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Abstract

We describe some algorithms and software components that allow us to solve on parallel
computers classical test cases for unsteady incompressible 3D Navier—Stokes equations. Our
main focus is the design of robust and efficient parallel solvers for systems with singularly
perturbed convection-reaction—diffusion and Laplace operators, which are important con-
stituents of the Navier-Stokes solvers. The performance of the solvers on two parallel com-
puters is examined. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Navier-Stokes equations; Overlapping domain decomposition; Fictitious domain method;
Finite differences

1. Introduction

In this paper, we describe some algorithms and software components that allow
us to solve on parallel computers classical test cases for unsteady incompressible 3D
Navier—Stokes equations.

The choice of a methodology in scientific computing is always a compromise
between different criteria such as numerical efficiency and machine efficiency of the
software on a given parallel architecture, simplicity and flexibility of the method,
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robustness and peak performance of the code. This choice depends strongly on the
application itself and varies from the academic point of view to the industrial point
of view depending on economical or business constraints.

We have restricted ourselves to consider convection dominant flows with a leading
direction of propagation of the flow, such as one may encounter for internal flow in
pipes. We decided to stay away from adaptive mesh generation and to use simple
boundary fitted Cartesian grids. In this framework, our main focus is the design of
robust and efficient parallel solvers for linear operators of the following two types

—ed+dou-V +1d (1)
and
—A. (2)

These two operators appear naturally when one discretizes in time the unsteady
incompressible Navier—Stokes equation; e (resp. d) is then a small parameter pro-
portional to the time step and the inverse of the Reynolds number (resp. propor-
tional to the time step). These operators are also quasi-universal since they appear in
many other mathematical models like diffusion and/or convection effect simulation.
These operators are consequently essential components of computational physics,
chemistry or electromagnetism.

We observe that (1) and (2) have essentially different properties in the way that
perturbation of boundary conditions propagates, see [5] and references therein. In
domain decomposition methodology [9], these features are essential to the design of
efficient parallel solvers, since interprocessor communications are bound to be re-
lated to the propagation of numerical errors at the artificial interfaces. In addition to
this, the overall efficiency of the algorithm is strongly dependent on the parallel
architecture: in this paper we restrict ourselves to affordable parallel computers with
few dozen of processors or clusters of servers.

The plan of this paper is as follows. In Section 2, we describe the problem for-
mulation that leads to the operators (1) and (2). In Section 3, we construct the
discretized problems. In Section 4, we describe our solvers. Section 5 is devoted to
the numerical experiment and efficiency of the code in the steady flow case. In
Section 6 we study the efficiency of the code in the unsteady case and give additional
details on the numerical validation of the method.

An essential numerical part of the work is the usage of a parallel fast direct solver
(courtesy of T. Rossi and J. Toivanen, University of Jyvaskyla, Finland) developed
and delivered in the framework of Russian—Finnish academy cooperation. The au-
thors are very thankful to Damien Tromeur-Dervout (CDCSP, University of Lyon
1, France) for fruitful discussions.

2. Problem formulation

Let Q € R® be a domain with a piece-wise smooth boundary 9Q. The domain is
occupied by a fluid with a kinematic viscosity v and a density p. We denote by u(x, ¢)
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the velocity with components (u;,us,u3) and by p(x,¢) = P(x,t)/p the normalized
pressure of the fluid. The flow of incompressible fluid with prescribed values of the
velocity on 0Q obeys the Navier—Stokes equations:

%—vAu—&—(wV)u—&—Vp:finQ, (3)
u=g on 0Q,

(4)
divu =0 in Q.

An important parameter for flow similarity is the Reynolds number Re = UD/v,
where U and D are characteristic velocity and length, respectively.

The time discretization is performed in the framework of the projection algo-
rithm:
e step 1. prediction of the velocity a**! by solving

ﬁk+1 _ uk ﬁk+1 + uk 3 1 ﬁk+1 + uk
—vA e = | . - =
YA ((2“ 2" ) V) 2

=12 _vptin Q, (5)

"' = g on 0Q; (6)

e step 2. projection of the predicted velocity to the space of divergence free func-
tions

1
~divVop = — L divat, (7)

W =@ AVap, P =t op. (8)

Two important remarks are pertinent here. Eq. (5) is the Crank—Nicolson scheme
with the second-order extrapolation of the convection field. Thus, we may expect the
second-order of accuracy in time. Second, we pose no boundary condition for
pressure correction. As a matter of fact, the Navier—Stokes equations may be con-
sidered as a boundary value problem for velocity (3) with Lagrange multiplier p
which is introduced in order to compensate the additional constraint (4). From this
point of view, no boundary condition for pressure is needed. The number of degrees
of freedom for the discrete pressure variable should be then equal to the number of
discrete constraint Eq. (4). Eq. (7) is to be considered as a constituent of the pro-
jection operator (7) and (8); on discrete level, it may appear from algebraic argu-
ments rather than from an approximation of a boundary value problem. Following
this strategy, we approximate (5) as an elliptic problem for a**' with the right-hand
side /2 — Vp* plus terms depending on uf,
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3 ﬁk+l ﬁk+l

y 1
— VAR 4 ((uk . uk—l> -V) WY Rt gy Q,
2 2 2 2 At (9)

ﬁk+1

=g on 0Q.

In contrast, Eq. (7) is not approximated as a b.v.p.; its discrete counterpart is gen-
erated from algebraic considerations.
We are now going to discuss the space discretization of the problem.

3. Construction of the discretized problems

Let Qf“ be a rectangular grid associated with a velocity component u;, i = 1,2,3
(see Fig. I; for the sake of simplicity, all figures below present the 2D case).

The Laplace operator is approximated by the standard finite difference scheme
resulting in the 7-point stencil, see Fig. 2. The convective term is approximated either
by the upwind finite differences, or by the central finite differences, or their linear
combination. To define the second order approximation of Eq. (5), we proceed as
follows [13]. The set of grid nodes of Q? is split into nodes within © (inner nodes),
and the others (external nodes). The inner nodes are split into two subsets denoted
by Type 1, Type 2 in Fig. 3. All the stencil neighbors of the nodes of Type 1 are inner
nodes, while any node of Type 2 has at least one external neighbor. The discrete
counterpart of Eq. (5) corresponding to the node of Type 1 is nothing but the most
straightforward and simplest finite difference approximation; for the Laplace oper-
ator, we have

(ur — o) [hy — (w0 — wy) /1y n (uy —uo)/hy — (o — ua) /ha

—Au ~
! (ke + 1) /2 (hu + ha) /2
(ur —uo)/hy — (uo — up) /hy
(hy 4 hy)/2
T 5Q
[
|
\ Q
hy i
T y

hx

X

Fig. 1. The grid Qf‘ for velocity component ;.



M. Garbey, Y.V. Vassilevski | Parallel Computing 27 (2001) 363-389 367

Ad

h4

A3 h3 hl Al

A0

h2

[]

A2

Fig. 2. Finite difference stencil for the Laplace operator.
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Fig. 3. Inner nodes of the grid Q.

For the convective term, we will take central finite differences

U, — uy U, — Uy Uy — Up
bV)u =~ b b b
( )u lhr+h1+ 2hl,+hd+ 3h_/’+hb

or one-sided finite differences
Uy — Uy

Uy — Uy U, — Uy

(bV)u ~ max(b;,0) + min(by, 0) + max(b,,0) 7
! r d

Uy — Up Ur — Up

+min(by, 0) 2 + max (b3, 0) + min(bs, 0) %
hy, b hy
depending on the cell Reynolds number.

The grid equation at a node of Type 2 may not be written as easy as above, since
there exists at least one grid node from the stencil where the grid function is not
defined (see Fig. 4). However, this external node may be replaced by its projection
onto 0Q (point A; in Fig. 4). The value of grid function is known at A4;, since
u(43) = g(4;). This operation deforms the stencil, but the second-order accuracy
may be still proven for the Poisson problem [13]. From implementation point of
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Fig. 4. Deformed stencil for the node of Type 2.
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Fig. 5. Virtual nodes of Type 3.

view, we define the nodes of Type 3 which are not the grid nodes but are intersections
of the grid lines and 0Q (see Fig. 5). The nodes of Type 3 contribute to stencils for
inner nodes of Type 2, but they are not the nodes where Eq. (5) has to be approx-
imated. For the sake of stability of approximation, Type 3 is reassigned also to those
inner nodes, whose distance to 0Q2 is small with respect to local mesh sizes. In other
words, the nodes from a narrow close-to-boundary strip are eliminated from the set
of inner nodes (see Fig. 3).

Given arbitrary rectangular grids Qf.’, i =1,2,3, each component of the velocity u;
is approximated on its grid ©/ independently of other components. The second-order
accuracy both in time and space is provided for the problem (5). However, the need
in approximation of the constraint condition (4) and pressure variable p poses severe
restrictions on freedom for choosing the grids Qf’ ,i=1,2,3. One of the earliest and
the most elegant solutions is the use of staggered (or MAC) grids. These grids are
constructed as follows [2,8]. In domain Q we define a basic rectangular grid €. The
grids Q", i = 1,2,3, are built on the basis of Q}. The nodes of Q" are located at the
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Fig. 6. Staggered grids.

midpoints of horizontal (i.e., parallel to the x-axis) edges of the basic grid Qg (they
are shown by x in Fig. 6); the grid QZ has its nodes at the midpoints of vertical (i.e.,
parallel to the y-axis) edges of €, (o in Fig. 6). The grid Q’; is constructed analo-
gously, by shifting ) along the z-axis.

For regular grids the pressure derivative is naturally approximated by the central
differences:

[@} o Pitly — Pij
Ox i+1/2, ho

The divergence of the vector field u is approximated at the nodes of Q’g by the central
differences as well:

up. o — Uq. . Uy, . —
i+1/2,) i~1/2,j ij+1/2
+

uzi.j—l/z
hl h2 + ( )

[divul, ; ~

The above stencils both for the pressure gradient and the velocity divergence
provide the second-order accuracy of approximation even on non-uniform meshes
with smooth mesh size function [13]. Unfortunately, this holds true only for the
nodes apart from the boundary 0Q. At close-to-boundary nodes (Type 2) we proceed
as follows.

The grid Qﬁ associated with the pressure and the divergence serves as the basis for
generation of the grids Qf.’, i = 1,2,3. The latters are used to approximate (5) in the
domain Q. Those nodes of Qf.’, i =1,2,3, which contribute a degree-of-freedom to
(5), are identified by their location with respect to 0Q. The nodes contributing de-
grees-of-freedom to the pressure/divergence space are identified alternatively. A
pressure node is said to be a contributor if at least one of the terms of the sum (10)
contains a value associated with a node of Type 1 or Type 2. For example, the node
{i,j} in Fig. 7 is the contributor, since the node {i + 1/2,,} is of Type 2 for the
component u;. Such a definition enables us to specify degrees-of-freedom for the
pressure automatically. The approximation of the pressure derivative at node
{i +1/2,j} maintains the second-order of accuracy. However, the divergence ap-
proximation at node {i,;} faces severe problems, since the values of the velocity

components u u are not defined. The remedy is to use instead of

i-125° %2120 21501
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Fig. 7. Contributor-nodes for the pressure and the divergence stencil.

them the boundary values at points of 0Q which are the projections of {i — 1/2, j},
{i,j+1/2},{i,j — 1/2} (shown by ® in Fig. 7). The substitution deforms the stencil
for the divergence yielding no more than the first-order of approximation. Moreover,
due to different stencils, the pressure gradient matrix is not equal to the transposed
divergence matrix. The “unsymmetry” might be unsatisfactory. So we can preserve
the “symmetry” in approximation of divergence and gradient operators as follows.
We define the pressure gradient submatrix associated with any node of Type 2 to be
the transposed submatrix of the divergence operator. The pressure gradient is not
approximated with the second-order of accuracy anymore. Moreover, its stencil
looks as if we “‘staggered” the pressure node into three different midpoints of the
divergence stencil edges. We apply both options for the pressure gradient discreti-
zation distinguishing them as symmetric and unsymmetric divergence/gradient pairs.

Finite difference approximations on staggered grids are proven to be stable. It
means that the convergence of the scheme for the velocity causes the convergence for
the pressure. The fundamental LBB condition

di
sup (p,div u) > Gollpll,, Vp L KerV

ulKer 4 Hu”Hl

with constant C, independent of the number of degrees-of-freedom, was proven in [6]
for a rectangular domain, and analyzed in [1] for a domain with curved boundary
and logically rectangular mesh.

Remark. Though the above scheme is very simple and thus attractive, it has severe
drawbacks. First, the stability arguments may require the upwind approximation of
the convective term. The above simple form of the upwinding leads to the first-order
accuracy. More complicated upwind approximations preserve the second-order of
spatial accuracy [14]; we do not discuss them since for the Reynolds numbers and
meshes in our numerical experiments it is sufficient to apply the central finite dif-
ferences except in the region far away from the obstacle where the space mesh step is
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large. Second, the discrete divergence approximates the differential one with the first-
order in the close-to-boundary nodes. To cope with the problem, we might modify
locally the discrete scheme either by using one or two layers of finite elements, or by
applying the gridless method, or by fitting grids to the boundary. However, as we
show in experiments, this weakness has a little impact on the computation of lift and
drag which are the most important practical values for most simulations.

4. Description of the linear solvers

Taking the advantage of the technique discussed above we write the discrete
counterpart of the projection algorithm (5)—(8). We denote by 4;, (bV,) the finite
difference Laplace and convection operators on the grid Qf’, i=1,2,3. By divy and
V, we denote the discrete divergence operator and the pressure gradient operators,
respectively. Due to the choice of the discrete approximation, the matrix —divyV is
a square matrix of order equal to the number of degrees-of-freedom in the discrete
pressure/divergence space. We avoid the problem of boundary conditions for pres-
sure in (7) by generating the problem (7) algebraically. Let [, u stand for the second-
order interpolation of the staggered velocity components on the grids Qf’, i=1,23.
Then the discrete projection algorithm reads as follows.

Predict the velocity component G/*! by solving the momentum equation

@ 3,01, @ o
YR R H(E" 2" )Vi 2

= [ (Veph), in @, (11)

i'=g,0n0Q, i=1,23.

Find the pressure correction and project the predicted velocity

1
—divoVoop = — Edivo o T =0T — AVop, P =P+ p. (12)

4.1. Parallel Schwarz method

Problem (11) is a discrete convection—diffusion—reaction problem. This is a two-
parameter singular perturbation problem with respect to the small diffusion term (v)
and the time step (Af). A parallel solver based on a two-level Schwarz method was
presented in [3,5]. At the outer level, the original domain is split into overlapping
crosswind strips (slices) €,,, see Fig. 8.

The classical Schwarz method in the downwind direction is the outer part of the
algorithm. Even with minimal overlaps very few outer iterations are needed to reach
a prescribed accuracy. The fast convergence is a consequence of the very fast upwind
decay of numerical errors introduced at artificial interfaces parallel to the z-direc-
tions. It is natural to use a Schwarz method for the inner iterations. We split each
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Fig. 8. Data allocation for a velocity component cluster.

strip-subdomain Q,, into overlapping boxes Q,,; and define the inner iterations using
a version of the multiplicative Schwarz method. The novel feature of the version of
the Schwarz method selected for the inner iterations is that the choice of overlapping
domain decomposition is based on the fast crosswind decay phenomenon [5]. At the
level of the inner iterations, we have natural parallelism, since each of the box-
subdomains can be treated by its own processor. It is very important that the number
of iterations between the box-subdomains with odd and even indices may be very
small (1 or 2) and small overlaps practically do not affect the fast convergence of the
algorithm. In the current implementation the uniform domain decomposition is
logically two-dimensional, the overlaps between subdomains are small (two mesh
steps). As it was shown in [3], no adaptive decomposition is needed due to the
presence of the large factor 1/At¢ in the reaction term.

4.2. Parallel generalized conjugate residual method with a fictitious domain precon-
ditioner

Though the matrix of the pressure correction problem (12) is singular, the system
is consistent due to algebraic generation of the matrix divoVy. We apply the pre-
conditioned generalized conjugate residual (GCR) method [12] to the system (12).
Let matrix B be a non-singular preconditioner for matrix —divoV,. Then a system
—divgVox =y may be transformed to a system Ax =5 with the matrix
A = —B~'divyV, and the right-hand side b = B~'y. The GCR method is as follows.
1. Compute ry = b — Axy. Set py = ry.

2. For j=0,1,2,..., until convergence Do:
3 o = nAp
o % Tpydpy
4. xj‘+] :xj+ijpj
5. errl:rj_ajApj'A‘ ;.
6. Compute f§; = —&Elﬂ’;‘) fori=0,1,...,;.
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7. Pi+1 =Ty + Zj-zo ﬂszi-
8. EndDo

The preconditioner is based on the fictitious domain method [7]. Let the number
of contributor nodes be n;, and the number of the remaining nodes in Qg be n,, and
the contributor nodes are numerated first. We define a preconditioner B! = 7C~!TT,
where T =[I O],1 € R"™™, T ¢ Rn*mim) ¢ ¢ Rimtn)xmin) Matrix Cis an easily
invertible separable discrete operator:

C=(M @M, @M;) " (4] @ My @ Mz + M, @ Ay @ My + M; @ My @ 43).

Matrices A;, M; are the one-dimensional stiffness and lumped mass matrices (with
Neumann boundary conditions) associated with the axes traces of the grid Q. It may
be shown that the matrix C is spectrally equivalent to a finite difference counterpart
of the Laplace operator with homogeneous Neumann boundary conditions on Qg
The lines of the matrix —divgV, do not differ from the lines of finite difference La-
place operator in all the contributor-nodes except the close-to-boundary nodes. The
lines of —divyV, associated with the close-to-boundary nodes may be thought as
some discretizations of inhomogeneous Neumann boundary condition. Thus, ac-
cording to the theory of the fictitious domain method [7], we may expect some kind
of spectral equivalence between matrices B and —div,V,. Since matrix divyV) is not
symmetric, the spectral equivalence has to be understood as existence of such a fixed
domain in the complex plane separated from the origin, that all the eigenvalues of
the matrix 4 = —B~'divyV, belong to it. As a result, the GCR method will converge
with a rate independent of the order of matrix —divyVy. Linear systems with matrix
C are assumed to be solved by a parallel fast direct solver for discrete separable
operators [10,11].

In order to minimize the mean number of GCR iterations to be performed at
each time step, we accumulate the Krylov space in terms of vectors p;’s and
Ap;’s. Before applying GCR to the system with a new right-hand side b, we find
a good initial guess by projecting xo = 0 onto accumulated Krylov space {p,-}f:1
[16]:

(b,Ap,-)

Xo = PR L

B i=1 (ApHApl) "

In fact, we invert the matrix of the system projected onto the Krylov space. This
operation costs k scalar products and requires no matrix—vector or preconditioner—
vector multiplications. As the flow is fully developed, this projection saves a lot of
computation. The reason is that almost all information about the solution for the
new time step may be extracted from the accumulated Krylov space. The projection
does not affect the convergence rate. It does generate a very good initial guess to start
with. In the case of essentially unsteady flows such a good initial guess may not be
obtained by extrapolations from the previous time steps: the error of initial guess due
to extrapolations is quite large and spans many vectors (if not all) from the future
Krylov space. Hence, in view of absence of effective projection, the iterative reduc-
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tion of the error will be dictated only by the properties of the preconditioner in this
case.

4.3. Computer realization

An important feature of parallel implementation is a clusterization of the solver.
Each velocity component satisfies the momentum equation (11) independently of
other components. Therefore, it is natural to parallelize the solution of (11) as fol-
lows. We split the set of available processors into three velocity component clusters.
Each cluster solves the momentum equation for respective velocity component: the
grid Q! is generated, the subdomain matrices are formed and factorized, right-hand
sides of the linear systems are generated. The intercluster communication is needed
only for the transport vector [],(3u* —lu*~') interpolation.

The pressure correction (12) has to be done after the momentum equation (11)
solution. Hence, the pressure cluster may be formed on the basis of the velocity
component clusters. Ideally, the pressure cluster should be the union of all the ve-
locity clusters. Then the load balancing would be very good since no processor would
stay idle. However, the current version of the parallel fast direct solver poses severe
restrictions on the number of processors in the pressure cluster (2”). As we will see
later on, in practice the pressure cluster does not coincide with a velocity cluster. In
order to pass the right-hand side of (12) to the pressure cluster and return the
respective solution to the velocity clusters, we do apply intercluster communications
as well.

Now we discuss briefly the parallel implementation of the Schwarz algorithm.
Although it is possible to pipeline the Schwarz fractional steps associated with the
global downwind propagation, we do not consider this opportunity since we deal
with an algorithm which requires very few iterates and consequently makes the
pipelining inefficient. In spite of the sequential realization of the downwind com-
putations, we can parallelize the algorithm when solving the crosswind subproblem:s.
More precisely, the /l-processor treats subdomains €,,,,_1, €,,2;, and exchanges with
the processors [ — 1, [+ 1, by the solution traces on 0Q,,;,, s =2/ —2, 2/ + 1 (see
Fig. 8).

Thus, given NPr; processors in a velocity component cluster, the -processor deals
with data associated with the downwind strip | (Q2,2/-1U Qu21), I =1,...,NPr;,. We

solve the subdomain problems exactly, takinmg advantage of a factorization tech-
nique. We motivate factorizing the respective matrices by the nature of the domain
decomposition algorithm: first, we factorize matrices once only at each time step,
second, the algorithm is well suited to a parallel computer which enables to reduce
considerably both the dimensions of the subproblems and the natural bandwidth of
the matrices, third, with factorization we avoid the problem of an optimal stop
criterion for any iterative solver. Since we solve the grid subproblems in €, by a
factorization technique, for the same grid and the same overlap the increase of NPr;
would decrease the arithmetical complexity of the global Schwarz iteration. At the
same time, with NPr; growing the communications time does not vanish due to the
latency time.
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Fig. 9. A sample of communication pattern in the case of eight processors in the pressure cluster.

Data in the pressure cluster are also split in the downwind strips. The number of
the “pressure’ strips is equal to the number of processors in the pressure cluster.
The number of nodes in any cross-section of the pressure strip is about the same
for all processors from the cluster. Thus, a reasonable load balance has to be
expected. The communications within the pressure cluster are not trivial (see Fig. 9
for the case of eight processors). It is pertinent to note that communications occur
not only between neighbor-processors. It makes the pressure correction solver
more heavy from the point of view of communications. The latter observation will
be clearly illustrated by the parallel scalability measurements given in the next
sections.

5. Numerical experiments and efficiency of the code in the steady case

We are going to report on numerical results and parallel efficiency of our method
for a given steady flow configuration first.

5.1. Description of the test case for steady flow

An incompressible Newtonian fluid is considered. The kinematic viscosity is v and
the density is p. The flow around a cylinder with circular cross-section has to be
simulated [15]. The problem configuration and boundary conditions are illustrated
in Fig. 10. The outflow condition can be selected by the user. The inflow condition
is

U(0,y,z) = 16yz(H — y)(H — z)/H*, V =W =0.
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Fig. 10. Configuration and boundary conditions for flow around a cylinder with circular cross-section.

Some definitions are introduced to specify the values which have to be computed.
The height and width of the channel is H = 0.41 m, and the side length is 2.5 m and
diameter of the cylinder is D = 0.1 m. The characteristic velocity is U(¢) = 4U
(0,H/2,H/2,t)/9, and the Reynolds number is defined by Re = UD/v. The drag and
lift forces are

Ouy Ou,
= —n, —Pn, | d F=- — Pn, ) d
D /S(pv n n, x> S, L /S(pv n n, + y> S

with the following notations: surface of cylinder S, normal vector n on S with x-
component n, and y-component n,, tangential velocity u; on S and tangent vector
t = (n,, —n,,0). The drag and lift coefficients are

2Fp 2FL
= —72 s CL = T .
pU°DH pU°DH

The case of Re = 20 (v = 1/450) corresponds to the steady case solution. The time
step is At = 0.01, the number of time steps is 200. The Cartesian grids are refined
near the cylinder location, as it is shown in Fig. 11.

In Table 1, we present the computed drag and lift coefficients on different grids for
two types of the pressure gradient discretization. The central finite differences can
still be used to discretize the convective term because the Reynolds number is not
very large.

The data in Table 1 show that:

e The drag and lift coefficients are in reasonable agreement with referenced values

[15];

e The symmetric choice of divergence/pressure gradient discretization is a bit better
then unsymmetric one;

e The twofold coarsening of the grid in z-direction does not affect the drag and lift
coefficients.

¢p
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Fig. 11. Example of a Cartesian grid used in computations.

In the sequel, we present time measurements only for the symmetric pair of di-
vergence/pressure gradient. In Figs. 12-14 we display the spatial distribution of the
velocity modulo, pressure, and x-component of the velocity, respectively.

All numerical results reported in Section 5 have been obtained using a DEC
TruCluster: this machine has six 4100 alpha servers (hypernodes) connected through
a memory channel. Each alpha server has four Dec alpha processors running at
400 MHz, with 4 MB of cache memory and about 800 MB of shared memory. The
maximum bandwidth of the memory channel is about 800 Mb/s.

5.2. Arithmetical scalability

The stop criteria for the momentum equation and the pressure correction
solvers are chosen to be 1077 and 10~° for Euclidean norms of residuals. For the
pressure correction it means relative reduction of the residual norm by a factor of
10711077 depending on the time step (with zero initial guess). The projection onto
the Krylov space produces an initial guess with residual norm as much as the norm
of the right-hand side times 10-7-107%! The number of GCR iterations needed to
satisfy the stop criterion drops from 10-15 to 2-5 in case of fully developed flow.
The values for stop criteria were chosen rather artificially. The criteria may be
relaxed if arguments of stability were taken into account. Such a relaxation may
cause better balance between the velocity and the pressure solvers. In Table 2 we



Table 1
Steady case: the drag and lift coefficients
Div/pres.grad Coef.\grid 40 x 25 x 72 80 x 25 x 72 40 x 50 x 72 80 x 50 x 36 80 x 50 x 72 Ref. coef.
Symmetric ¢p 6.05 59 6.15 6.06 6.04 6.05-6.25
cL 0.013 0.01 0.0093 0.014 0.013 0.008-0.01
Unsymmetric cp 6.16 5.93 6.18 6.06 6.04 6.05-6.25
cL 0.015 0.012 0.0098 0.016 0.016 0.008-0.01
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Fig. 12. Test case 1: the absolute value of the velocity.

Fig. 13. Test case 1: the (normalized) pressure.
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Fig. 14. Test case 1: u;.

Table 2

Execution at 18 processors, number of time steps is 200
Grid 80 x 50 x 72 40 x 50 x 72 80 x 25 x 72 40 x 25 x 72
Exec. time (s) 6653 4080 5050 1439
Velocity solver
Factor. time + 442 4 953 210+ 425 207 + 480 98 + 227
Schwarz time
Total no. Schwarz iter. 1155 1099 1124 1091

Pressure solver
GCR time 3619 2579 3495 550
Total no. GCR iter. 1630 2177 3140 2908
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Table 3
Arithmetical scalability in terms of averaged execution time
Grid 80 x 50 x 72 40 x 50 x 72 80 x 25 x 72 40 x 25 x 72
Velocity solver
Factor time at each time 2.2 1.05 1.03 0.49
step
One Schwarz iter. time 0.82 0.39 0.42 0.21

Pressure solver
One GCR iter. time 2.2 1.18 1.11 0.19

show time measurements obtained with 18 DEC alpha processors of our DEC
TruCluster with different grids.

As it is seen, the total number of Schwarz iterations is insensitive to the grid which
is essentially anisotropic. The total number of GCR iterations is affected by the grid.
It is surprising that the smaller is the grid, the more iterations should be done. The
reason is that small grids have the highest anisotropy.

Although we may judge the balance of the arithmetical load and overall elapsed
time from the data presented in Table 2, precise conclusions may be derived from
Table 3. Here we show the factorization time for the velocity solver at each time step,
the average durations of one Schwarz and one GCR iterations. These data are in-
dependent of the number of iterations and may be used for the arithmetical scala-
bility presentation.

We see that any averaged execution time is proportional to the number of nodes
along x- and y-axes. The only exception is the duration of GCR iteration on small
grid (last column). Such discrepancy is probably caused by the cache memory
effect.

5.3. Parallel scalability
In order to measure a parallel scalability, we fix the arithmetical load per pro-

cessor and increase the number of processors both in the velocity component and the
pressure clusters. In Table 4 the total timing is shown. The following notations are

Table 4

Execution at NPr processors, number of time steps is 200
Grid 80 x 50 x 20 80 x 50 x 36 80 x 50 x 72
NPr/NPr;/NPry 6/2/2 9/3/4 18/6/8
Exec. time 1485 2438 6653
Velocity solver
Factor. time + Schwarz time 3254418 442 + 556 442 4+ 952
Total no. Schwarz iter. 808 824 1155

Pressure solver
GCR time 315 680 3619
Total no. GCR iter. 998 1081 1630
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used here. NPr stands for the total number of processors, NPr; the number of pro-

cessors in each velocity component cluster, and NPrq is the number of processors in

the pressure cluster.

Similarly to the arithmetical scalability measurements, the variable number of
iterations does not allow one to judge the actual parallel scalability. To this end, we
consider the averaged time of factorizations at each time step, as well as averaged
time of one Schwarz and one GCR iteration.

A parallel algorithm is scalable, if execution time (per iteration) does not increase
as the number of processors grows. As it is seen from Table 5, it is not the case for
both linear solvers. However, if we take into account that the actual computational
load on the first grid per processor from velocity component clusters is 20% less than
the loads on other grids, we get a satisfactory parallel scalability: 1.6 becomes 1.92,
0.52 becomes 0.63. The reason for bad parallel scalability for the pressure solver is
not completely clear. We suggest three complementary reasons as follows:

o the overall arithmetical complexity of the fast direct method is Nlog N (X is the
number of unknowns), and log N comes from the number of unknowns along
the z-axis (which is split among processors);

e higher number of processors in the pressure cluster results in higher level of
exchanges between processors (see Fig. 9), and the weight of communications
increases;

o the memory channel that we use does not have enough hardware resources and
MPI-exchange within a hypernode is faster than between hypernodes. On comput-
ers with more homogeneous physical links the pressure solver exhibits the good
parallel scalability [10,11].

We have focussed our attention on the last issue by measuring intercluster
communications. Though the main computations are localized within the clusters,
the implementation requires intercluster communication. It is necessary for the
interpolation of the velocity on different grids and gathering right-hand sides/
broadcasting solutions of the pressure correction problem. The intercluster
communication sends or receives global data associated with some downwind
strips. It occurs three times per each time step. In Table 6 we present characteristic
time for intercluster communication compared to overall execution time.

We are now going to extend our numerical experiments to unsteady flow.

Table 5

Parallel scalability in terms of averaged execution time
Grid 80 x 50 x 20 80 x 50 x 36 80 x 50 x 72
NPr/NPr;/ NPry 6/2/2 9/3/4 18/6/8
Velocity solver
Factor. time at each time step 1.6 2.2 2.2
One Schwarz iter. time 0.52 0.67 0.82

Pressure solver
One GCR iter. time 0.32 0.63 2.2
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Table 6

Intercluster communications
Grid 80 x 50 x 20 80 x 50 x 36 80 x 50 x 72
NPr/NPr;/NPry 6/2/2 9/3/4 18/6/8
Exec. time 1485 2438 6653
Intercluster comm. 45 87 295
No. of intercluster 600 600 600
communications

6. Validation and efficiency of the code in the unsteady case
6.1. Description of the test cases for unsteady flows

We consider the same test case as above but with a Reynolds number Re = 100 in
order to have the flow unsteady. The flow exhibits then periodic vortex separations.
This test case will be named 3D-2Z as in [15]. We will also consider the test case so-
called 3D-2Q for which the cylinder cross-section is a square and can be matched
exactly or not with the Cartesian grid. The domain and type of boundary conditions
are then no different from those in the steady case considered in Section 5. The fol-
lowing quantities are to be computed: maximum drag and lift coefficients and Strouhal
number St = Df/U. In this expression f is the frequency of separation of vortices.
Computations were performed with different time steps on the grids 80 x 70 x 64
(resp. 80 x 60 x 64) with 24 processors of our DEC TruCluster (resp. a Cray T3E).

Our numerical grid is similar to the steady case described above, except that the
aspect ratio of space step is as large as 60. The central finite difference approximation
for the convective term appears then to be unstable on this grid, and the upwind finite
differences are not accurate enough. We use then a linear combination of the central
and upwind finite differences weighted properly depending on the cell Reynolds
number. The weights are chosen in such a way that the scheme in the subdomain
QN {(x,»,2)]0.1 <x < 1.5} is pure central finite difference, and in the remaining part
of Q the upwind difference is substituted linearly for the central difference.

6.2. Validation of the method

In Table 7 we present the computed maximal drag and lift coefficients and
Strouhal number. The time interval is [0; 8].

Table 7
Unsteady case: the drag and lift coefficients and Strouhal number for the grid 80 x 70 x 64
At Computed Referenced
Dy Clnsy St Dy Clnss St

0.01 3.23 -0.008 0.35 3.29-3.31 —0.011 to —0.008 0.29-0.35
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The result of Table 7 is certainly not enough to validate our methodology, since
the effect of the time stepping, the grid discretization and the robustness of the it-
erative solver should be investigated (see Tables 8-11).

Let us consider first the effect of time stepping.

Table 8
The effect of the shape of the domain. First-order of accuracy, the time step is 0.008, tolerance for velocity
is 1077, tolerance for pressure is 107*

Cross-section of the obstacle n, ny

Circular 6 4
Square 3 4

Table 9
The effect of the time step®

Time step n, ny
0.02 10 8

0.01 7 5
0.008 6 4

# Circular cross-section of the cylinder, first-order of accuracy, tolerance for velocity is 1077, tolerance for
pressure is 1074,

Table 10

The effect of the order of the spatial accuracy*
Order of accuracy n, ny
First 3 4
Second 3 4

#Square cross-section of the cylinder, the time step is 0.008, tolerance for velocity is 107, tolerance for
pressure is 1074,

Table 11

The effect of the tolerances for the linear solvers®
Absolute tolerance n, ny
Pressure Velocity
1074 1077 7 5
2x 1074 2x 1074 6 3

# Circular cross-section of the cylinder, first-order of accuracy, the time step is 0.01.
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Fig. 15. The lift coefficient computed with different time steps (left) and a zoom of the plot (right).

6.2.1. Effect of the time stepping (3D-2Z)

In Fig. 15 we present the lift coefficient computed with different time steps.

The smaller time step gives the closer maximal value of the lift coefficient to the
referenced value for the fully developed flow (-0.011:—-0.008) [15,17]. However, the
frequency of separation (and Strouhal number) are the same.

Let us notice however that we have restricted ourselves to constant time stepping.
As a matter of fact, the adaptive time stepping for the projection technique is not
very well known [17].

We proceed to the effect of the space grid.

6.2.2. Effect of the curved boundary (3D-2Q)

In order to check the sensitivity of the computation to the discretization of the
curved boundary condition, we consider the cylinder with a square cross-section
instead of a circular cross-section. We can then compare the results when the cross-
section boundary points match the space grid, with the case where it does not.
Though the reference solution for 3D-2Q is not known [15], we can compare the
solutions due to different orders of approximations for the pressure gradient and the
velocity divergence. In the first case the approximation is analogous to the case 3D-
27 with curved boundary approximations. In the second case, we shift the nodes of
the grid in such a way that both the divergence and pressure operators are ap-
proximated with the second order in close-to-boundary cells. In Fig. 16 we show the
lift coefficient in both cases.

The frequency of separation (and Strouhal number) are the same. Since no ref-
erence solution is known, we cannot conclude that the second order is better. At
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Fig. 16. The lift coefficient computed with different order of spatial accuracy (left) and a zoom of the plot
(right). The time step is 0.008.

least, the discrepancy is rather small. This “advocates” our approach. Next, we are
going to test the robustness of our iterative solvers with respect to various param-
eters.

6.2.3. Convergence of iterative methods
In Tables 11-13 below we consider the effect of the domain shape, time step, order
of accuracy of the numerical approximation and tolerances for the stop criterion in

Velocity solver

Table 12

Execution time for unsteady case®
Computer DEC TruCluster Cray T3E
Grid 80 x 70 x 64 80 x 60 x 64
NPr/NPr;/NPry 24/8/8 24/8/16
Exec. time 34611 12305

Factor. time + Schwarz time 1306 + 3898 1854 + 4462
Total no. Schwarz iter. 4043 4049
Pressure solver

GCR time 21150 3090

Total no. GCR iter. 4912 3882

#Total number of nodes is 373815 (80 x 70 x 64), and 321165 (80 x 60 x 64), At = 0.01, the number of
time steps is 800.
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Table 13

Convergence and execution time on 24 processors of Cray T3E®
Solver Velocity Pressure Velocity Pressure
Stop criterion, |.||,, 1077 107 2x 107 2x 107
Total number iterations 4049 3882 2498 3439
Exec. time of iterations 4462 3090 2757 2737

#Total number of nodes is 321165, the number of time steps is 800.

iterative solvers on the convergence of linear solvers. By n, and ny we denote the
mean number of iterations for the pressure and velocity solvers, per time step, re-
spectively.

These results exemplify the robustness of our iterative solvers. Let us
compare now the elapse time to run our code with two different parallel
computers.

6.3. Comparison of the performances with two different parallel architectures

In Table 12 we exhibit time measurements on DEC TruCluster and Cray T3E-
750 for 800 time steps with Ar = 0.01. The DEC alpha processors of the Cray
computer have 375 MHz clock, the bandwidth between two neighbor processors
is 480 MB/s and the latency is of the order of one microsecond. The stop cri-
terion for pressure correction is relaxed to 10~ (absolute value of residual
norm). As it can be seen from Table 12, there is a dramatic difference of per-
formance for the pressure solver between the CrayT3E (24 processors) and the
DEC TruCluster (18 processors) elapse time. In the mean time the velocity solver
requires slightly more time on the Cray T3E than on the DEC TruCluster. This
last result is coherent with the ratio of clock speed of alpha processors on both
computers. In addition, for the velocity solver, vector data exchange takes place
only between “neighboring” processors whereas for the pressure solver vector
data exchange occurs between processors which are ‘“neighbors” on different
levels of the processor network, see Fig. 9. In case of large amount of data, the
intercluster communications on the DEC TruCluster induced by the pressure
solver slow down the computation. In particular, the pressure solver on 16
processors runs slower than on eight processors, though the velocity solver shows
good parallel scalability (see Table 5). Alternatively, both solvers are scalable on
Cray T3E. Our main conclusion is that we do need a different two-level parallel
algorithm specific to the multicluster architecture for the pressure solver that is
less sensitive to the elapse time and bandwidth of the inter-cluster communica-
tion network [4].

In order to illustrate the effect of stop criteria on the computational time, we
present in Table 13 the execution time and total number of iterations depending on
the value of the tolerance for the residual norms.
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7. Conclusion

In this paper, we have focussed our attention on fast and robust parallel solvers
for the Laplace operator and singularly perturbed convection—diffusion-reaction
operator that appeared to be essential components of the incompressible Navier—
Stokes solver. We have restricted ourselves to simple stretched 3D Cartesian grids
and validated our methods with the computation of lift and drags for internal flow
past a cylinder.

Two different parallel techniques were used for solving the momentum equation
and the pressure correction. The two-level Schwarz method based on overlapping
domain decomposition was applied to the momentum equations and the fictitious
domain method with parallel separable preconditioner (divide and conquer direct
method) was used as a pressure solver. Both of them reveal high parallel efficiency on
parallel computer with uniform architecture as the Cray T3E. On non-uniform
parallel architecture as multiclusters, we have shown that the solver for the mo-
mentum equation is still scalable. However, the pressure solver can suffer from in-
tercluster communications, when one uses a divide and conquer direct solver for the
preconditioner. For heterogeneous architectures, the solvers are to be adjustable to
the hierarchy of intercluster links [4].
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