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Abstract. We present the fiber-spring elastic model of the arterial wall with atherosclerotic plaque
composed of a lipid pool and a fibrous cap. This model allows us to reproduce pressure to cross-
sectional area relationship along the diseased vessel which is used in the network model of global
blood circulation. Atherosclerosis attacks a region of systemic arterial network. Our approach
allows us to examine the impact of the diseased region onto global haemodynamics.
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1. Introduction
Atherosclerosis is an inflammatory process in the vessel wall. Atherosclerotic plaque is a flexible
formation with complex structure. Important aspect of atherosclerosis is that it attacks a region of
systemic arterial network rather than single artery. Therefore, it is a global process evolving in a
connected set of arteries.

Many works consider atherosclerosis as a local process studying the development of sin-
gle atherosclerotic plaque, its rupture and its impact onto the blood flow in the separate vessel.
Reaction-diffusion [6], layer-specific composite wall material under static load [8, 4, 5] and re-
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cently fluid-structure interaction (FSI) [7] methodologies has been widely used. These approaches
operate with dynamics of spatially distributed systems. Feasibility of such models is highly im-
proved by using patient specific data obtained from magnetic resonance imaging and other clinical
diagnosis techniques. Nevertheless, it is still impossible to use such models for simulating the re-
gional blood flow changes in atherosclerotic vascular network due to computational power restric-
tion, complex geometry of the diseased region and ill-defined clinical parameters rarely accessible
for such large-scale simulations.

The presented approach allows us to examine regional blood flow in atherosclerotic vascular
network as well as in the whole vascular network with several diseased regions. It exploits the
idea of coupling the model of network blood circulation [2, 12, 13, 15] and the model of elastic
vessel wall response [3, 11, 14]. The wall model considers vessel wall material as a fiber-reinforced
fluid. Although this approach can be used for modelling an arbitrary incompressible linearly elastic
material [9], we restrict ourselves by the particular case of the three-layer cylindrical tube. We
propose the fiber-spring elastic model of the arterial wall with atherosclerotic plaque composed of
a lipid pool and a fibrous cap.

Applying the static load to vessel wall represented by the proposed fiber-spring elastic model,
we obtain the wall state equation, i.e. the pressure to cross-sectional area relationship along the
diseased vessel. This relation is used in the network model of global blood circulation [12] instead
of the conventional wall state equation. The modification of the wall state equation is used for all
diseased vessels. This allows us to examine the impact of diseased regions onto haemodynamics.
Numerical recovery of the wall state equation was initially proposed for the simulation of the
impact of an intravenous implant [16].

2. Fiber-spring representation of the atherosclerotic vessel
We consider the atherosclerotic blood vessel as a three-layer circular cylindrical shell inflated by
internal pressure. The strain in the axial direction is assumed to be negligible. Strictly speaking
this assumption is valid for lengthy stenotic regions under axysimmetric loading but we extend it
for all cases considered in this work. Similar plane strain approximation has been used by Cheng
et. al. [1]. The internal and external layers are thin-walled cylindrical shells which represent
the fibrous cap of the atherosclerotic plaque and the vessel wall, respectively. The middle layer
represents the lipid pool of the atherosclerotic plaque. The arterial wall and the atherosclerotic
plaque is assumed to be isotropic and linearly elastic. Every layer is modelled as a set of fibers.
Each fiber is described by two independent cylindrical coordinates.

2.1. Fiber model of the fibrous cap and the arterial wall
The elastic models of the fibrous cap and the arterial wall are based on the assumption of thin-
walled circular cylindrical shell which neglects the radial stress σr. We use the independent ring
model [2] which allows us to ignore the axial stress σx and to use the following relation between
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circumferential stress σθ and circumferential strain εθ:

σθ =
E

1− ν2
εθ,

where E, ν are Young’s modulus and Poisson’s ratio of the cylindrical shell, respectively. Here-
inafter (r, θ, x) denotes the cylindrical coordinate system.

Using the approach described in [11], we imitate the response of the elastic surface to a de-
formation as the response of fibers collection to the same deformation. Let ~X(s, t) represent the
position of the fiber points in space, where Lagrange coordinate s is the arc length of the fiber in
the unstressed state. We define the tension force T (s, t) in the fiber as

T =

T∗
(∣∣∣∂ ~X

∂s

∣∣∣− 1
)
,
∣∣∣∂ ~X

∂s

∣∣∣ > 1,

0,
∣∣∣∂ ~X

∂s

∣∣∣ ≤ 1,
(2.1)

where T∗ is the elastic modulus of the fiber. The value T∗ is the same for fibers of the same kind.
The local force density is given by the expression [14]

~f =
∂

∂s
(T~τ), (2.2)

where ~τ is the unit tangent vector

~τ =
∂ ~X

∂s
/

∣∣∣∣∣∂ ~X∂s
∣∣∣∣∣ . (2.3)

In the case of axisymmetric problem we can present the middle surface of the cylindrical shell
as a collection of independent ring fibers. The tension force T is the circumferential stress σθ and
thus the fiber elastic modulus satisfies T∗ = E/(1− ν2).

Let N be the number of computational nodes on the fiber, Xk be the coordinates of the kth
node, k = 1, ..., N , ∆s be the distance between neighboring nodes along the non-deformed fiber.
We assume that ∆s will be the same for fibers of the same kind. In accordance with formulas (2.1),
(2.3) we discretize T and ~τ :

Tk+1/2 = T∗


∣∣∣ ~Xk+1 − ~Xk

∣∣∣
∆s

− 1

 ,

∣∣∣ ~Xk+1 − ~Xk

∣∣∣
∆s

> 1, (2.4)

~τk+1/2 =
~Xk+1 − ~Xk∣∣∣ ~Xk+1 − ~Xk

∣∣∣ . (2.5)

The discrete elastic force at the kth node is defined as

~fk =
Tk+1/2~τk+1/2 − Tk−1/2~τk−1/2

∆s
. (2.6)

The above formulas set up our numerical fiber elastic model of the response to the deformation.
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2.2. Spring model of the lipid pool
The elastic model of the lipid pool is based on its representation by a set of radial springs. In
order to estimate spring stiffness, we use the solution of the deformation problem for the isotropic
cylinder (a1 ≤ r ≤ b1) under internal pressure p1 and fixed support boundary condition on the
external cylindrical surface. The problem is solved by using the hypothesis of linear elasticity
theory. In this case the radial displacement u(c)(r) and radial stress σ(c)

r are given by

u(c)(r) = −p1a
2
1(1− 2νc)(1 + νc)

Ec(a2
1 + (1− 2νc)b21)

(
r − b21

r

)
, (2.7)

σ(c)
r (r) = − p1a

2
1

(a2
1 + (1− 2νc)b21)

(
1− (2νc − 1)

b21
r2

)
, (2.8)

where Ec, νc are Young’s modulus and Poisson’s ratio of the cylinder, respectively. Equations
(2.7), (2.8) define implicitly the relation between radial displacement and radial stress. We define
the relative radial extension ∆ = (u(b1)− u(a1))/(b1 − a1) and rewrite (2.7), (2.8) expressing the
radial stress via the non-constant elastic modulus of the spring Esp(r)

σ(c)
r (r) = Esp(r)∆,

Esp(r) =
a1Ec

(a1 + b1)(1− 2νc)(1 + νc)

(
1 + (1− 2νc)

b21
r2

)
. (2.9)

Therefore, the spring imitating the elastic response of the lipid pool to the internal pressure
must have the elastic modulus dependent on the position of the fibrous cap.

2.3. Verification of the fiber-spring model
To summarize, we consider the diseased vessel as a three-layer cylindrical shell whose interior
(fibrous cap) and exterior (arterial wall) layers are thin and are represented as the collection of ring
fibers with elastic modulus E/(1− ν2). The intermediate layer is modelled by radial springs with
the non-constant elasticity modulus defined by (2.9).

We compare the numerical solution of the deformation problem for the three-layer cylindrical
shell under internal pressure p using the fiber-spring model with the analytic solution in the case
of linear elasticity. We denote by a − h1/2 ≤ r ≤ a + h1/2 the first layer (the fibrous cap), by
a + h1/2 < r ≤ b − h2/2 the second layer (the lipid pool), and by b − h2/2 < r ≤ b + h2/2 the
third layer (the arterial wall). Then the radial displacement and the stresses of each of the layers
are given by

u(i)(r) = C
(i)
1 r +

C
(i)
2

r
, (2.10)
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,
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p, KPa uan(a), cm ufs(a), cm uan(b), cm ufs(b), cm
a = 0.9192 cm 5 0.0316 0.0321 0.0206 0.0226
b = 1.3 cm 8 0.0506 0.0515 0.0330 0.0365
h1 = 0.1 cm 10 0.0632 0.0645 0.0413 0.0457
h2 = 0.1 cm 13 0.0822 0.0840 0.0536 0.0596

15 0.0948 0.0969 0.0619 0.0688

Table 1: Comparison between analytic displacements uan and numerical displacements ufs due to
the fiber-spring model.

where Ei, νi are Young’s modulus and Poisson’s ratio of the i-th layer respectively, i = 1, 2, 3

defines the number of the layer. The constants C(i)
1 , C(i)

2 can be obtained from boundary conditions
and continuity conditions of radial displacement and radial stress. If a = 0.9192 cm, b = 1.3 cm,
h1 = h2 = 0.1 cm then

C
(1)
1 = 0.237910−4p, C

(1)
2 = 0.561110−7p,

C
(2)
1 = −0.776710−4p, C

(2)
2 = 0.656410−7p,

C
(3)
1 = 0.113510−4p, C

(3)
2 = 0.517310−7p.

The numerical solution of the fiber-spring model is obtained for the following values of elastic
constants: E1 = 1000 KPa, E2 = 1 KPa, E3 = 50 KPa, ν1 = ν2 = ν3 = 0.48. The radial
displacements of the middle surfaces r = a and r = b are summarized in Table 1 where uan(r)
stands for the analytic solution and ufs(r) stands the numerical solution obtained by the fiber-
spring model. We can see that the error at internal radius r = a is less than 2%, in the case r = b
the error is less than 11%. The last deviation can be explained by limitations of the linear elasticity
theory and different boundary conditions in the problem for the estimation of the spring stiffness
and in the problem used in the verification.

3. Network blood circulation model

3.1. Basic equations
In the network circulation model the domain is a set of 1D flexible channels connected in a closed
network consisting of four parts (pulmonary and systemic arteries and veins). The main attention
of this work is focused on systemic arteries as the most attractive for the atherosclerotic plaques.
Pulmonary circulation is excluded from our consideration.

Blood flow is considered as pulsating flow of incompressible fluid streaming through the net-
work of elastic tubes (vessels). For every vessel we watch out for mass and momentum change by
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the following 1D balance equations in the characteristic form [12]:

∂S/∂t+ ∂(Su) /∂x = ϕ(t, x, S, u, χi) , (3.1)
∂u/∂t+ ∂

(
u2/2 + p/ρ

)
/∂x = ψ(t, x, S, u, χi) , (3.2)

where t is time, x is coordinate along the vessel, ρ is blood density, S(t, x) is vessel cross section
area, u(t, x) is linear flow velocity averaged over the vessel area at coordinate x, p is pressure
(relative to the atmospheric), ϕ is mass inflow/outflow (e.g. due to the damage of the vessel wall
or blood transfusion), ψ is resulting force applied to the vessel (e.g. gravity, friction, etc.), {χi}I

i=1

is a set of constants. In this work we use

ϕ (t, x, S, u, χi) = 0 (3.3)

and

ψ (t, x, S, u, χi) = −16µu
η
(
Ŝ
)

Ŝ
, (3.4)

where Ŝ = S/S̄; S̄ is cross section area under zero transmural pressure p (S)−p∗ and zero velocity;
p∗ is the pressure in the surrounding tissues; µ is friction factor;

η
(
Ŝ
)

=

2, Ŝ > 1,

Ŝ +
1

Ŝ
, Ŝ < 1.

(3.5)

Elastic properties of the vessel wall are described by the wall state equation defining the de-
pendence of transmural pressure p− p∗ on the vessel cross section area S

p (S)− p∗ = ρc20f (S) , (3.6)

where c0 is the rate of small disturbance propagation in the vessel wall. The wall state equation is
discussed in the next section.

The vessels are connected with each other at the nodes and with the heart inlets/outlets through
the boundary conditions set that is formed by Poiseuille’s pressure drop conditions, mass balance
equation combined with the appropriate compatibility condition for (3.1),(3.2)

pk (Sk (t, x̃k))− pl
node (t) = εkR

l
kSk (t, x̃k)uk (t, x̃k) , k = k1, k2, . . . , kM , (3.7)∑

k=k1,k2,...,kM

εkSk (t, x̃k)uk (t, x̃k) = 0, (3.8)

where l is node’s index, k is vessel index, k1, k2, . . . , kM and M are the indexes and the number of
the vessels meeting at the node; pl

node (t) is pressure at the vessels junction point; Rl
k is hydraulic

resistance for the flow from the k-th vessel to the l-th node. For the vessels incoming into a node we
set εk = 1, x̃k = Lk, for the outgoing vessels we set εk = −1, x̃k = 0. At the heart junction nodes
the product Sk (t, x)uk (t, x) in (3.7),(3.8) is replaced with volumetric flow to/from the appropriate
chamber Qk.
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The structure of the arterial network of systemic circulation is shown in the left picture of Fig. 1.
It was reconstructed on the basis of [2]. Some parts of the network were refined and additional
vessels were added to adjust the total blood in the network to the appropriate physiological value.
The structure of the venous network of systemic circulation is almost the mirrored image of the
arterial part and thus is not presented here. The difference is that initial diameters of the veins are
nearly 2 times greater than their arterial counterparts and c0 is 1.5 times smaller. In some numerical
experiments studying qualitative behaviour we also have considered a simplified counterpart of the
arterial network shown in the right picture of Fig. 1.

Figure 1: Arterial network structure (left) and its simplified counterpart (right).

3.2. Wall state equations for healthy and diseased vessels
In this section we present our approach to deriving the wall state equation (3.6). In general, function
f (S) depends on the type and state of the vessel wall (elastic or muscular type of the wall, installed
endovascular devices, atherosclerotic plaque, occlusion, etc.). The plot of f has S-like shape [10]
for the healthy vessel. In this work for the most (healthy) vessels we use expressions [12]

f(S) =

{
exp

(
S/S̄ − 1

)
− 1, S > S̄,

ln
(
S/S̄

)
, S 6 S̄.

(3.9)

Vessels damaged by atherosclerosis have different wall state equation. We note that the numeri-
cal fiber model of the elastic healthy wall recovers function (3.9) with sufficient accuracy under
the assumption that the transmural pressure is counterbalanced by the elastic force of the fiber
deformation.
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We use the fiber-spring model to define the wall state equation for the vessels damaged by
atherosclerosis. We consider three types of plaque geometry that are shown in Figs. 2, 3, 4. All
three types are formed by the same outer and different inner surfaces. The inner surface corre-
sponds to the fibrous cover of the plaque. The surfaces are represented by sets of fibers which are
connected with springs as shown in Figs. 2, 3, 4. The first type (Fig. 2) represents the connected
coaxial cylindrical shells that corresponds to the lengthy plaques which are uniformly distributed
over the vessel wall. The second type (Fig. 3) is formed by the interior axial symmetric surface
narrowing at the center of the vessel. The third type (Fig. 4) is similar to the second one but the
axial symmetry is violated.

Figure 2: Geometry of the plaque, type 1.

Figure 3: Geometry of the plaque, type 2.

Figure 4: Geometry of the plaque, type 3.

A set of preliminary simulations was carried out for every geometry. The static inflation pres-
sure load was applied at some range and the cross-sectional area was calculated along the vessel.
The results shown in Fig. 5 provide the example of p (S) − p∗ functions for the diseased vessel
of types 2 and 3 and minimal lumen 30% that substitutes corresponding wall state equation (3.6)
for the healthy vessel. This function differs for the cross-sections along the x coordinate due to
inhomogeneity of the inner wall near the center of the vessel. The type 1 plaque simulations
produce the wall state function p (S) − p∗ remaining the same along the x coordinate since this
type introduces homogeneous geometry of the inner plaque cover along the vessel. We note that
atherosclerotic plaques of types 2 and 3 produce p (S, x)− p∗ function that is naturally fitted to the
network circulation model. Analogous simulations were performed also for the cases of minimal
lumen 10% and 50%.

Details on numerical implementation of the network blood circulation model can be found
in [12] with some improvements introduced in [16].
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Figure 5: Wall state dependencies for the plaque of type 2 (left) and type 3 (right). The minimal
lumen is 30%. The index of each curve corresponds to the distance (in cm) to the minimal cross
section. S0 denotes the cross-sectional area of the relaxed healthy artery.

4. Results
At first we present our results of the 1D haemodynamics simulation on the simplified arterial
network structure shown in the right panel of Fig. 1. The vessel with number 2 is assumed to be
diseased. Geometric characteristics (length l and diameter d) for this structure are presented in
Table 2.

parameter\ vessel 1 2 3 4 5
l, cm 10 20 20 5 5
d, cm 2 1.6 1.6 2 2

Table 2: Geometric characteristics of arteries in the simplified network structure.

We compare the impact of atherosclerotic plaque at artery 2 with the minimal lumen (along
x axis, in the unstressed state) 50%, 30%, 10% considering different types of the plaque model.
The pressure and velocity profiles for the plaque models 1 and 2 are shown in Figs. 6-9. The
comparison of the different plaque models is presented in Figs. 10, 11. The results for the plaque
models 2 and 3 are similar. x coordinate counts off the beginning of the vessel at every figure.

In the case of plaque model 1 we notice the remarkable velocity gradient near the endpoints of
artery 2 with the minimal lumen 10% (see Fig. 7). We ascribe the velocity gradient to the increased
impact of the viscosity. In all cases of the lumen we observe the difference between the velocity
profiles for the diseased and healthy vessel. Thus, the lengthy plaques are haemodinamically
substantial and can be determined by means of ultra Doppler measurements.

In the case of plaque model 2 we observe the distinct pressure drop in artery 2 with the minimal
lumen 10% (see Fig. 8). This drop results in the development of a stagnation zone before the
minimal cross-section (see Fig. 9). The stagnation zone is potentially attractive for the upstream
growth of the plaque.

The comparison of Figs. 6, 7 and Figs. 8, 9 reveals substantial difference of impacts of plaques
1 and 2 on haemodynamics. Luminal narrowing causes both pressure and velocity increase. How-
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Figure 6: Pressure profiles in artery 2 with plaque 1 (1 — 50% lumen, 2 — 30% lumen, 3 — 10%
lumen, 4 — healthy vessel) at 0.15, 0.25, 0.5, 0.8 seconds after the beginning of the cardiac cycle.

ever, for plaque model 2 the velocity at the inlet and outlet is almost the same as that under the
healthy conditions. Thus, in spite of remarkable changes in the profiles inside artery 2, only the
smallest plaque lumen can provide a noticeable impact on the flow in neighbouring vessels. More-
over, in practice it is hard to observe the essential change of pressure. This is the reason why it is
difficult to detect the plaques at some stages of their development.

The comparative analysis (Figs. 10,11) of the impact of the plaque geometry with the same
minimal lumen 30% shows that the velocity profiles for plaques 2 and 3 practically coincide and
can be separated from the profiles of the healthy vessel or vessel with plaque 1 at different stages
of cardiac cycle. Only the pressure profile allows us to identify the geometric model of the plaque.

Vascular network simulations allow us to access blood flow redistribution in the region of the
diseased vessel. In order to demonstrate this, we consider the systemic circulation with arterial
network shown in the left picture of Fig. 1. The vessel designated with index 49 is supposed to be
diseased and is assigned to plaque 1 with minimal lumen 10%. It has the following parameters: l =
5cm, d = 0.8cm. Its pressure to cross-section relationship was generated by the fiber-spring model.
The remaining vessels of the network have wall state equation (3.6), (3.9) with the parameter
c0 = 900cm/s for the arteries and c0 = 450cm/s for the veins.

We compare regional blood flow characteristics for artery 49 in healthy and diseased states. Its
neighbors may be split into distal (48,133) and proximal vessels (50,103). Time dependencies of
the pressure and velocity are measured at the central point of corresponding vessel and are shown
in Figs. 12–16. The dominant negative velocity value in Fig. 16 is due to the positive orientation
of x coordinate that points to the junction point. All other examined vessels are directed from the
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Figure 7: Velocity profiles in artery 2 with plaque 1 (1 — 50% lumen, 2 — 30% lumen, 3 — 10%
lumen, 4 — healthy vessel) at 0.15, 0.25, 0.5, 0.8 seconds after the beginning of the cardiac cycle.

Figure 8: Pressure profiles in artery 2 with plaque 2 (1 — 50% lumen, 2 — 30% lumen, 3 — 10%
lumen, 4 — healthy vessel) at 0.15, 0.25, 0.5, 0.8 seconds after the beginning of the cardiac cycle.
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Figure 9: Velocity profiles in artery 2 with plaque 2 (1 — 50% lumen, 2 — 30% lumen, 3 — 10%
lumen, 4 — healthy vessel) at 0.15, 0.25, 0.5, 0.8 seconds after the beginning of the cardiac cycle.

Figure 10: Pressure profiles in artery 2 with plaque of lumen 30% (1 — type 1, 2 — type 2, 3 —
type 3, 4 — healthy vessel) at 0.15, 0.25, 0.5, 0.8 seconds after the beginning of the cardiac cycle.
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Figure 11: Velocity profiles in artery 2 with plaque of lumen 30% (1 — type 1, 2 — type 2, 3 —
type 3, 4 — healthy vessel) at 0.15, 0.25, 0.5, 0.8 seconds after the beginning of the cardiac cycle.

junction and thus the dominant velocities are positive there. The comparison shows that in distal
vessels both velocity and pressure are increased while in proximal vessels pressure is increased and
velocity is decreased. Such stagnation region is potentially attractive for new plaque formation.

5. Discussion
Obviously, 2D models can’t describe 3D material properties such as residual stresses, through-
thickness stress distributions. It is also well-known that soft biological tissues exhibit a nonlinear
behavior especially at high stresses. Our linear isotropic model is an approximation and the first
step for the (fig. 2) as one of the basic cases. It may seems little in common with real plaques
geometry. This simplified description allows us to calibrate and validate parameters of the general
computational model of the wall elasticity via comparison to the analytical solution provided in
sec. 2.3. The practical importance of this approximation is raised up when network haemodynamics
is considered and main attention is paid to the regional and global effects as is in the numerical
experiment desribed by the figs. 12–16. rather then to the local ones.

6. Conclusions and future directions
We presented the new methodology of coupling the network global haemodynamics and elastic
wall response for the diseased vessels. The advantage of our approach is that it allows us to study
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Figure 12: Regional blood flow redistribution: vessel 48.

Figure 13: Regional blood flow redistribution: vessel 49.

Figure 14: Regional blood flow redistribution: vessel 50.
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Figure 15: Regional blood flow redistribution: vessel 133.

Figure 16: Regional blood flow redistribution: vessel 103.

regional and global changes in the blood circulation caused by pathalogical changes of vessel walls
and to detect the diseased region on the basis of experimental data from the ultra Doppler measure-
ments. The combined model can be used as a tool for the clinicians analyzing various scenarios of
intravascular intervention and development of vascular diseases such as atherosclerosis.

We analyzed the regional blood flow redistribution only for a small part of the systemic circu-
lation. Our future work will be focused on the numerical study of the full systemic network with
distributed non-adjacent diseased vessels.
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