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Abstract. We present a new method for generating ad-dimensional simplicial mesh that minimizes
theLp-norm,p > 0, of the interpolation error or its gradient. The method uses edge-based error
estimates to build a tensor metric. We describe and analyze the basic steps of our method.
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1. Introduction

Generation of a mesh adapted to a given function requires a specially designed metric. We develop
further a new methodology, proposed originally in [1, 2], for generating a tensor metricM from
error estimatesprescribed to mesh edges. The volume and the perimeter of ad-simplex measured
in this metric control the norm of error or its gradient. The error equidistribution principle suggests
to balanceM-volumes andM-perimeters to produce aM-quasi-uniform mesh [3, 4].

The edge-based error estimates come usually from postprocessing or a posteriori error analy-
sis of a discrete solution. Critical advantage of edge-based error estimates over cell-based error
estimates is that they provide local directional information about the error. In this paper, we con-
sider the problem of minimizing theP1-interpolation error or its gradient, where cell-based and
edge-based errors can be easily defined. Most methods that convert the cell-based errors into a
metric lose directional information. We describe a new method that uses the edge-based errors to
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build a metric that preserves directional information. We illustrate the optimal error reduction with
numerical experiments. We also summarize the existing error estimates.

2. Edge-based interpolation error estimates

Let Ω ⊂ <d be a bounded polyhedral domain andΩh be a conformal simplicial mesh withNh

d-simplexes. The volume of ad-simplex∆ and the total length of its edges in a metricM are
denoted by|∆|M and|∂∆|M, respectively. LetI1u be the continuous piecewise linear interpolant
of u, andI1,∆u be its restriction to∆. Our goal is to generate meshes that minimize theLp-norm,
p ∈ (0,∞], of the interpolation errore = u− I1u or its gradient∇e. Let us consider ad-simplex
∆ with verticesvi, i = 1, . . . , d + 1, edge vectorsek = vi − vj, 1 ≤ i < j ≤ d + 1, and mid-edge
pointsck, k = 1, . . . , nd, wherend = d(d + 1)/2. Let λi, i = 1, . . . , d + 1, be the linear functions
on ∆ such thatλi(vj) = δij whereδij is the Kronecker symbol. For every edgeek, we define the
quadratic bubble functionbk = λiλj. Let u be a continuous function. On each simplex∆, we
consider its quadratic approximationu2 = I2,∆u, whereI2,∆u is the Lagrange interpolant ofu.
The interpolation error for the linear approximation ofu2 is

e2 = u2 − I1,∆u2 = 4

nd∑

k=1

(u2(ck)− I1,∆u2(ck)) bk ≡
nd∑

k=1

γk bk.

TheL2-norm of this error is given by

‖e2‖2
L2(∆) = |∆|(Bγ, γ),

whereγ is the vector withnd componentsγk andB is thend × nd symmetric positive definite
matrix with positive entriesBk,l = |∆|−1

∫
∆

bkbl dV. This error is only a number; therefore, it does
not provides any directional information. To recover this information, we split this error intond

edge-based error estimatesαk ≥ 0 such that

‖e2‖L2(∆) = |∆|1/2

nd∑

k=1

αk and
nd∑

k=1

αk = (Bγ,γ)1/2. (2.1)

In the next section, we motivate the following choice ofαk:

αk = |γk| (Bγ, γ)1/2
( nd∑

k=1

|γk|
)−1

. (2.2)

Similarly, theL2-norm of gradient ofe2 is given by

‖∇e2‖2
L2(∆) = ‖

nd∑

k=1

γk∇bk‖2
L2(∆) = |∆|(B̃γ, γ),
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whereB̃ is the symmetric positive definite matrix with entriesB̃k,l = |∆|−1
∫

∆
∇bk ·∇bl dV. Again,

we split the cell-based error (a number) intond edge-based error estimatesα̃k ≥ 0 such that

‖∇e2‖2
L2(∆) = |∆|

nd∑

k=1

α̃k and
nd∑

k=1

α̃k = (B̃γ,γ). (2.3)

In the next section, we motivate the following choice ofα̃k:

α̃k = |γk| (B̃γ, γ)
( nd∑

k=1

|γk|
)−1

. (2.4)

3. Metric derivation from edge-based error estimates

The next lemma shows existence of a tensor metric generated by errors associated with mesh edges.

Lemma 1. Let αk, k = 1, . . . , nd, be the values prescribed to edges of ad-simplex∆ such that
αk ≥ 0 and

∑nd

k=1 αk > 0. Then, there exists a constant tensor metricM∆ such that
(

d!

(d + 1)(d + 2)

)1/d

|∆|2/d
M∆

≤
nd∑

k=1

αk ≤ |∂∆|2M∆
. (3.1)

The proof is sketched below and the detailed proof can be found in [2]. Let us consider the
quadratic functionv2 = −1

2

∑nd

k=1 αkbk and denote its Hessian byH(v2). If det(H(v2)) 6= 0,
we setM∆ = |H(v2)| where|H(v2)| is the spectral module ofH(v2). Otherwise, we increase
slightly the largestαk so that the modified functionv2 has a non-singular Hessian. In practice,
increase by 1% was sufficient for all numerical experiments.

The derivation of metricM∆ suggests a simple motivation for the choices (2.2) and (2.4) when
H(v2) is definite. Since the bubble functionbk is non-zero only on one edge, we get

(M∆ek, ek) =
1

2
αk(|H(bk)|ek, ek) = 4

αk

|γk|‖e2‖L∞(ek).

When∆ is theM∆-equilateral simplex, we have
α1

|γ1|‖e2‖L∞(e1) = · · · = αnd

|γnd
|‖e2‖L∞(end

).

Thus, the choice (2.2) means that in a mesh consisting onM∆-equilateral simplexes, we equidis-
tributeL2-norm of error over cells andL∞-norm of error over edges.
Let M̃∆ be the metric corresponding tõαk. Repeating the above arguments, we obtain (2.4).
Combining (2.1), (2.3) and (3.1), we get the geometric representation ofL2-norm of error and its
gradient:

cd|∆|1/2|∆|2/d
M∆

≤ ‖e2‖L2(∆) ≤ |∆|1/2|∂∆|2M∆
, (3.2)

cd|∆|1/2|∆|1/d
fM∆

≤ ‖∇e2‖L2(∆) ≤ |∆|1/2|∂∆|fM∆
. (3.3)

In other words, both norms of the error are controlled from above byM∆-perimeter and from
below byM∆-volume of simplex∆. Now we show how to modify the metric so that the controlling
quantities will be measured in the same metric.
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4. Generalizations toLp-norms andC2-functions

Let p ∈ (0;∞]. To control variousLp-norms ofe2 and∇e2, we use the scaling result from [2]:

M∆,p = (det(M∆))−1/(d+2p)
M∆ and M̃∆,p = (det(M̃∆))−1/(d+p)M̃∆.

Lemma 2. It holds
c|∆|2/d+1/p

M∆,p
≤ ‖e2‖Lp(∆) ≤ C |∆|1/p

M∆,p
|∂∆|2M∆,p

, (4.1)

c̃|∆|1/d+1/p
fM∆,p

≤ ‖∇e2‖Lp(∆) ≤ C̃ |∆|1/p
fM∆,p

|∂∆|fM∆,p
, (4.2)

where constantsc, C, c̃, andC̃ depend only ond.

Up to this moment, we derived the geometric representation of various norms ofe2 = I2,∆u −
I1,∆u. It was shown in [2] that the norm ofe2 provides a good approximation for the corresponding
norm of the true errore = u − I1,∆u. For completeness, we summarize these important results.
LetF be the space of symmetricd× d matrices. For a vectorek, we define the following norm:

|‖ek|‖2
|H| = max

x∈∆
(|H(x)|ek, ek). (4.3)

Then,|‖∂∆|‖2
|H| means formally the sum of (4.3) over edgesek of ∆.

Lemma 3. Letu ∈ C2(∆̄). Then, there exist positive constantco depending only ond such that

d + 1

2d
‖e2‖L∞(∆) ≤ ‖e∆‖L∞(∆) ≤ ‖e2‖L∞(∆) +

1

4
inf
F∈F

|‖∂∆|‖2
|H−F|, (4.4)

‖∇e2‖L∞(∆) − coosc(H, ∆) ≤ ‖∇e∆‖L∞(∆) ≤ ‖∇e2‖L∞(∆) + coosc(H, ∆), (4.5)

where

osc(H, ∆) =
|∂∆|d−1

|∆| inf
F∈F

|‖∂∆|‖2
|H−F|.

The oscillation terms are conventional in contemporary error analysis. Their value depend on the
simplex and particular features of the function. For instance, ifu ∈ C2(∆̄), and∆ is shape regular,
one has osc(H, ∆) ≤ C|∂∆| inf

F∈F
|H− F|∞. Thus, the oscillation terms are smaller than the errors.

Similar analysis can be performed forLp-norms,p > 0.

5. Asymptotic error estimates

Let Ωh andΩ̃h be simplicial meshes withNh cells that balance the volume and perimeter of cells:

N−1
h |Ω|Mp ' |∆|M∆,p

' |∂∆|dM∆,p
∀∆ ∈ Ωh,

N−1
h |Ω|fMp

' |∆|fM∆,p
' |∂∆|dfM∆,p

∀∆ ∈ Ω̃h.
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On such meshes, the following error estimates are held

‖e‖Lp(Ω) =
( ∑

∆∈Ωh

‖e‖p
Lp(∆)

) 1
p .

( ∑
∆∈Ωh

|∆|1+ 2p
d

M∆,p

) 1
p . |Ω|

1
p
+ 2

d

Mp
N
− 2

d
h ,

‖∇e‖Lp(Ω) =
( ∑

∆∈Ω̃h

‖∇e‖p
Lp(∆)

) 1
p .

( ∑

∆∈Ω̃h

|∆|1+ p
d

fM∆,p

) 1
p . |Ω|

1
p
+ 1

d

fMp
N
− 1

d
h ,

wherea . b means existence of constantsc andC independent of mesh such thatc a ≤ b ≤ C a.
In other words, theMp (resp.,̃Mp)-quasi-uniform meshes provide asymptotically optimal rate for
reduction of theLp-norm of the error (resp., the gradient of the error).

6. Metric-based mesh adaptation

We use Algorithm 1 to build an adaptive mesh minimizing theLp-norm of error or its gradient.
It provides faster convergence and results in smoother meshes when the metric is continuous. To
define a continuous metric we suggest a method of shifts. For every nodeai in Ωh, we define the
superelementσi as the union of alld-simplexes sharingai. Then,M(ai) is defined as one of the
metrics inσi with the largest determinant. This method always chooses the worst metric in the
superelement. To generate aM-quasi-uniform mesh, we use local mesh modifications described
in [3] and implemented in packageAni2D (sourceforge.net/projects/ani2d).

Algorithm 1 Adaptive mesh generation

1: Generate an initial meshΩh and compute the metricM.
2: loop
3: Generate aM-quasi-uniform meshΩh with the prescribed number of simplexes.
4: Recompute the metricM.
5: If Ωh is M-quasi-uniform, then exit the loop .
6: end loop

For the numerical illustration, we consider the analytical function

u = (x2y + y3)/163 + tanh(2(sin(6y)− 3x)(sin(6x)− 3y)) (6.1)

in the Texas-shape domain inscribed in[−3
2
; 3

2
]. The spider-like isolines ofu (see Fig. 1) show that

this function has both isotropic and anisotropic regions. Table 1 verifies the theoretical estimates
from Section 5. TheL∞-norm of the interpolation error on meshesΩh built with Algorithm 1
and metricMp is proportional toN−1

h . The L∞-norm of its gradient on meshes̃Ωh built with
Algorithm 1 and metric̃Mp is proportional toN−1/2

h . The last column in Table 1 shows that the
L∞-norm of the interpolation error on mesh̃Ωh, which is not the optimal mesh for this error,
exhibits still the optimal convergence rate; albeit, the error is larger than that on meshΩh. We also
note that the mesh̃Ωh (Fig.1, right) is denser than the meshΩh (Fig.1, left) in regions where the
solution is sharp.
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Nh ‖e‖L∞(Ωh) ‖∇e‖L∞(Ω̃h) ‖e‖L∞(Ω̃h)

2000 3.72e-2 1.23e+0 2.04e-1
4000 1.76e-2 8.00e-1 9.24e-2
8000 8.12e-3 5.36e-1 4.06e-2
16000 4.60e-3 4.00e-1 1.99e-2
32000 2.19e-3 2.72e-1 1.11e-2
64000 1.22e-3 1.92e-1 6.47e-3
rate 0.99 0.53 1.00

Table 1: Convergence of theL∞-norm of the interpolation error and its gradient.

Figure 1: Left: The meshΩh with roughly 2000 triangles minimizing‖e‖L∞(Ωh). Middle: The iso-
lines of function (6.1). Right: The mesh̃Ωh with roughly 2000 triangles minimizing‖∇e‖L∞(Ω̃h).
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