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Abstract. We present a new method for generatinfjdimensional simplicial mesh that minimizes
the LP-norm,p > 0, of the interpolation error or its gradient. The method uses edge-based error
estimates to build a tensor metric. We describe and analyze the basic steps of our method.
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1. |Introduction

Generation of a mesh adapted to a given function requires a specially designed metric. We develop
further a new methodology, proposed originally in [1, 2], for generating a tensor riBtfrom

error estimateprescribed to mesh edgebhe volume and the perimeter oflssimplex measured

in this metric control the norm of error or its gradient. The error equidistribution principle suggests
to balance)i-volumes andit-perimeters to producei-quasi-uniform mesh [3, 4].

The edge-based error estimates come usually from postprocessing or a posteriori error analy-
sis of a discrete solution. Critical advantage of edge-based error estimates over cell-based error
estimates is that they provide local directional information about the error. In this paper, we con-
sider the problem of minimizing thé&;-interpolation error or its gradient, where cell-based and
edge-based errors can be easily defined. Most methods that convert the cell-based errors into a
metric lose directional information. We describe a new method that uses the edge-based errors to
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build a metric that preserves directional information. We illustrate the optimal error reduction with
numerical experiments. We also summarize the existing error estimates.

2. Edge-based interpolation error estimates

Let Q c R4 be a bounded polyhedral domain afigl be a conformal simplicial mesh with;,
d-simplexes. The volume of é&simplex A and the total length of its edges in a metit are
denoted by A|m and|0A|m, respectively. Lef,u be the continuous piecewise linear interpolant
of u, andZ; Au be its restriction ta\. Our goal is to generate meshes that minimizelth@orm,
p € (0, 00|, of the interpolation error = u — Zyu or its gradientVe. Let us consider d-simplex
A with verticesv;, i = ,d+ 1, edge vectorg, = v, — vj, 1<i<j<d+1,and mid-edge
pointscy, k = 1,...,ng, wherend =d(d+1)/2. Let);,i = ,d + 1, be the linear functions
on A such that\ (v]) = §;; whered;; is the Kronecker symbol For every edgg we define the
quadratic bubble functioh, = A\;\;. Letwu be a continuous function. On each simpl&x we
consider its quadratic approximatien = 7, nu, whereZ, ru is the Lagrange interpolant af.
The interpolation error for the linear approximationgfis

nd Nq
ey = Uy — Iy AUy = 4Z(U2(Ck) — Ty aug(cy)) by, = Z% bi;.
k=1 k=1

The L?-norm of this error is given by

le2ll72(a) = 1AIB, ),

where~ is the vector withn,; componentsy, andB is then, x ng symmetric positive definite
matrix with positive entrie®,; = |A|~" [, b:b; dV. This error is only a number; therefore, it does
not provides any directional information. To recover this information, we split this errominto
edge-based error estimates > 0 such that

llezllr2ca) = ]A\l/ziak and Zak (B, v)"2. (2.1)
In the next section, we motivate the following choicengf
= bl (B, )2 (Z ) 2.2)
Similarly, the L?-norm of gradient o, is given by

IVeallZz(a —||Z%ka||Lz(A) A(B, v),
k=1
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whereB is the symmetric positive definite matrix with entrI@,@l Al A V-V dV. Again,
we split the cell-based error (a number) intpedge-based error estimatgs > 0 such that

nq
IVeal7za) = 1A1> ar  and Zak (B, 7). (2.3)
k=1

In the next section, we motivate the following choiceb@f

&, = |l (B, v (Z |7k ) - (2.4)

3. Metric derivation from edge-based error estimates

The next lemma shows existence of a tensor metric generated by errors associated with mesh edges.

Lemma 1. Letay, &k = 1,...,ny, be the values prescribed to edges af-aimplexA such that
ap > 0and) ¢, a > 0. Then, there exists a constant tensor meliig such that

d! 1/ N
- < < |OA? 3.1
The proof is sketched below and the detailed proof can be found in [2]. Let us consider the
quadratic functiorv, = —1 >°7'* axb, and denote its Hessian #i(vs). If det(H(vs)) # 0,

we setin = |H(ve)| where|H(vs)| is the spectral module dfi(v,). Otherwise, we increase
slightly the largesty; so that the modified function, has a non-singular Hessian. In practice,
increase by 1% was sulfficient for all numerical experiments.

The derivation of metri®)i, suggests a simple motivation for the choices (2.2) and (2.4) when
H(w,) is definite. Since the bubble functidp is non-zero only on one edge, we get

1 «
(Maer, ex) = Fan(|H(b)lex, ex) = 4_hk\ lleal| < (ep)-
k
WhenA is theMia-equilateral simplex, we have

(071 an
!%!HBQHL“’ (er) ="'+ =

€2l oo (eny)
|l

Thus, the choice (2.2) means that in a mesh consistirtjiarequilateral simplexes, we equidis-
tribute L?-norm of error over cells and>-norm of error over edges.

Let MtA be the metric corresponding &@.. Repeating the above arguments, we obtain (2.4).
Combining (2.1), (2.3) and (3.1), we get the geometric representatidf-nbrm of error and its
gradient:

cal A2 AR < lleallz2a) < [A]V20AR,,, (3.2)
Ca |A|1/2]A|1/d < ||Vesllzaay < |A[Y210A]g, - (3.3)

In other words, both norms of the error are controlled from abové@ity-perimeter and from
below byt A-volume of simplexA. Now we show how to modify the metric so that the controlling
guantities will be measured in the same metric.
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4. Generalizations toL’-norms and C?-functions
Letp € (0; oo]. To control varioud.”-norms ofe; andVe,, we use the scaling result from [2]:
Ma, = (det(Ma)) /P00y and My, = (det(Ma)) "V P4,

Lemma 2. It holds

A AP < ealloa) < ClAINME 10AR, . (4.1)
~| A |L/d+1/p 1/p
AN < Vel a) < ClALG [0Alg, . 4.2)

where constants, C, ¢ andC depend only o.

Up to this moment, we derived the geometric representation of various norms=efZ, xu —

7, au. Itwas shown in [2] that the norm ef provides a good approximation for the corresponding
norm of the true erroe = u — Z; ou. For completeness, we summarize these important results.
Let F be the space of symmetricx d matrices. For a vectay,, we define the following norm:

el = max (JEEGx) e, ex). (4.3)

Then,||\(9A|H|2H‘ means formally the sum of (4.3) over edggf A.

Lemma 3. Letu € C%(A). Then, there exist positive constaptdepending only od such that

d+1 1
54 lezllz(a) < lleallz=a) < llezllz=a) + 7 inf \HaAHhH = (4.4)
[Vea||Loo(a) — co08qH, A) < ||[Veallre(a) < || Vea||Lo(a) + c,0sqH, A), (4.5)
where DA
2
osc(it, ) = 21— st 1o, .

The oscillation terms are conventional in contemporary error analysis. Their value depend on the
simplex and particular features of the function. For instanae gfC?(A), andA is shape regular,
one has og&, A) < C|0A| éanT |H — F|. Thus, the oscillation terms are smaller than the errors.

[S

Similar analysis can be performed fb¥-norms,p > 0.

5. Asymptotic error estimates
Let Q;, andQ);, be simplicial meshes withV;, cells that balance the volume and perimeter of cells:
N M, = (A, = 104, VA €y,

N, = [Alg, > \aA\gﬁM VA € Q.
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On such meshes, the following error estimates are held

- 1422\ 5 st -2
lell o) = ( > ||€||§p(A)> S < > |A|M;p) S 95, "7
AeQy, AeQy,
1 1 1,1
1+2 vt
HV‘BHLP(Q) = ( Z HveH}[),P(A)>p S/ ( Z ‘A’m—;p>p S |Q’;ﬁpth d’
AEQ}L AEQ}L ’

wherea < b means existence of constantandC independent of mesh such that < b < Ca.

In other words, thét, (resp.,ﬁp)-quasi-uniform meshes provide asymptotically optimal rate for
reduction of thel.?-norm of the error (resp., the gradient of the error).

6. Metric-based mesh adaptation

We use Algorithm 1 to build an adaptive mesh minimizing fifenorm of error or its gradient.

It provides faster convergence and results in smoother meshes when the metric is continuous. To
define a continuous metric we suggest a method of shifts. For everyapaalé€l,, we define the
superelement; as the union of alli-simplexes sharing;. Then,Mi(a;) is defined as one of the
metrics ing; with the largest determinant. This method always chooses the worst metric in the
superelement. To generat@&quasi-uniform mesh, we use local mesh modifications described

in [3] and implemented in packagei2D (sourceforge.net/projects/ani2d).

Algorithm 1 Adaptive mesh generation

1: Generate an initial mesh, and compute the metrioi.

2: loop

3 Generate &t-quasi-uniform mesk;, with the prescribed number of simplexes.
4: Recompute the metri®i.

5 If ), is 9M-quasi-uniform, then exit the loop

6: end loop

For the numerical illustration, we consider the analytical function
u = (2%y + ) /16 4 tanh(2(sin(6y) — 3z)(sin(6x) — 3y)) (6.1)

in the Texas-shape domain inscribeqirrg; g]. The spider-like isolines af (see Fig. 1) show that

this function has both isotropic and anisotropic regions. Table 1 verifies the theoretical estimates
from Section 5. The.*>-norm of the interpolation error on mesh@g built with Algorithm 1

and metric9)t, is proportional toN, !. The L>-norm of its gradient on meshés, built with

Algorithm 1 and metrid)t, is proportional toN, '/*. The last column in Table 1 shows that the
L>-norm of the interpolation error on mesh,, which is not the optimal mesh for this error,
exhibits still the optimal convergence rate; albeit, the error is larger than that on(ipese also
note that the mesfy,, (Fig.1, right) is denser than the me&h (Fig.1, left) in regions where the
solution is sharp.
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Nn | lellz=@u | [IVelle@, | lellze@,
2000 | 3.72e-2 | 1.23e+0 | 2.04e-1
4000 | 1.76e-2 | 8.00e-1 | 9.24e-2
8000 | 8.12e-3 | 5.36e-1 | 4.06e-2
16000| 4.60e-3 | 4.00e-1 | 1.99e-2
32000 2.19e-3 | 2.72e-1 | 1.1le-2
64000 1.22e-3 | 1.92e-1 | 6.47e-3

rate | 0.99 0.53 1.00

Table 1: Convergence of theé*-norm of the interpolation error and its gradient.

Figure 1: Left: The mesk;, with roughly 2000 triangles minimizinge|| .-, ). Middle: The iso-
lines of function (6.1). Right: The mesh, with roughly 2000 triangles minimizingVeHLm(Qh).
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