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SUMMARY

This paper presents an overview of two-stage decoupling preconditioning techniques employed in the
implicit parallel accurate reservoir simulator (IPARS) computational framework for modelling multi-
component multi-phase Aow in porous media. The underlying discretization method is implicit Euler
in time and mixed Cnite elements or cell-centred Cnite diDerences in space. IPARS permits rigorous,
physically representative coupling of diDerent physical and numerical Aow models in diDerent parts of
the domain and accounts for structural discontinuities; the framework currently includes eight physical
models. For simplicity of exposition, we have restricted our discussion to a two-phase oil–water model
and a three-phase black oil model. Our decoupling approach involves extracting a pressure equation
from the fully coupled linearized system thus allowing for a more accurate preconditioning of a discrete
elliptic problem of lower dimension. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The implicit parallel accurate reservoir simulator (IPARS) computational portal or framework
is research software developed mainly for the purposes of investigating diDerent physical
models and diDerent numerical algorithms for modelling multi-phase Aows in porous media.
The IPARS framework supports three-dimensional transient subsurface Aow of multiple phases
containing multiple components plus immobile phases (rock and absorbed components) and
an arbitrary number of wells each with one or more completion intervals. The vertical well
models in IPARS are based on Peaceman’s correction [1]. This simulator provides all the
memory management, message passing, table lookup, solvers input=output so that a developer
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only needs to code the relevant physics. A detailed description of IPARS can be found in
References [2, 3]. In this paper, we will focus on the solution of the coupled multi-component
non-linear time-dependent Aow equations which are solved using a fully implicit time-stepping
scheme and mixed Cnite element or cell-centred Cnite diDerence methods in space.

An inexact Newton method is used to approximate the Jacobian. The resulting system is
sparse, non-symmetric and ill-conditioned and is solved by applying a preconditioned gener-
alized minimum residual (GMRES) procedure. The preconditioner is referred to as two-stage.
In the Crst stage, a decoupling preconditioner is introduced which decouples a given pressure
from saturations. This decoupling allows for a second stage, a preconditioning of the diagonal
pressure block of the Jacobian independently of the saturation blocks. Furthermore, construc-
tion of a global preconditioner implies certain coupling between saturations and pressure
which is a complementary issue to decoupling. In this paper, we address diDerent techniques
for coupling=decoupling, leaving the second stage for presentation elsewhere.

The contents of this paper are as follows. In Section 2, we consider the general formulation
of a multi-component multi-phase isothermal model with wells and the linearization of this
model. The equations comprise accumulation, transport, and well terms. Each of the terms is
linearized using Newton’s method and the resulting linear system is written in the form of
increments. We restrict our attention to a particular set of primary variables, namely a chosen
pressure and one or more saturations and make two assumptions regarding this choice. We
remark that our selection of primary variables is standard in the petroleum industry [4–6]. Our
third assumption is based on Impes time splitting [7]. Here Impes refers to solving a pres-
sure equation implicitly and a saturation equation explicitly. In Section 3, several decoupling
techniques are formulated. Construction of the global preconditioner for the coupled system
is based on one of two methods, a block Gauss–Seidel method [8, 9], and a combinative
technique [10, 9]. Numerical experiments comparing these approaches are discussed for a col-
lection of SPE benchmark problems [11]. Several of these technique such as the constrained
pressure have been applied successfully in commercial software. Conclusions are provided in
the last section.

2. GENERAL MODEL FORMULATION AND ITS LINEARIZATION

2.1. General model equations

In this section, we follow the formulation presented in Reference [7] for the general model
equations. A multi-phase Aow model consists of n + m equations associated with each grid
block (grid cell). The Crst n equations are those for conservation of n species Mi:

PtMi =QiPt; i = 1; : : : ; n (1)

Here, Qi represents inter-block Aow and well terms:

Qi =
∑


Ti
(p
 − p) − qi (2)

∑

 denotes the summation over all neighbour grid blocks 
; p and p
 stand for a grid

block and a neighbour block pressure, qi denotes the production rate of species i, and Ti
 is a
transmissibility for Aow of species i between a grid block and its neighbour 
. Although the
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capillary pressure and gravity terms are taken into account in IPARS, for the sake of brevity
we neglect them in the course of the presentation.

In the case of fully implicit schemes, both PtMi =Mk+1
i −Mk

i and Qi =Qk+1
i are unknown.

They are computed by the Newton method. Let Ml+1
i , Ql+1

i be the new iterates approximating
Mk+1

i , Qk+1
i , respectively. Then, Equation (1) may be rewritten as

Ml+1
i −Ml

i + Ml
i −Mk

i −Ql
i Pt = (Ql+1

i −Ql
i )Pt (3)

Since Mk+1
i −Mk

i =Qk+1
i Pt, the residual of Newton iteration is

ri =Ml
i −Mk

i −Ql
i Pt

and (3) may be written in the form of increments:

�Mi + ri = �QiPt; i = 1; : : : ; n (4)

Given a set of n species, there always exists a set of n + m variables {Yj}; j = 1; : : : ; n + m,
such that each Mi is a unique function of {Yj}. The Crst n variables from {Yj} are called
primary, and the remained variables are referred to as secondary. Although a wide set of
primary variables is available [12], we restrict our attention to a very particular set of primary
variables.

Assumption 1
We assume that Y1 is the grid block pressure and {Yj}; j = 2; : : : ; n + m, are the grid block
saturations (or concentrations).

We remark that no special phase pressure has been chosen. However, the optimal choice of
the component turns out to be very important in computational practice. In order to close the
system (4), we need additional m constraint equations. They may express phase equilibrium,
saturation constraint, and other model constraints. A general form of the additional diDerential
equations is

�Li + ri = 0; i = n + 1; : : : ; n + m (5)

These additional constraint equations (7) may be chosen to possess local properties. Thus,
we may assume that the constraint equations (7) state relationships between our variables
in each grid block independently of other grid blocks. On the other hand, the equations
of conservation (1)–(2) contain three terms: accumulation PtMi, transport

∑

 Ti
(p
 − p),

and well terms qi. By deCnition, the transport term provides interaction between grid blocks
through the pressure diDerences. Accumulation term PtMi, responsible for a change in amount
of a given species, is likely to have a dominant local interaction within a grid block. The well
term may yield an inter-block coupling but be dominated mainly by the pressure variable.

Taking into account the above considerations, we conclude that the interaction between
variables other than pressure is chie6y local. In algebraic terms, it allows us to make

Assumption 2
Consider the block representation of matrix A associated with grid cell blocks. The oD-diagonal
block entries responsible for interaction between diDerent variables, are small compared to the
respective entries of the diagonal block.

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:537–549
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2.2. Newton linearization

Linearization of (4) yields linear equations

n+m∑
j=1

gM
ij �Yj + ri =

n+m∑
j=1

gQ
ij �Yj; i = 1; : : : ; n (6)

where gM
ij ; gQ

ij are the entries of the accumulation and transport–well Jacobian’s terms.
Linearization of (5) results in

n+m∑
j=1

gL
ij�Yj + ri = 0; i = n + 1; : : : ; n + m (7)

The system (6), (7) may be presented in an algebraic form

(
B C

D E

)(
�YI
�YII

)
=

(
�ZI

�ZII

)
(8)

The dependence of the secondary variables is eliminated by the reduction to the Schur com-
plement counterpart of the system (8)

A :=B− CE−1D; Z :=ZI − CE−1ZII ; Y := �YI
AY =Z

(9)

System (9) is obtained by the reduction of linearized equations to the primary variables. These
equations are the linearization of the residual formulation for the system of conservation
equations. Since Y stands for the vector of primary variables, (9) may not be reduced to
a smaller system. It is to be solved by an iterative technique. Although (9) is a Schur
complement reduction of the Jacobian system (8), for the sake of brevity we shall refer
to it as the Jacobian system.

According to Assumption 1, our formulation is presented in terms of pressure and satura-
tions. At least for the black oil isothermal models, the studies [13–15] show that: the pres-
sure equation is essentially parabolic or elliptic and the saturation equations are hyperbolic or
transport-dominated parabolic. These features are expected to be inherited by compositional
models as well [16]. A well-known consequence is that the pressure equation must be treated
implicitly and the saturation equations may be treated explicitly (Impes models).

Applicability of the Impes models is a starting point of our considerations. We note that
implicit pressure and explicit saturation advancing in time approximates the original parabolic
equations. It implies that in the cases we consider, the solutions due to Impes and fully implicit
time stepping are close to each other. Therefore, the respective time step non-linear operators
are close in a sense, and their linearizations (Jacobian) are expected to possess a similar
nature as well. Thus, given a meaningful guess to the pressure variable, an explicit update
of the saturations hopefully yields a meaningful guess to the saturation variables. It means
that an explicit saturation calculation based on a physically reasonable pressure computation,
results in a meaningful approximation for the inversion of the fully implicit Jacobian.

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:537–549
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Assumption 3
Consider a reduced system with the fully implicit Jacobian (9). Let the matrix A and the
vectors Y; Z be split into pressure and saturation blocks:

A=

(
Ap Aps

Asp As

)
; Y =

(
Yp

Ys

)
; Z =

(
Zp

Zs

)

and let a meaningful approximation Ỹp to Yp and an easy-to-invert approximation Ãs to As be
known. Then (Ỹp; Ã−1

s (Zs − AspỸp))T is a meaningful approximation to (Yp; Ys)T.

The choice Ãs =As implies solution of a saturation system. Lesser stiDness of As allows us
to approximate As by a simple approximation (ILU(0) or cell block Jacobi). As we shall see,
the latter choice results in moderate convergence dependence on the number of grid blocks.

We note, however, that Assumption 3 is not applicable to the solution of (9) directly, since
a meaningful guess Ỹp is to be found. Computation of such a guess is the main target of
decoupling techniques.

3. DECOUPLING PRECONDITIONERS

In the case of multi-phase Aow, the system matrix A is sparse, non-symmetric, ill condi-
tioned, and its blocks have diDerent nature. The basic linear solver within IPARS is chosen
to be the right preconditioned GMRES method [17]. The GMRES method is known to be the
most robust method for solving non-symmetric non-singular systems, and it has a modiCca-
tion (Aexible GMRES) capable of converging with a non-linear preconditioner. The essential
drawback of the GMRES method is its memory requirements. However, fast convergence can
be obtained by the use of a good preconditioner. Since the blocks of the system matrix have
diDerent characteristics (elliptic and hyperbolic), the sensible approach to the construction of
a preconditioner is to precondition diDerent blocks separately, taking the advantage of their
nature. Since the blocks are coupled through non-trivial oD-diagonal blocks, the issues of
decoupling the blocks are to be considered.

3.1. Decoupling techniques

3.1.1. Basic framework. Our goal is an eScient iterative solution of system (9). To this end,
we need a physically meaningful preconditioner for the matrix of this system. In this section,
we address those preconditioners which minimize the number of systems to be solved at each
preconditioned step and do not require high accuracy for such systems. This reduces both
computer memory requirements and CPU time for solving a system with the preconditioner.
We shall focus on preconditioners based on the pressure equation solution and block Gauss–
Seidel update of saturations. DiDerent updates as well as more advanced preconditioners [9, 18]
are considered in Section 3.3.

According to Assumption 3, we need a meaningful guess Ỹp to Yp. The pressure equation
reads as

ApYp + ApsYs =Zp

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:537–549
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Here the pressure variable is coupled to the saturation variables by matrix Aps. This coupling
is chieAy local (Assumption 2) which means that the entries of matrix Aps not belonging to the
diagonal cell blocks {A}ii of A may be neglected. Therefore, any transformation of system
(9) which makes the diagonal cell blocks {Aps}ii of Aps to be zero, essentially decouples
pressure from saturation and allows us to Cnd Ỹp. We consider several such transformations.
Hereinafter, we denote by {A}ii the diagonal blocks of a matrix A reordered according to grid
cell blocks. Within these notations we consider transformations of (9) such that {Aps}ii = 0.

3.1.2. Constrained pressure decoupling. The approach [9, 19] also named constrained pressure
reduction (CPR) is based on inversion of local matrices {A}ii. Let e1 = (1; 0; : : : ; 0)T ∈Rn; I
be the identity matrix of order n, and

GW
ii = I + e1eT

1 ({Ap}ii{A}−1
ii − I) (10)

where in our case and according to Assumption 1

{Ap}ii
is a real. It is easy to check that

GW
ii {A}ii =

{
AW

p O

AW
sp AW

s

}
ii

(11)

which implies decoupling pressure from saturations within the diagonal cell block {A}ii.
Introducing the block diagonal matrix

GW = blockdiag{GW
ii } (12)

and multiplying (9) by GW, we get the transformed system

AW =GWA; AWY =GWZ

Decomposition of AW into blocks corresponding to primary variables

AW =

(
AW

p AW
ps

AW
sp AW

s

)

Expressions (11)–(12), and Assumption 3 result in the preconditioner

ÃW =

(
AW

p O

AW
sp ÃW

s

)
(13)

to matrix AW. Here, ÃW
s denotes a preconditioner to AW

s (cell block Jacobi). In order to solve
a system ÃWx = r, one has to solve the pressure equation AW

p xp = rp, compute the residual
rs − AW

spxp and precondition the residual (ÃW
s )−1(rs − AW

spxp). We note that inverting ÃW
s

requires either additional storage for keeping (ÃW
s )−1 or to invert ÃW

s whenever we solve a
system with AW. In the latter case the inversion may be performed cell-by-cell resulting in
a sequence of inversions of order n− 1. Furthermore, one property of the decoupling is that
AW

sp =Asp; AW
s =As, that is, large part of system (9) remains unchanged.
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3.1.3. Householder re6ection decoupling. An alternative to CPR decoupling is the House-
holder reAection [8]. Let GH

ii be a product of n− 1 Householder matrices:

GH
ii =P1; ii ·P2; ii : : : Pn−1; ii (14)

Multiplication of a matrix by Pk; ii zero the kth row of the upper triangular part of {A}ii.
Hence,

GH
ii {A}ii =

{
AH

p O

AH
sp AH

s

}
ii

(15)

where AH
s is lower triangular matrix. This implies not only decoupling pressure from satura-

tions, but a virtual factorization of the saturation block AH
s within a grid block. Multiplication

of (9) by the block diagonal matrix

GH = blockdiag{GH
ii }

result in the transformed system

AH =GHA; AHY =GHZ

Block representation of AH and its preconditioner ÃH related to primary variables are

AH =

(
AH

p AH
ps

AH
sp AH

s

)
; ÃH =

(
AH

p O

AH
sp ÃH

s

)
(16)

Here, ÃH
s denotes the cell block Jacobi approximation to AH

s . The solution procedure for ma-
trix ÃH is similar to that for the matrix ÃW. The Crst advantage is that neither additional
memory nor additional inversion is needed to evaluate (ÃH

s )−1, since it is lower triangular.
Another proCt of Householder reAections is that they preserve the L2 norm of a vector. This
property is important in the case of the inexact Newton method, when the forcing term tech-
nique is used to relax the tolerance of the linear iterative solver. The L2-norm conservation
implies direct applicability of advanced modiCcations of the Newton method.

3.1.4. Quasi-Impes decoupling. Quasi-Impes decoupling uses an Impes reduction [7] approach
to zero the block {Aps}ii. Let Xi ∈Rn satisfy the system

{A}T
iiXi = e1 (17)

Due to (17) multiplication of {A}ii by X T
i yields

X T
i

{
Ap Aps

Asp As

}
ii

= {AX
p O}ii

Therefore, if we deCne the cell block diagonal matrix

GX = blockdiag

{
X T

i
◦
In−1

}
;

◦
In−1 := (O In−1)∈R(n−1)×n

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:537–549
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and multiply it by both sides of (9), we obtain the transformed system

AX =GXA; AX Y =GXZ

Block representations of AX and its preconditioner ÃX are similar to those of AW and ÃW:

AX =

(
AX

p AX
ps

AX
sp AX

s

)
; ÃX =

(
AX

p O

AX
sp ÃX

s

)
(18)

where ÃX
s is the cell block Jacobi preconditioner to AX

s . The solution procedure for the ma-
trix ÃX is just the same as for ÃW with same properties.

3.1.5. True Impes decoupling. The main idea of the above approaches is to extract the pres-
sure equation which is not coupled to saturations locally within grid cells. Then the construc-
tion of the preconditioner for the modiCed system matrix is performed in two steps: neglecting
the remained pressure–saturation ties in the pressure equation; replacing the saturation block
by an easy-to-invert approximation. All the approaches are similar in a sense that they con-
struct the slightly coupled pressure equation algebraically, based on system (9). An alternative
is to construct a decoupled pressure equation along with the generation of matrix A. Such an
equation may be obtained in the framework of the Impes approach [7]. We remind that if
only accumulation term is linearized in (6), the reduction procedure (6)–(9) yields a matrix
denoted by AM . Let us Cnd such a linear combination of rows of the cell diagonal blocks
{AM}ii , that the pressure is decoupled within the cells. Let vector XM

i ∈Rn satisfy the system

{AM}TiiXM
i = e1 (19)

Analogous to the quasi-Impes decoupling, multiplication by (XM
i )T eliminates dependency of

pressure on saturations:

(XM
i )T

{
AM

p AM
ps

AM
sp AM

s

}
ii

= {AM
p O}ii

The modiCed system is obtained by the multiplication of system (9) by the cell block diagonal
matrix

GM = blockdiag




(XM
i )T

◦
In−1




If we assume that the well terms are implicit in pressure only, the pressure equation of the
modiCed system is the Impes pressure equation [7]. The modiCed matrix and its precondi-
tioner are

AI=

(
AI

p AI
ps

AI
sp AI

s

)
; ÃI=

(
AI

p O

AI
sp ÃI

s

)
(20)

The true Impes reduction is diDerent from the quasi-Impes one in the vectors XM
i and Xi only.

Vector XM
i is deCned on the basis of accumulation term, while Xi depends on all three terms

of the Jacobian. Therefore, the quasi-Impes decoupling is more eScient from the algebraic
point of view, though the true Impes decoupling is more physically meaningful.
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Table I. Performance of decoupling preconditioners.

Case Ã W Ã H Ã X Ã I

1 4 4 4 5
2 4 4 4 5
3 5 5 5 27
4 7 7 7 12
5 7 7 7 12
6 14 14 15 ¿100

Table II. Exact saturation solve versus the block Jacobi approximation.

Case Ã H Ã H
exact

1 4 4
2 4 4
3 5 5
4 7 6
5 7 6
6 14 14

3.2. Numerical comparison for the decoupling techniques

The decoupling preconditioners have been tested for several matrix equations (9). The com-
parative characteristic is the number of GMRES(20) iterations needed to reduce the residual
L2-norm by a factor of 103 (initial guess is supposed to be trivial). We consider the black
oil model (water pressure as a primary variable) [20, 21]. Case 1 is the Crst Newton itera-
tion of the Crst time step of the ninth SPE comparison problem (15× 24× 25 grid blocks),
with a one day time step. Case 2 is diDerent from Case 1 only in the time step increased
to 10 days. Case 3 is the same as Case 2 but for the second Newton iteration. Cases 4–6
are similar to Cases 1–3 but correspond to a Cner mesh (30× 48× 50 grid blocks). Table I
summarizes the performance of the preconditioners ÃW; ÃH; ÃX ; ÃI , with the cell block
Jacobi approximations of saturation blocks AW

s ; AH
s ; AX

s ; AI
s , and almost exact solution of the

pressure equation.
We may conclude that the true Impes results in larger number of iterations compared to

other types of decoupling which perform similarly.
In the above experiments, we used the cell block Jacobi preconditioner Ãs in the block

Gauss–Seidel update of saturations. However, it is not clear how accurate should be the
saturation preconditioner Ãs, or, in other words, what is the price for the replacement of
the saturation block As by a computationally cheap preconditioner. In Table II, we compare
two block Gauss–Seidel preconditioners for the Householder decoupling (16) and the above
described data set. The Crst one takes the cell block Jacobi approximation ÃH

s for the saturation
block AH

s , and the second, ÃH
exact, uses ÃH

s =AH
s .

It is clear that the usage of cell block Jacobi approximation to the saturation block almost
does not aDect the convergence rate. Hence, it is decoupling preconditioner that makes the
convergence sensitive to the mesh size.

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:537–549
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3.3. Combinative techniques

The assumption that pressure ‘governs’ saturations but is not ‘governed’ by saturations may
be too strong. The preconditioner providing a feedback for the pressure–saturation interaction
is likely to converge faster. An example of such a preconditioner is the combinative two-
stage preconditioner [10, 9, 19]. Consider, for example, a Jacobian system transformed by the
Householder reAection decoupling (16). The action of the two-stage combinative precondi-
tioner Y = (ÃH

2 )−1Z is

1: Solve the pressure equation AH
p Yp =Zp.

2: Compute the total residual: (
Rp

Rs

)
=

(
Zp

Zs

)
−
(

AH
p

AH
sp

)
Yp

3: Precondition the total residual and update the pressure:(
Yp

Ys

)
:= (ÂH)−1

(
Rp

Rs

)
+

(
Yp

O

)

Here, ÂH stands for a preconditioner to AH providing a pressure dependence of saturations.
The diDerence between the combinative ÃH

2 and block Gauss–Seidel preconditioner ÃH (16)
is in computing and preconditioning the residual, as well as the presence of the feedback
update of the pressure. The algebraic form of the combinative preconditioner is

(
ÃH

2

)−1
=

(
(AH

p )−1 0

0 0

)
+(ÂH)−1

(
I −

(
AH

p

AH
sp

)
(AH

p )−1

)
(21)

Two important remarks are pertinent here. First, the block (AH
p )−1 may be replaced by any

pressure preconditioner. Second, according to numerical evidence, the preconditioner ÂH to
the whole matrix may be chosen to be rather weak, since its goal is to provide a pressure–
saturation feedback. Possible candidates are ILU(1) [19], DILU [22], or one LSOR iteration,
or even a couple of Richardson iterations with a block Jacobi preconditioner.

We compare the combinative preconditioner (21) with the block Gauss–Seidel precondi-
tioner (16). The preconditioner ÃH uses the cell block Jacobi approximation ÃH

s of AH
s . The

global preconditioner ÂH in the combinative method ÃH
2 is just two Richardson iterations

with matrix AH and the cell block Jacobi preconditioner and zero initial guess (ÃH
2;R), or one

LSOR iteration with blocks associated to vertical grid lines (ÃH
2;L). We note that in the case

of the black oil (and compositional) model, the cost of ÂH evaluation approaches the cost of
multiplication by the Jacobian matrix AH. Therefore, the cost of one GMRES iteration with
the combinative preconditioners ÃH

2;R, ÃH
2;L exceeds that for ÃH by an additional matrix-vector

multiplication for AH. In the case of two-phase Aow (hydrology model) the relative weight
of ÂH becomes larger in the overall cost of the combinative preconditioner.

In our comparison, we consider four cases related to the hydrology (Cases 1,2) and to the
black oil (Cases 3,4) models. The physical properties of the reservoir are similar in all the
cases: vertical permeability has a 4-fold jump in a thin horizontal layer (Plate 1), and in two

Copyright ? 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 8:537–549
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Table III. Block Gauss–Seidel and the combinative preconditioners.∗

Case No. of GMRES iteration No. of GMRES per Newton step CPU time

Ã H Ã H
2;R Ã H

2;L Ã H Ã H
2;R Ã H

2;L Ã H Ã H
2;R Ã H

2;L

1 158 130 120 7.9 6.5 6 8.5 9.5 9.6
2 361 257 241 17.2 11.7 10.5 177 166 168
3 141 114 108 5.6 4.6 4.3 11.3 12.9 15.4
4 653 363 345 15.5 9.5 8.6 431 355 397

∗Pressure block is preconditioned by LSOR(6).

Table IV. Block Gauss–Seidel and the combinative preconditioners.∗

Case No. of GMRES iteration No. of GMRES per Newton step CPU time

Ã H Ã H
2;R Ã H

2;L Ã H Ã H
2;R Ã H

2;L Ã H Ã H
2;R Ã H

2;L

1 58 49 52 2.9 2.5 2.6 4.8 5.6 6.2
2 115 82 72 5.5 3.7 3.4 72 76 73
2′ 184 113 73 9.2 5.6 3.6 79 73 59
3 147 112 108 5.9 4.5 4.3 11.5 13.5 16
4 604 372 343 15.5 9.5 8.3 417 384 423
4′ 971 551 292 19.4 11 5.8 651 484 344

∗Pressure block is preconditioned by AMG.

opposite corners there are injection and production wells. The mesh in Cases 1 and 3 has
10× 20× 20 cells, while in Cases 2 and 4 the mesh has 20× 40× 40 cells. The simulation
is done for 18 days within 10 time steps. The relative tolerance for the Newton iterations is
10−4 and for the linear solver 10−2. The pressure equation is solved by 6 LSOR iterations. In
Table III, we show the total number of linear iterations accumulated in the whole simulation
and the average number of GMRES(20) iterations per Newton step, as well as CPU time of
all linear solves measured on a PC-II(400 MH).

As it stems from the data in Table III, the combinative preconditioner results in a faster
convergence although one GMRES iteration is more costly than that for the block Gauss–
Seidel. The advantage of the combinative preconditioner becomes more evident for large
number of unknowns. The drawback of the considered two Richardson iterations is that the
iterative parameter is not known a priori. The value of the parameter aDects the convergence.
The chosen value (1:0) accelerates the method considerably for the above cases. But in other
cases, the convergence may be even worse compared to the block Gauss–Seidel preconditioner.
LSOR preconditioning is robust and may be considered to be parameter-independent. Our
experience shows that the combinative technique is more eScient than the block Gauss–Seidel
method, if the pressure block is not preconditioned very well or if the media is heterogeneous.
Table IV illustrates this by the results of the same experiments with algebraic multi-grid
preconditioner [23] for the pressure block, which is the best preconditioner at hand. Cases 2′

and 4′ diDer from cases 2 and 4 only in 10-fold heterogeneous permeability.
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4. CONCLUSIONS

We considered several issues related to the iterative solution of the systems of non-linear
partial diDerential equations. The systems appear in the fully implicit simulation of multi-
phase Aow in porous media. Three-phase black oil model (with species oil, water and gas)
and two-phase hydrology model (with species oil and water) have been examined. We made
the comparative study of several coupling and decoupling methods in order to derive some
practical conclusions.

The preconditioned GMRES method is a robust algorithm for solving sparse linear systems
appearing in the porous media Aow simulations. The set of decoupling techniques has been
examined. The goal of the techniques is to decouple a pressure equation from saturation
ones. This approach seems to be very promising in compositional models. Four approaches
to decoupling have been tested for the black oil model. Three of them have exhibited the
same convergence properties. The Householder reAection decoupling is more preferable since it
minimizes memory requirements. Two techniques for construction of the global preconditioner
have been considered: the combinative and block Gauss–Seidel. The combinative technique
accelerates the convergence of GMRES method and may reduce the overall CPU time in spite
of more expensive iterations. The advantage of the combinative technique may be seen in the
case of weak pressure preconditioner or large number of grid blocks.
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