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Abstract

We describe a new method for generating meshes that minimize the gradient of a discretization error. The key element of this
method is construction of a tensor metric from edge-based error estimates. In our papers [1–4] we applied this metric for generating
meshes that minimize the gradient of P1-interpolation error and proved that for a mesh with N triangles, the L2-norm of gradient
of the interpolation error is proportional to N−1/2. In the present paper we recover the tensor metric using hierarchical a posteriori
error estimates. Optimal reduction of the discretization error on a sequence of adaptive meshes will be illustrated numerically for
boundary value problems ranging from a linear isotropic diffusion equation to a nonlinear transonic potential equation.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Metric-based adaptation; Finite element method; Quasi-optimal meshes

1. Introduction

Generation of adaptive meshes is the active research area. The paper is devoted to generation of meshes which
minimize the energy norm of finite element solutions to boundary value problems. The minimum is sought over the set
of conformal triangulations with a fixed number of simplexes. An approximate solution of the minimization problem
is deemed sufficient if (a) the discretization error is close to that on the optimal mesh and (b) the error reduction rate
on a sequence of generated meshes is optimal. We call such meshes quasi-optimal.

In [1–4], we analyzed the problem of minimizing the Lp-norm of the gradient of the interpolation error and
proposed a numerical method for generation of d-dimensional quasi-optimal meshes. The method recovers a ten-
sor metric inside each simplex from function values at the simplex vertices and edge midpoints. The analysis
is based on a geometric representation of the error and a relaxed saturation assumption. In [1] we applied the
method to finite element discretizations of linear elliptic PDEs. The numerical experiments have shown optimal
reduction of hierarchical error estimates on anisotropic meshes. In this paper, we analyze numerically robustness
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of hierarchical error estimates for boundary value problems with anisotropic solutions. The selected set of prob-
lems includes diffusion, convection-diffusion, the Stokes and Navier–Stokes equations. We present numerical results
which demonstrate quasi-optimality of two-dimensional anisotropic meshes for finite element solution of these
problems.

The existing theoretical results [1,2,13,17,18,23] indicate that a posteriori error estimates may and should
be efficient and reliable on anisotropic meshes aligned with the solution. However, the theory makes a few
assumptions that are difficult to verify a priori, such as the saturation assumption on anisotropic meshes. Also,
there are no theoretical results showing convergence of adaptive iterations, especially in case where the ini-
tial mesh is not aligned with the solution. Thus, numerical analysis remains so far the only tool available to
us.

In our method, no assumption of shape regularity is imposed on quasi-optimal and optimal meshes. The shape
of simplexes is controlled by a specially designed metric M which is recovered from a posteriori error esti-
mates prescribed to mesh edges. The volume and the perimeter of a d-simplex measured in this metric bound
the error norm from the above and below. To build a quasi-optimal mesh, we use the error equidistribution prin-
ciple that suggests to balance M-volumes and M-perimeters to produce a mesh that is quasi-uniform in metric
M [21,22]. The mesh generation algorithm employs a sequence of local mesh modifications [9,21]; therefore, it
is easy to parallelize [10,19]. These modifications include vertex addition, deletion and relocation, and edge/face
swapping.

Another approach to derivation of an optimal tensor metric uses the Hessian of a discrete solution [7,8,11,15,16,21].
For a piecewise linear finite element solution, its Hessian can be defined only in a weak sense. The lack of strong
convergence of the discrete Hessian to the continuous one during mesh refinement is one of the problems in analysis
of the Hessian-based methods. Comparison of the two methodologies for metric generation is beyond the scope of this
paper.

For the sake of simplicity, we restrict our presentation to conformal triangulations on a plane, although all the results
can be extended to d-dimensional simplicial meshes.

The paper outline is as follows. In Section 2, we derive a local metric from edge-based error estimates. In Section 3,
we derive estimates for the global error. In Section 4, we illustrate with numerical experiments optimal reduction rate
of the interpolation error. In Section 5, we describe a hierarchical error estimator. In Section 6, we analyze numerically
robustness of this estimator for minimization of the discretization error.

2. Local interpolation error estimates and metric recovery

In this section, we use an interpolation problem as the preliminary step for the subsequent analysis of a discretization
error. We highlight three basic points of our method. First, the error in a triangle can be represented as a sum of errors
on its edges. Second, this representation is not unique. Third, the edge-based errors define the tensor metric which
controls the error norm.

Let Ω be a bounded polygonal domain and Ωh be its conformal triangulation with Nh triangles. The area of a triangle
Δ and its perimeter in a metricM are denoted by |Δ|M and |∂Δ|M, respectively. Let I1u be the continuous piecewise
linear Lagrange interpolant of u, and I1,Δu be its restriction to Δ. Our goal is to generate meshes that minimize the
L2-norm of the gradient of the interpolation error e = u − I1u.

Let us consider a triangle Δ with vertices vi, i = 1, 2, 3, edge vectors ek = vi − vj, 1 ≤ i < j ≤ 3, and mid-edge points
ck, k = 1, 2, 3. Let λi, i = 1, 2, 3, be the linear functions on Δ such that λi(vj) = δij, where δij is the Kronecker symbol.
For every edge ek, we define the quadratic bubble function bk = λiλj.

To simplify error analysis, we employ the divide and conquer approach. Most of the analysis is done for quadratic
functions. Then, the obtained results are extended to general functions. Let u be a general continuous function. On
each simplex Δ, we consider its quadratic approximation u2 = I2,Δu, where I2,Δu is the Lagrange interpolant of u.
The interpolation error for u2 is

e2 = u2 − I1,Δu2 = 4
3∑

k=1

(u2(ck) − I1,Δu2(ck)) bk ≡
3∑

k=1

γk bk. (1)
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Note that calculation of γk requires to evaluate u2 at three points on edge ek, two end-points and one mid-point. The
L2-norm of gradient of e2 is given by

‖∇e2‖2
L2(Δ) =

∥∥∥∥∥
3∑

k=1

γk∇bk

∥∥∥∥∥
2

L2(Δ)

= |Δ|(B γ, γ),

where γ is the vector with 3 components γk and B is the 3 × 3 symmetric positive definite matrix with entries
Bk,l = |Δ|−1

∫
Δ

∇bk · ∇bl dV. This error is only a number; therefore, it does not provide any directional information.
To recover this information, we split this error into 3 edge-based error estimates αk ≥ 0 such that

‖∇e2‖2
L2(Δ) = |Δ|

3∑
k=1

αk and
3∑

k=1

αk = (Bγ, γ). (2)

Generally speaking, there exists a freedom in the choice of αk. We are going to exploit the detailed structure of the
error. Looking back at formula (1), we observe that

‖e2‖L∞(ek) = 1

4
|γk|.

This estimate does not depend on the shape of Δ and is the same for two triangles that share edge ek. We propose to
select αk = cΔ | γk |, where the factor cΔ is the same for all edges in the simplex. The simple calculations give

αk = |γk| (Bγ, γ)

(
3∑

k=1

|γk|
)−1

. (3)

A similar selection will be made in analysis of the discretization error. The next lemma shows existence of a tensor
metric that controls the sum of αk.

Lemma 1. Let αk, k = 1, 2, 3, be the values prescribed to edges of a triangle Δ such that αk ≥ 0 and α1 + α2 + α3 > 0.
Then, there exists a constant tensor metric M̃Δ such that

1√
2
|Δ|
M̃Δ

≤
3∑

k=1

αk ≤ |∂Δ|2
M̃Δ

. (4)

The proof is sketched below and the detailed proof can be found in [2,4]. Let us consider the quadratic function
v2 = − 1

2

∑3
k=1αkbk and denote its Hessian by H(v2). If det(H(v2)) /= 0, we set M̃Δ = |H(v2)| where |H(v2)| is

the spectral module of H(v2). Otherwise, we increase slightly the largest αk so that the modified function v2 has a
non-singular Hessian. In practice, increase by 1% was sufficient for all numerical experiments.

The derivation of metric M̃Δ suggests a simple motivation for our choice of αk. Let H(v2) be definite. Since the
bubble function bk is non-zero only on one edge, we get

(M̃Δek, ek) = 1

2
αk(|H(bk)|ek, ek) = cΔ |γk| = 4 cΔ ‖e2‖L∞(ek).

Recall that cΔ is the same for all edges of Δ. Thus, when Δ is the M̃Δ-equilateral triangle, we get immediately that

‖e2‖L∞(e1) = ‖e2‖L∞(e2) = ‖e2‖L∞(e3).

Thus, the choice (3) means that in a mesh consisting of equal M̃Δ-equilateral triangles, we equidistribute the L2-norm
of gradient of error over triangles and the L∞-norm of error over edges.

Combining (2) and (4), we get the geometric representation of L2-norm of ∇e2:

1√
2
|Δ| |Δ|

M̃Δ
≤ ‖∇e2‖2

L2(Δ) ≤ |Δ| |∂Δ|2
M̃Δ

. (5)
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In other words, the L2-norm of the gradient of error is controlled from above by M̃Δ-perimeter and from below by
M̃Δ-area of triangle Δ. The final step is to modify the metric so that the controlling quantities will be measured in the
same metric. This is achieved by a simple metric rescaling [2,4]:

MΔ = (det M̃Δ)
−1/4
M̃Δ (6)

for which one has |Δ||Δ|
M̃Δ

= |Δ|2MΔ
and |Δ||∂Δ|2

M̃Δ

= |Δ|MΔ
|∂Δ|2MΔ

.

Lemma 2. For metricMΔ defined by (6), it holds

1√
2
|Δ|2MΔ

≤ ‖∇e2‖2
L2(Δ) ≤ |Δ|MΔ

|∂Δ|2MΔ
. (7)

Lemma 2 provides the geometric representation of the error norm for a quadratic function u2. It is shown in [2,4]
that this error norm is a good approximation to the same norm of the true error e = u − I1,Δu. In order to formulate
this result, we introduce the space of symmetric 2 × 2 matrices F and define the following norm for a vector ek:

|‖ek|‖2
|H| = maxx ∈ Δ (|H(x)|ek, ek). (8)

Lemma 3. Let u ∈ C2(Δ̄). Then, there exist a positive constant co such that

‖∇e2‖L2(Δ) − co osc (H, Δ) ≤ ‖∇eΔ‖L2(Δ) ≤ ‖∇e2‖L2(Δ) + co osc(H, Δ), (9)

where

osc(H, Δ) = |∂Δ|
|Δ| inf

F∈F
|‖∂Δ|‖2

|H−F|.

The oscillation term is smaller than the error. Its value depends on the triangle and particular features of the function.
For instance, if u ∈ C2(Δ̄), and Δ is shape regular, one has osc(H, Δ) ≤ C|∂Δ|infF∈F|H− F|∞.

3. Global error estimate and quasi-optimal meshes

LetM be the tensor metric composed of local metricsMΔ satisfying Lemma 2. Let Ωh be a triangulation with Nh
cells that is quasi-uniform in metricM. Thus, |∂Δ|2M � |Δ|M and

N−1
h |Ω|M � |Δ|MΔ

� |∂Δ|2MΔ
∀Δ ∈ Ωh,

where a � b means existence of constants c and C independent of mesh such that c a ≤ b ≤ C a. On such a mesh, the
following error estimate is held

‖∇e‖L2(Ω) =
⎛⎝ ∑

Δ ∈ Ωh

‖∇e‖2
L2(Δ)

⎞⎠1/2

�
⎛⎝ ∑

Δ ∈ Ωh

|Δ|2MΔ

⎞⎠1/2

� |Ω|MN
−1/2
h . (10)

In other words, the sequence ofM-quasi-uniform meshes provides asymptotically optimal rate for reduction of the
L2-norm of the gradient of error.

In order to generate theM-quasi-uniform mesh, we use Algorithm 1. The algorithm provides faster convergence
when the metric is continuous. To define a continuous metric we use a method of shifts. For every node ai in Ωh,
we define the superelement σi as the union of all triangles sharing ai. Then,M(ai) is defined as one of the metrics
in σi with the largest determinant. This method always chooses the worst metric in the superelement. To generate
a M-quasi-uniform mesh, we use local mesh modifications described in [21] and implemented in package Ani2D
(sourceforge.net/projects/ani2d).

Algorithm 1. Adaptive mesh generation
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Fig. 1. Isolines of function (11) and the quasi-optimal mesh with roughly 2000 triangles.

1: Generate an initial mesh Ωh and compute the metricM.
2: loop
3: Generate a new mesh Ωh that is quasi-uniform in metricM and has the prescribed number of triangles.
4: Recompute the metricM.
5: If Ωh isM-quasi-uniform, then exit the loop
6: end loop

4. Numerical minimization of the gradient of interpolation error

In the first experiment, we consider the problem of minimizing the L2-norm of the gradient of the interpolation error
for the function from [11]:

u(x, y) = (x − 0.5)2 − (
√

10y + 0.2)
2

((x − 0.5)2 + (
√

10y + 0.2)
2
)
2 . (11)

The computational domain is the unit square [0, 1]2. The function has a weak anisotropic singularity at point
(0.5, −0.2/

√
10) which is outside the computational domain but close to its boundary. Isolines of u are shown on the

left picture in Fig. 1.
In the second experiment, we consider the function from [14] with anisotropic features:

u(x, y) = yx2 + y3 + tanh(6(sin(5y) − 2x)). (12)

The computational domain is the square [ − 1, 1]2. The function is anisotropic along the zigzag curve and changes
sharply in the direction normal to this curve (see the left picture in Fig. 3). Table 1 shows the interpolation error

Table 1
The L2-norm of the gradient of the interpolation error for functions (11) and (12).

Nh \ u Function (11) Function (12)

600 3.9 2.0
2500 1.9 0.88
10,000 1.0 0.44
40,000 0.51 0.22

Rate 0.49 0.53
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‖∇(u − I1,Δu)‖L2(Ω) for both functions. The optimal half-order convergence rate predicted in (10) is clearly observed
in both cases.

Triangles in the quasi-optimal meshes have smaller size in regions where the isolines are dense and are stretched
along the main direction of the anisotropy.

5. Hierarchical error estimates for finite element solutions of PDEs

In the construction of metricMΔ, the coefficients γk of error representation (1) play the important role. In the finite
element community, the bubble finite element functions are often used in derivation of error estimates. We suggest to
use the coefficients in front of these bubbles to build the proper metric.

The hierarchical error estimates are based on enrichment of the primary finite element space with bubble functions
bk [12]. The basic idea of these estimates is that the discretization error over the triangle Δ may be approximated as
follows:

‖∇e‖L2(Δ) �
∥∥∥∥∥

3∑
k=1

γk∇bk

∥∥∥∥∥
L2(Δ)

. (13)

The straightforward and the most expensive method for calculating the coefficients γk is via solution of a larger finite
element problem. If the primary finite element method results in the algebraic problem

ALLU∗
L = FL, (14)

the enriched method requires to solve[
ALL ALQ

AQL AQQ

][
UL

UQ

]
=
[

FL

FQ

]
,

where subscripts L and Q stand for linear and quadratic terms. If the solution U∗
L of the primary problem is known, the

following algebraic problem for the error has to be solved:[
ALL ALQ

AQL AQQ

][
DL

DQ

]
=
[

FL − ALLU∗
L

FQ − AQLU∗
L

]
. (15)

The entries of vector DQ are the sought coefficients γk in (13).
The exact solution of (15) is too expensive. A cheaper calculation of coefficients γk is based on the solution D̃Q of

the reduced algebraic problem:

AQQ D̃Q = FQ − AQLU∗
L. (16)

Using a local finite element analysis, one can show equivalence of energy norm of errors in both calculations when
the mesh is shape-regular [12]. The matrix AQQ is well-conditioned for such meshes; therefore, the vector D̃Q can be
calculated efficiently with a simple Krylov subspace method. Our numerical experiments show that the equivalence of
the energy norms may hold on anisotropic meshes aligned with the solution.

6. Numerical minimization of energy norm of the discretization error

In this section we consider a few boundary value problems ranging from a simple linear isotropic diffusion equation
to a nonlinear transonic potential equation. We denote the linear combination of bubble functions with coefficients γk
defined by entries of vectors DQ and D̃Q as dh and d̃h, respectively.

6.1. Linear diffusion problem with isotropic solution

Let Ω be a unit disk with a radial cut. We consider the classical crack problem with the exact solution

u(r, θ) = r1/4 sin

(
θ

4

)
,
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Fig. 2. Solution isolines and the quasi-optimal mesh with roughly 4000 triangles for the crack problem.

where (r, θ) are polar coordinates, r > 0 and θ ∈ [0, 2π). The crack line S connects points (0, 0) and (1, 0). We consider
the following boundary value problem:

Δ u = 0 in Ω \ S,

u = sin
θ

4
on ∂Ω \ S,

u = 0 on S+,
∂u

∂n
= 0 on S−,

(17)

where S+ and S− denote the crack line when it is approached from regions θ → + 0 and θ → 2π, respectively.
Fig. 2 shows isolines of the exact solution and the quasi-optimal mesh with roughly 4000 triangles. Most of the

triangles are packed around the singularity point (0, 0). It takes 8 iterations of Algorithm 1 to reduce the initial
discretization error (calculated on a uniform mesh) to a 5% neighborhood of the final error. Solution of problem (14)
requires up to 50 iterations whereas solution of reduced problem (16) takes 3 iterations. In both cases we used the
Bi-Conjugate Gradient Stabilized (BiCGStab) method with a black-box second-order ILU preconditioner.

The last column in Table 2 demonstrates the half-order convergence of the gradient of the true discretization error for
the P1 finite element approximations. A similar convergence is observed for the gradient of the finite element function
d̃h, which confirms the theory of hierarchical error estimates on shape-regular meshes. The difference in norms of d̃h

and dh indicates that the constant of spectral equivalence of energy norms is close to 1.

Table 2
Error estimates and the true discretization error for the crack problem.

Nh ‖∇d̃h‖L2(Ω) ‖∇dh‖L2(Ω) ‖∇e‖L2(Ω)

1000 1.02e−1 1.08e−1 1.09e−1
4000 5.20e−2 5.42e−2 5.38e−2
16,000 2.62e−2 2.72e−2 2.73e−2
64,000 1.30e−2 1.36e−2 1.52e−2

Rate 0.5 0.5 0.47
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Fig. 3. Solution isolines and the quasi-optimal mesh with roughly 4000 triangles for the anisotropic diffusion problem.

6.2. Linear diffusion problem with anisotropic solution

Let Ω be the unit square Ω =(− 1, 1)2. We consider the following boundary value problem:

−div(K ∇u) = f in Ω,

u = u0 on ∂Ω,

where K is the diagonal tensor with entries 1 and 0.1. The right-hand side and the Dirichlet boundary data are such
that the exact solution is given by (12).

The quasi-optimal mesh with roughly 4000 triangles is shown in Fig. 3. The maximal ratio of radii of superscribed to
inscribed circles is about 7600. The triangles are stretched along the central sine-type curve. It takes only 3–4 iterations
of Algorithm 1 to reduce the initial discretization error (calculated on a uniform mesh) to a 5% neighborhood of the
final error. Solution of problem (14) requires up to 180 iterations whereas solution of reduced problem (16) takes 5
iterations.

Table 3 shows the optimal error reduction on the sequence of quasi-optimal meshes. The energy norm of the
hierarchical a posteriori error estimator, ‖K1/2∇d̃h‖L2(Ω), is in the excellent agreement with ‖K1/2∇dh‖L2(Ω), even
on anisotropic meshes. Again, both estimates are close to the true energy norm of the discretization error.

6.3. Convection-diffusion problem with analytic solution

Let Ω be the unit square Ω = (0, 1)2. We consider the following boundary value problem:

−div(ν ∇u − �au) = f in Ω,

u = u0 on ∂Ω,

Table 3
Error estimates and the true discretization error for the anisotropic diffusion problem.

Nh ‖K1/2∇d̃h‖L2(Ω) ‖K1/2∇dh‖L2(Ω) ‖K1/2∇e‖L2(Ω)

1000 7.52e−1 8.21e−1 8.03e−1
4000 3.60e−1 4.16e−1 3.77e−1
16,000 1.79e−1 2.07e−1 1.87e−1
64,000 9.12e−2 1.29e−1 9.44e−2

Rate 0.51 0.45 0.51
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Fig. 4. Solution isolines and the quasi-optimal mesh with roughly 4000 triangles for the convection-diffusion problem.

where ν = 10−2 and �a = (2, 3)T . The right-hand side and the Dirichlet boundary data are calculated using the exact
solution proposed in [20]:

u(x, y) =
(

x − exp

(
2(x − 1)

ν

))(
y2 − exp

(
3(y − 1)

ν

))
.

The diffusion coefficient ν characterizes thickness of the boundary layer in the top-right corner of Ω.
The quasi-optimal mesh with roughly 4000 triangles is shown in Fig. 4. The maximal ratio of radii of superscribed

to inscribed circles reaches 800. It takes 6 iterations of Algorithm 1 to reduce the initial discretization error to a 5%
neighborhood of the final error. Solution of problem (14) requires up to 8 iterations whereas solution of reduced problem
(16) takes 2 iterations. Note that the SUPG stabilization is not used here, since the adaptive mesh itself stabilizes the
discretization.

Table 4 shows error reduction on the sequence of quasi-optimal meshes. Deviation from the expected half-order
convergence rate is due to slow convergence on coarser meshes. The hierarchical a posteriori error estimator is again
in the good agreement with the true error.

6.4. Stokes problem

Let Ω be the unit square (0, 1)2. We consider the Stokes problem:

−Δ u + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω

(18)

Table 4
Error estimates and the true discretization error for the convection-diffusion problem.

Nh ‖ν1/2∇d̃h‖L2(Ω) ‖ν1/2∇e‖L2(Ω)

4000 1.73e−1 9.63e−2
16,000 9.53e−2 5.33e−2
64,000 5.16e−2 3.04e−2
256,000 2.70e−2 1.67e−2

Rate 0.45 0.42
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Table 5
True discretization errors for I1uh and uh for the Stokes problem.

Nh Ẽ(u) E(u)

1000 3.3e−1 2.8e−2
4000 1.6e−1 8.3e−3
16,000 8.1e−2 2.3e−3
64,000 4.0e−2 6.6e−4

Rate 0.5 0.9

with the exact solution (u, p) [6], where u = (v, w) and

v(x, y) =
(

1 − cos

(
2π(eR1x − 1)

eR1 − 1

))
sin

(
2π(eR2y − 1)

eR2 − 1

)
R2

2π

eR2y

(eR2 − 1)
,

w(x, y) = − sin

(
2π(eR1x − 1)

eR1 − 1

)(
1 − cos

(
2π(eR2y − 1)

eR2 − 1

))
R1

2π

eR1x

(eR1 − 1)
,

p(x, y) = sin

(
2π(eR1x − 1)

eR1 − 1

)
sin

(
2π(eR2y − 1)

eR2 − 1

)
R1R2

eR1xeR2y

(eR1x − 1)(eR2y − 1)
.

We set R1 = 4.2985 and R2 = 0.1 and calculate the right-hand fide f by substituting the exact solution in (18). The
velocity field u represents a counterclockwise vortex whose center has coordinates

x0 = 1

R1
log

(
eR1 + 1

2

)
, y0 = 1

R2
log

(
eR2 + 1

2

)
.

Higher values of R1 and R2 make the center (x0, y0) to approach the right-top corner of Ω. The appropriate choice of
R1 and R2 allows us to mimic boundary layers.

The stable Hood–Taylor P2 − P1 pair of finite element spaces for u and p is used for discretization of problem (18).
The finite element solution uh is known to minimize the energy norm of velocity components:

E(u) = (‖∇(vh − v)‖2
L2(Ω) + ‖∇(wh − w)‖2

L2(Ω))
1/2

.

On quasi-uniform meshes this property guarantees O(h) reduction of E(u) for u ∈ (H2(Ω))
2

and O(h2) reduction of

E(u) for u ∈ (H3(Ω))
2
. For other meshes with Nh triangles, the optimal convergence rate is the half-order, N

−1/2
h , for

u ∈ (H2(Ω))
2
, and the first-order, N−1

h , for u ∈ (H3(Ω))
2
.

We note that our approach provides the optimal rate of gradient error reduction for P1 finite element solution rather
than for P2 finite element solution. We suggest to minimize the gradient error of the P1 counterpartI1uh = (I1vh, I1wh)
of the P2 velocity uh = (vh, wh). To generalize our method to vector functions, we define two sets of key values γk
avoiding the solution of system (16):

γ
(1)
k = (vh − I1vh)(ck) and γ

(2)
k = (wh − I1wh)(ck)

and set

αk = (|γ (1)
k | + |γ (2)

k |) ((Bγ (1), γ (1)) + (Bγ (2), γ (2)))

(
3∑

k=1

|γ (1)
k | + |γ (2)

k |
)−1

.

It is possible to prove that the sequence of quasi-optimal meshes yields the half-order convergence of the error

Ẽ(u) = (‖∇(I1vh − v)‖2
L2(Ω) + ‖∇(I1wh − w)‖2

L2(Ω))
1/2

on anisotropic meshes. The linear interpolant in Ẽ(u) prevents us from proving a better estimate.
The velocity streamlines and the quasi-optimal mesh with approximately 1000 triangles are shown in Fig. 5. It takes

3 iterations of Algorithm 1 to reduce the initial discretization error to a 5% neighborhood of the final error. In Table 5
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Fig. 5. Velocity streamlines and the adaptive mesh with roughly 1000 triangles for the Stokes problem.

we present the errors Ẽ(u) and E(u) on a sequence of adaptive meshes. Optimal half-order convergence rate is observed
for Ẽ(u). Surprisingly, these meshes provide almost the first-order convergence rate for error E(u).

6.5. Steady-state Navier–Stokes equations

Let Ω be the unit square (0, 1)2. We consider the Navier–Stokes equations

−0.1Δ u + (u · ∇)u + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω

(19)

with the analytic solution (u, p) used for the Stokes problem. The stable Hood–Taylor pair of finite element spaces is
used to solve the problem. We use inexact Newton–Krylov solver and the direct solver from the library UMFPACK
for linearized problems. The average number of Newton iterations is 4.

Table 6 demonstrates the optimal half-order convergence rate of error Ẽ(u) and almost the first-order convergence
rate for error E(u).

Table 6
True discretization errors for I1uh and uh for the Navier–Stokes problem.

Nh Ẽ(u) E(u)

1000 3.3e−1 7.2e−2
4000 1.6e−1 2.1e−2
16,000 8.1e−2 6.1e−3
64,000 4.0e−2 1.7e−3

Rate 0.5 0.9
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Fig. 6. Isolines of the velocity module and the adaptive mesh with roughly 2000 triangles.

Table 7
Convergence of the hierarchical a posteriori error estimator the transonic potential flow problem.

Nh ‖K1/2∇d̃h‖L2(Ω)

500 0.18
1000 0.12
2000 0.090
4000 0.065

Rate 0.49

6.6. Transonic potential flow problem

We consider the stationary irrotational adiabatic flow of the ideal gas around a wing-shaped obstacle. The obstacle
is the top half of the NACA0012 profile scaled to the segment [0.4, 0.6]. The computational domain is the rectangle
(0, 1) × (0, 0.5) without the obstacle. The velocity potential ϕ satisfies the following equation:

div

[(
1 − |∇ϕ|2

c

)α

∇ϕ

]
= 0 in Ω,

∂ϕ

∂n
= u∞ · n on Γ∞,

∂ϕ

∂n
= 0 on Γbot.

(20)

Here u∞ is the flow speed at infinity which is transformed into the Neumann boundary condition for the velocity
potential on Γ ∞. The boundary Γ ∞ consists of three linear pieces of ∂Ω which are entire sides of the rectangle, and
the bottom side Γbot = ∂Ω \ Γ̄∞. Further, c = 2c2

0/(γ − 1), where c0 is the speed of sound in the motionless gas,
α = 1/(γ − 1) and γ = 1.4. The inflow is parallel to the x-axis and its speed is 0.8 Mach. The details of the finite element
solution of this problem can be found in [5].

The flow regime is transonic: a shock is formed on the obstacle boundary behind the supersonic zone. Fig. 6 shows
the velocity isolines and the quasi-optimal mesh with approximately 2000 triangles.

The mesh adaptation strategy is similar to that for the diffusion problem with the scalar coefficient K =
(1 − (|∇ϕ|2/c))

α
. Only one step of Algorithm 1 is performed for problem (20). The analytic solution is unknown.

Table 7 shows the half-order convergence rate for the hierarchical a posteriori error estimator ‖K1/2∇d̃h‖L2(Ω) on the
sequence of adapted meshes.

7. Conclusion

We described the new method for generating meshes that minimize the gradient of the FEM discretization error.
We have shown that for a mesh with N triangles, the L2-norm of gradient of error is proportional to N−1/2. Numerous
numerical experiments verified robustness of the hierarchical error estimator for anisotropic meshes. Optimal reduction
of the discretization error was observed on a sequence of quasi-optimal meshes for a wide spectrum of linear and
non-linear boundary value problems.
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