ittt AKX
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h h h
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i Figure 4. Quasi-uniform triangulations. Figure 5. Regular
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peakey Table 2. Properties of structured preconditioners for meshes refined to two points.
4 ot 1 2 3 4 5
0.01 Jes 0.005 0.001 0.0005  0.0005  0.0005
0 Decrement 0.2 0.2 0.2 0.3 0.6
12784 Nph 819 1493 1816 947 386
— AMG
18226 N 1394 2547 3097 1638 745
19 (B )/1(4,) 5.7 14.3 24.2 36.8 32.4
K" +(Q")/7(4,) 1.1 1.1 1.2 I3 13
10.8 cond B; 14, 123 10.1 11.4 9.6 12.4
= & BPX
il N 1425 2595 3228 1737 757
1.0 *(B;1)/x(A,) 1.4 1.4 1.5 1.7 1.9
el w(Q")/5(4,) 2.1 22 2.0 a1 2.4
=6 cond B} 4, 7.6 7.8 9.3 8.6 6.3
]
58 5 DD, & =0.05 :
7086 N 2071 3829 4828 2055 898
heé (87 1)/7(A,) 6.3 7.2 7.4 9.4 6.3
o H(Q")/7(4,) 27 26 27 2 25
81 cond By ', 4.7 4.8 4.9 4.7 45
b v
4’%%&‘“%‘%
W e AYAVAY, SAYAV4)
AVAYAVAY, v, v 4%
A AN
SRR LK N
- AT AV
VA f#f#‘%
AR R o ST
AI#?“"I%‘KVA&%_
SRR
! PR
h h h
b I m

Figure 5. Regular triangulations refined to points.
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Table 3. Properties of structured preconditioners for regular meshes refined

to a curve.
o’ 1 2 3 i
e 0.03 0.01 0.003 0.01
Decrement 0.8 0.8 0.8 0.3
Ngh 446 1707 6443 3396
AMG
N 775 3291 11729 6068
(B, 1)/7(4y) 2.1 1.8 3.5 3.1
7(0")/7(4,) 1.2 1.1 1.2 1.2
cond B, '4, 9.3 11.9 11.4 9.1
BPX
N 752 3325 11689 6043
(By )/ 7(Ay) 11 1.4 1.4 1.3
(") /(4 1.8 2.2 2.6 2.0
condB; 4, 6.5 9.3 9.5 8.9
DD, & = 0.05
N 751 3444 11907 7018
(B, )/1(4) 8.6 12 15 7.9
w(Q")/1(4y) 35 36 38 43
condB; 4, 4.0 5.7 6.1 4.9

A

A

SR
5

] X
4“-"‘.“\,". ZRBE

Figure 6. Regular triangulations refined to a curve.
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(3) " is a regular triangulation with strong refinements towards a set of arbitrary
curves. Then it can be shown that starting from some coarse level k > m, k « M, all

the matrices A%, I=k,...,M, to be approximately inverted, have the bounded

condition numbers. The total cost of solvers for A:., I=m,...,k-1, can be evaluated
by the computational cost of the fast direct solver on a uniform mesh of size

hye_q =27k+1 Since for the above meshes the number of nodes lying outside the

vicinity of the curve is small compared to the total number of vertices (khk'_21 < CN),
one can derive

& g g, 2 -1
Wiy = Wagp, o < C| 2, 10820 ™1+ ki | < Chlogy3 ™

Bpp,e

5. NUMERICAL EXPERIMENTS

In the tables presented below we show the condition numbers of preconditioned
stiffness matrices associated with unstructured triangulations, which have been
analysed in the previous sections. These triangulations are quasi-uniform meshes and
regular triangulations refined towards either a set of isolated points or a set of
arbitrary curves. We vary the number of nodes N in a mesh by changing the
minimal mesh size A_; and the power of refinement which is defined as relative
decrement of mesh size in the direction to a refinement set (i.¢. points or curves). We
also present the dimension N of fictitious space as well as the efficiency of
preconditioners in terms of the ratio of time 7(B,) for solving a system with the
preconditioner B, to time 7(A,) for stiffness matrix 4-vector multiplication by the

assembling procedure. Besides, we give the duration 7(Q") of the initialization
procedure compared to stiffness matrix-vector multiplication time.
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