
Journal of Computational Physics 231 (2012) 3126–3142
Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Monotonicity recovering and accuracy preserving optimization methods
for postprocessing finite element solutions

Oleg Burdakov a,⇑, Ivan Kapyrin b, Yuri Vassilevski b

a Department of Mathematics, Linköping University, Linköping, Sweden
b Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 April 2011
Received in revised form 4 December 2011
Accepted 28 December 2011
Available online 8 January 2012

Keywords:
Finite element solution
Accuracy analysis
Constrained monotonic regression
Large scale quadratic optimization
Lagrangian relaxation
Dual ascent method
0021-9991/$ - see front matter � 2012 Elsevier Inc
doi:10.1016/j.jcp.2011.12.041

⇑ Corresponding author.
E-mail address: oleg.burdakov@liu.se (O. Burdak
We suggest here a least-change correction to available finite element (FE) solution. This
postprocessing procedure is aimed at recovering the monotonicity and some other impor-
tant properties that may not be exhibited by the FE solution. Although our approach is pre-
sented for FEs, it admits natural extension to other numerical schemes, such as finite
differences and finite volumes. For the postprocessing, a priori information about the
monotonicity is assumed to be available, either for the whole domain or for a subdomain
where the lost monotonicity is to be recovered. The obvious requirement is that such infor-
mation is to be obtained without involving the exact solution, e.g. from expected symme-
tries of this solution.

The postprocessing is based on solving a monotonic regression problem with some extra
constraints. One of them is a linear equality-type constraint that models the conservativity
requirement. The other ones are box-type constraints, and they originate from the discrete
maximum principle. The resulting postprocessing problem is a large scale quadratic opti-
mization problem. It is proved that the postprocessed FE solution preserves the accuracy
of the discrete FE approximation.

We introduce an algorithm for solving the postprocessing problem. It can be viewed as a
dual ascent method based on the Lagrangian relaxation of the equality constraint. We jus-
tify theoretically its correctness. Its efficiency is demonstrated by the presented results of
numerical experiments.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider the following constrained monotonic regression problem. Given: a vector of positive weights
w 2 Rn, a vector �u 2 Rn, a monotonicity establishing matrix M 2 Rl�n, scalars a < b and m. Find u⁄ 2 Rn that solves the least-dis-
tance problem:
min
u2Rn

1
2 ku� �uk2

w

subject to : Mu P 0; ðMÞ
ae 6 u 6 be; ðBÞ
wT u ¼ m: ðCÞ

ð1Þ
. All rights reserved.

ov).

http://dx.doi.org/10.1016/j.jcp.2011.12.041
mailto:oleg.burdakov@liu.se
http://dx.doi.org/10.1016/j.jcp.2011.12.041
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142 3127
Here the notations kak2
w ¼

Pn
i¼1wia2

i and e = (1,1, . . . ,1)T 2 Rn are used. The matrix M has the structure of an arc-node inci-
dence matrix [1]. This means that each row of M is composed of zeros, but two elements, one of them being equal to +1
and the other one to �1. Therefore, each constraint in (M) is of the form ui P uj, and it establishes a monotonicity relation
between components i and j of the vector u.

Problem (1) with the only constraint (M), referred further to as (1M), is a classical monotonic regression problem [2,36].
There exist efficient methods for solving this problem of moderate [5,32,35] and very large [7–10] sizes. To the best of our
knowledge, there are no efficient methods to solving large scale constrained monotonic regression problems of the form (1).
The conventional constrained optimization methods [18,19,34], quadratic optimization methods [17] and constrained least
squares methods [19,38] require unacceptably too long computational time to solve such large scale problems. The main aim
of this paper is to develop optimization methods for solving problem (1) which would be efficient in the large scale case, and
also to apply them to postprocessing finite element (FE) solutions.

Our interest to studying problem (1) is motivated by the following reasons.
FE discretizations have become conventional in the computational and engineering communities due to their theoretical

basis and technological capabilities. In addition to good approximation properties such as the second order accuracy, there
may be other requirements to the FE solution. In many practical cases, it is desirable that the maximum principle and mass
conservation are inherited by the resulting discrete systems. Even for the FE discretization of a model advection–diffusion
equation, an accurate discretization method that satisfies the discrete maximum principle (DMP) is hard to develop.

In the case of the diffusion equation with full and anisotropic diffusion tensor, numerical solutions often demonstrate
nonphysical behavior: they may be negative in large regions where the continuous solution is strictly positive, or have un-
wanted spurious oscillations. In advection dominated advection–diffusion problems, a continuous solution may have inter-
nal shock and exponential or parabolic boundary layers. The thickness of these features is small compared to mesh size and
hence the layers cannot be resolved properly. Most of numerical schemes either smear out these layers excessively or violate
the DMP. The design of advanced discretization schemes which eliminate or significantly reduce these disadvantages is the
field of extensive research for more than three decades.

Already in 1970s, Ciarlet and Raviart [15] presented the theoretical analysis of sufficient mesh conditions that provides
the DMP for piecewise-linear finite element approximations of the diffusion equation. Later, the validity of DMP has been
shown for weaker mesh conditions [22,37].

The most popular approach to the stabilization of FE methods for advection–diffusion equations was proposed by Brooks
and Hughes in [6] and is referred to as the streamline upwind Petrov–Galerkin (SUPG) method. However, the spurious oscil-
lations along sharp layers may still appear in the numerical solution stabilized with SUPG. They are caused by the fact that
the SUPG method is not a monotone method. A review of several modifications and improvements for SUPG method is pre-
sented in [20]. Such modifications aimed at improving the FE methods that satisfy the DMP, at least in some model cases, are
called spurious oscillations at layers diminishing (SOLD) methods. We wish also to mention here the algebraic flux correction
approach [23] to the design of monotone FE discretization methods. It was noticed in [4,20] that nonlinear approximations is
the key ingredient and the price which has to be paid to construct monotone and at least the second order accurate discret-
ization. To guarantee solution monotonicity for arbitrary meshes, a number of nonlinear methods have been proposed in
both FE [12,31] and finite volume [4,16,21,24,25,27–29,33,39,40] frameworks.

We present here a procedure for postprocessing non-monotone FE solution which produces a corrected solution satisfy-
ing the monotonicity, conservativity and DMP requirements. It also preserves the order of accuracy. It is necessary to empha-
size that this will allow for using already implemented numerical schemes which produce unwanted non-monotonic
features in the discrete solution. Moreover, our approach can naturally be extended to the case of postprocessing solutions
produced by other numerical schemes, such as finite differences and finite volumes.

The postprocessing procedure is based on finding a least-change correction to the available FE solution determined by the
vector of the corresponding FE coefficients �u. The values of �ui and ui are assumed to be associated with the ith FE basis func-
tion, and wi be the corresponding weight of this function in the sense of its integral over the support. If to consider an advec-
tion–diffusion process, �ui and ui can have the meaning of concentrations, original and corrected, respectively. If m is the total
mass involved in the advection–diffusion process, then equation (C) can be viewed as the mass conservativity requirement.
The box-type constraints a 6 ui 6 b in (B) may originate from the DMP. In (M), the inequality constraints of the type ui P uj

establish a local monotonic relation for the corresponding couple of basis functions i and j, typically, with adjacent supports.
We do realize that our approach does not offer a universal tool, because it requires an a priori knowledge about local

monotonicity relations presented by the matrix M. In some problems, like those used in our numerical experiments, the
monotonicity relations can be obtained by analyzing the equations and boundary conditions that define the problems
(see Section 4). In such problems, it is possible to find locally, without invoking the exact solution, a set of directions along
which the solution, e.g. the concentration, cannot increase. If two adjacent basis functions, say i and j, lie along a direction
from the mentioned local set, this implies a monotonic relation of the form ui P uj. If FE solutions are expected to be sym-
metric in some sense, they may naturally suggest such local sets of directions.

It should be mentioned that if constraint (M) is absent in (1), i.e. no monotonicity relations are provided, then the post-
processing performs the least-change correction of the FE solution that assures the mass conservativity and DMP.

The paper is organized as follows. In Section 2, we study postprocessing problem (1). In particular, we consider how to
establish the monotonicity relations and how to define the constraints (M) in (1). Then we prove that the postprocessed FE
solution preserves the accuracy of the discrete FE approximation. In the same section, it is shown also how to use the

3128 O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142
solution to problem (1M) for obtaining the solution to problem (1M,B). The postprocessing algorithm aimed at solving large
scale constrained monotonic regression problems of the form (1) is introduced in Section 3. It is based on the Lagrangian
relaxation of constraint (C) in (1), which implies solving a finite sequence of problems of the form (1M,B). We show how
to avoid solving them by modifying properly the solution to problem (1M). The results of our numerical experiments are
presented and discussed in Section 4.

2. Postprocessing problem

In the FE method [14], a function U : Rd ? R1 of the form
UðvÞ ¼
Xn

i¼1

uiuiðvÞ ð2Þ
is produced for approximating the exact solution U⁄(v) to an original problem to be solved, e.g. partial differential equations,
integral equations, etc. Here fuiðvÞg

n
i¼1 are, for instance, P0 or P1 FE basis functions, and fuign

i¼1 are the corresponding scalar
coefficients.

In our postprocessing problem, a discrete FE solution is supposed to be available. It is determined by a vector of coeffi-
cients �u which produces an approximate solution of the form (2). This approximate solution may not retain some important
properties of the exact solution. In this paper, we focus on the following requirements for the approximate solution:

� local monotonicity, which means that the approximate solution should not increase locally along certain directions (mod-
eled in (1) by constraint (M));
� narrowness, e.g. within the bounds determined by the maximum principle [13] (modeled in (1) by constraint (B));
� conservativity (modeled in (1) by constraint (C)).

Our postprocessing problem (1) is aimed at recovering the listed properties by finding a least-change correction to the
coefficients �u. The vector of corrected coefficients u⁄ is required to satisfy the constraints that model these properties.

2.1. Monotonicity constraints

Consider the procedure of generating monotonicity constraints (M). It exploits the following relation between the mono-
tonicity of the coefficients ui and the monotonicity of the function U(v). Assume, for the moment, that the exact solution
U⁄(v) is known to be a non-increasing function of v, i.e.
v0 6 v00) U�ðv0ÞP U�ðv00Þ:
Here v0 6 v00 is a component-wise inequality. Let vi 2 Rd denote the point of collocation of the ith FE basis function. For the P0

FE basis function, vi is a cell barycenter, while for the P1 FE basis function, vi is a mesh node.
We assume that the FEs possess the following property.

Assumption. If U(v) is a non-increasing function of v, then for each pair of basis functions, i and j, the coefficients ui and uj are
such that ui P uj whenever vi 6 vj component-wise.

The P0 and P1 FE basis functions meet this requirement due to their property that U(vi) = ui. Generalization of Assumption
to higher order finite elements should take into account that there may be several basis functions contributing to U(vi).

Note that Assumption gives only a necessary condition for the monotonicity of the function U(v). Obviously, the
monotonicity of the function values U(vi) in a discrete set of points does not necessarily imply that the function is
monotonic. Our postprocessing makes the corrected function values monotonic, and it does help in practice to recover the
lost monotonicity of the function as well, despite the fact that, in general, this is not guaranteed.

The monotonic relation that we have just considered is a kind of global monotonicity. To turn to modeling a local
monotonicity, we observe that for establishing the relation ui P uj we actually required that the vector vj � vi belongs to the
positive orthant of Rd which is a convex cone of all vectors with non-negative components.

In the case of local monotonicity, it may be known for the original problem that its solution U⁄(v) does not increase locally
around vi along any vector from an a priori available convex cone Ki. Here, locally means in a neighborhood Xi of vi, where Xi is,
for instance, the union of the supports of basis function i and its adjacent basis functions. Formally, this means that
U�ðviÞP U�ðvi þ spÞ
for any p 2 Ki and for any positive scalar s such that vi + sp 2Xi. Let FE j be adjacent to FE i and vj � vi 2 Ki. Then the con-
sidered local monotonicity can be modeled by the inequality ui P uj.

Of course, such cones may not coincide with the positive orthant and they may depend on the location of the
corresponding FEs. This is well illustrated in Problem 1 considered in Section 4.

Note that problems may have, in practice, some subdomains in which it is difficult to draw a priori any conclusion about
local monotonicity. In such subdomains, the monotonicity establishing cones Ki should be empty.

O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142 3129
The constraints in (M) are aimed on recovering the expected monotonicity. Therefore, these constraints should mainly
originate from the subdomains, where the FE approximation produced by �u violates the monotonicity. In the subdomains,
where the monotonicity is safely preserved, it is reasonable to skip generating redundant constraints for (M). This approach
decreases the total number of constraints in (M) and eases the solution process of postprocessing problem (1).
2.2. Accuracy analysis

In the accuracy analysis, we do not require that all the cases of violated monotonicity are corrected by the postprocessing
algorithm. Our estimates hold even if (M) consists of only one constraint, or even if it has no constraints at all. The most
important is that each monotonicity constraint in (M) is consistent with the monotonicity of U⁄(v) in the sense that inequal-
ity ui � uj P 0 can belong to constraints (M) only if U⁄(vi) �U⁄(vj) P 0. This requirement refers to M, and it can be written as
MU⁄P 0, where U⁄ denotes the vector with the components U⁄(v1), . . . ,U⁄(vn).

In this sub-section, we assume that the basis functions are such that
uiðvjÞ ¼
1; if i ¼ j;

0; otherwise

�

holds for all 1 6 i, j 6 n. Under this assumption, (2) implies U(vi) = ui, which is typical, e.g. for the P0 and P1 basis functions.
Then the L2 norm of the error of finite element solution may be estimated in terms of the weighted Euclidean norm

k�u�U�kw, where the weight wi is the representative volume associated with ith FE basis function. In the case of P0 finite
element, wi equals to the ith cell volume, whereas in the case of P1 finite element, wi is the volume of a cell of the dual mesh
associated with the ith node.

The next result implies that the postprocessed FE solution retains the same order of accuracy in L2-norm as the original FE
solution.

Theorem 1. Let the vector of collocated exact solution U⁄ satisfy conditions (M), (B), (C) for given matrix M, vector w and scalars
a, b, m. Suppose that vector �u defines a finite element approximation of U⁄, and vector u⁄ defines the postprocessed finite element
solution, i.e. it solves problem (1) for the same data M, w, a, b, m. Then
ku� �U�kw 6 k�u�U�kw: ð3Þ
Proof. The feasible set of points in Rn, i.e. those satisfying conditions (M), (B) and (C), is a convex set. The postprocessed solu-
tion u⁄ is the projection of �u onto this set, which implies that
ðU� � u�; �u� u�Þw 6 0;
where
ðu0;u00Þw ¼
Xn

i¼1

wiu0iu
00
i :
Then
k�u�U�k2
w ¼ k�u� u� þ u� �U�k2

w ¼ k�u� u�k2
w þ ku� �U�k2

w � 2ðU� � u�; �u� u�Þw P k�u� u�k2
w þ ku� �U�k2

w

P ku� �U�k2
w:
This proves (3). h

Let uM denote the solution to monotonic regression problem (1M). Like in the proof of Theorem 1, we can show that
ku� �U�kw 6 kuM �U�kw 6 k�u�U�kw: ð4Þ
This relation between the three errors is illustrated by the results of our numerical experiments presented in Section 4 for a
problem whose exact solution is known.

2.3. Features of the postprocessing problem

We assume that the feasible set in problem (1) is not empty. Since it is a polyhedron and the objective function is the
squared weighted Euclidean distance from the point �u to this polyhedron, the optimal solution u⁄ exists and is unique.

Clearly, the solution uM to monotonic regression problem (1M) may violate the constraints (B) and (C). But if the discrete
FE solution is such that
wT �u ¼ m; ð5Þ
this assures that (C) holds for uM [2,36]. In this case, uM solves problem (1M,C), however the constraint (B) may be violated.

3130 O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142
Let uMB denote the solution to box-constrained monotonic regression problem (1M,B). If (5) holds, this does not necessar-
ily imply that uMB satisfies constraint (C).

In Theorem 2, we will show that uMB can be easily obtained from uM. The solution uMB plays an important role in our post-
processing algorithm, in which uMB is successively modified until finally the modified solution satisfies (C). This assures that
the resulting modified solution solves postprocessing problem (1).

Let p be the projection operation defined for a scalar v as follows
pðvÞ ¼
a; if v 6 a;

b; if v P b;

v ; if a < v < b:

8><
>: ð6Þ
If u is a vector and p(u) is defined component-wise as above, then p(u) is the orthogonal projection of the point u on the box
determined by constraints (B).

The next result presents a relation between uM and uMB.

Theorem 2. Let uM solve problem (1M). Then uMB = p(uM) solves problem (1M,B).
Proof. Consider the Lagrangian function for problem (1M). It is defined as
LMðu; kÞ ¼
1
2
ku� �uk2

w � kT Mu;
where the vector of the Lagrange multipliers k has the same number of components as the number of constraints in (M).
Since the constraints in (1M) are linear, there exist Lagrange multipliers kM such that the following Karush–Kuhn–Tucker

(KKT) conditions [3] hold for uM:
ruLMðuM ; kMÞ ¼ 0; ðaÞ
MuM P 0; ðbÞ
kT

MMuM ¼ 0; ðcÞ
kM P 0: ðdÞ

ð7Þ
With the use of the same Lagrangian function, we can present the KKT conditions for problem (1M,B) in the following form
[3]:
rui
LMðuMB; kMBÞP 0; if ðuMBÞi ¼ a;

rui
LMðuMB; kMBÞ 6 0; if ðuMBÞi ¼ b;

rui
LMðuMB; kMBÞ ¼ 0; if a < ðuMBÞi < b;

9>=
>; i ¼ 1;2; . . . ;n; ðaÞ

MuMB P 0; ðbÞ
kT

MBMuMB ¼ 0; ðcÞ
kMB P 0; ðdÞ
ae 6 uMB 6 be; ðeÞ

ð8Þ
They are necessary and sufficient optimality conditions for (1M,B), because it is a convex quadratic programming problem.
We will prove that KKT conditions (8) hold for uMB = p(uM) and kMB = kM.
Indeed, conditions (8d) and (8e) obviously hold.
If (uM)i � (uM)j P 0, then p((uM)i) � p((uM)j) P 0. This implies (8b).
Let (kM)ij stand for the Lagrange multiplier associated in (7) with the constraint (uM)i � (uM)j P 0. Then the

complementarity conditions, which follow from (7), can be written as
ðkMÞij � ½ðuMÞi � ðuMÞj� ¼ 0:
Hence, as it can be easily verified, the equality
ðkMÞij � ½pððuMÞiÞ � pððuMÞjÞ� ¼ 0
holds for each constraint in (M). This proves (8c).
We observe that
ruLMðuMB; kMBÞ ¼ ruLMðuM; kMÞ þ diagðwÞDu; ð9Þ
where Du = uMB � uM. By the definition of the projection operation p(�), we have
ðDuÞi P 0; if ðuMBÞi ¼ a;

ðDuÞi 6 0; if ðuMBÞi ¼ b;

ðDuÞi ¼ 0; if a < ðuMBÞi < b;

9>=
>; i ¼ 1;2; . . . ;n: ð10Þ

O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142 3131
Due to relations (7a) and (10) along with the inequality w P 0, Eq. (9) gives (8a).
Thus, the optimality conditions hold for p(uM). This finally proves that uMB = p(uM) solves problem (1M,B). h
3. Postprocessing algorithm

Our postprocessing algorithm is based on the Lagrangian relaxation [3] of the linear equality constraint (C). Consider the
corresponding Lagrangian function
LCðu;lÞ ¼
1
2
ku� �uk2

w þ lðm�wT uÞ; ð11Þ
where the scalar l is the Lagrange multiplier.
The corresponding Lagrangian dual function u(l) is given by
uðlÞ ¼min
u2Rn

LCðu;lÞ

subject to : Mu P 0;
ae 6 u 6 be:

ð12Þ
As with all Lagrangian dual functions, u(l) is a concave function of l[3].
Since LC(u,l) is a strictly convex function of u, and since the constraints in (12) are linear, the solution to the minimization

problem in (12) is unique for any l. We denote it by u(l). Then
uðlÞ ¼ LCðuðlÞ;lÞ ¼
1
2
kuðlÞ � �uk2

w þ lðm�wT uðlÞÞ:
Consider the dual problem
max
l2R1

uðlÞ: ð13Þ
We denote its optimal solution by l⁄.
Due to the uniqueness of u(l), the dual function u(l) is continuously differentiable, and its derivative has the form (see,

e.g. [3]):
u0ðlÞ ¼ m�wT uðlÞ: ð14Þ
From the necessary and sufficient optimality conditions for problem (13), we have u0(l⁄) = 0. Thus, the solution l⁄ can be
obtained by solving the scalar equation
m�wT uðlÞ ¼ 0 ð15Þ
in l (see Fig. 1), where the function u(l) is implicitly given by (12). The duality theory [3, Theorem 6.5.1] implies that u(l⁄)
solves our postprocessing problem (1). Our postprocessing algorithm is based on solving Eq. (15), which we shall refer to as
the main equation.

3.1. Properties of the main equation

Since the function u(l) is concave, its derivative u0(l) is a monotonically non-increasing function of l. Due to (14), the
same refers to the left-hand side function of the main equation. It will be explained below why m � wTu(l) is even strictly
decreasing with l in a large neighborhood of l⁄.

This property, of course, eases the process of solving the main equation, but it still looks necessary to generate u(l) by
repeatedly solving problem (12) for each iterate l.
Fig. 1. Derivative of the dual function.

3132 O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142
For l = 0, problem (12) is equivalent to (1M,B). By Theorem 2, u(0) can be easily obtained from the solution to the stan-
dard monotonic regression problem (1M) by virtue of a simple orthogonal projection (6) of uM onto the box defined by (B) in
(1).

We will show that, for getting u(l), it is sufficient to solve problem (12) only once, namely for l = 0. We will show also
how to obtain u(l), in an efficient way, from uM for any given l without resolving problem (12). The key observation here is
the following.

The Lagrangian function LC(u,l) defined by (11) can be presented equivalently as
LCðu;lÞ ¼
1
2
ku� �ulk2

w þ qðlÞ; ð16Þ

where
�ul ¼ �uþ le
and
qðlÞ ¼ lðm�wT �uÞ � 1
2
l2wT e:
This can be verified by the direct substitution of �ul and q(l) into (16).
Since q(l) does not depend on u, formula (16) allows for rewriting problem (12) equivalently as
uðlÞ ¼ qðlÞ þmin
u2Rn

1
2 ku� �ulk2

w

subject to : Mu P 0;
ae 6 u 6 be:

ð17Þ
This presentation of the dual function enables establishing a useful relation between u(l) and uM, which can be formulated
as follows.

Theorem 3. Let uM solve problem (1M). Then
uðlÞ ¼ pðuM þ leÞ ð18Þ
solves the minimization problem in (17) for any value of l.
The proof of this theorem immediately follows from Theorem 2 combined with the following result.

Lemma 4. Let uM solve problem (1M). Then uM + le solves the problem
min
u2Rn

1
2 ku� �ulk2

w

subject to : Mu P 0:
ð19Þ
Proof. Consider the new variables v = u � le. Note that Mle = 0. Then, the substitution of u = v + le into (19) gives an equiv-
alent problem, which has the same form as (1M) with the only difference that the variables v are used instead of u. Thus,
v = uM solves the monotonic regression problem for the new variables. This proves that uM + le solves problem (19). h

In formula (18), the operation of adding the scalar l to each component of the vector uM is used. We shall call it the l-shift
of uM. Theorem 3 allows us to avoid direct solving problem (12) whenever it is necessary to find u(l). Formula (18) offers the
following computationally efficient way of finding u(l).

First, we solve problem (1M). Then for any given l, the value of u(l) is obtained by the l-shift of uM with subsequent
orthogonal projection of uM + le by formula (6) onto the box defined by (B) in (1). It is necessary to emphasize that the major
computational burden of finding u(l) is associated with problem (1M) which is to be solved only once.

In the next subsection, the further reduction of the computational burden will be based on the observation that in the
process of solving Eq. (15), it is not necessary to construct explicitly the vector u(l). It is sufficient to manipulate with
the value of the scalar product wTu(l) instead.

In what follows, we assume that the components of the vector uM are sorted in increasing order, i.e. (uM)i 6 (uM)i+1. Obvi-
ously, both the l-shift and the subsequent orthogonal projection (6) retain the same increasing order of the components.

We shall use the notations:
a�ðlÞ ¼maxfi : ðuMÞi þ l < a;1 6 i 6 ng;

aþðlÞ ¼minfi : ðuMÞi þ l > a;1 6 i 6 ng;

b�ðlÞ ¼ maxfi : ðuMÞi þ l < b;1 6 i 6 ng;

bþðlÞ ¼ minfi : ðuMÞi þ l > b;1 6 i 6 ng:

ð20Þ

O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142 3133
These indices are presented in the example shown in Fig. 2. For simplicity, we consider only those values of l for which these
indices exist. Note that if a�(l) + 1 < a+(l), than (uM)i + l = a for all i such that a�(l) < i < a+(l). Similarly, if b�(l) + 1 < b+(l),
than (uM)i + l = b for all i such that b�(l) < i < b+(l). Denote also
WðlÞ ¼
Xb�ðlÞ

i¼aþðlÞ
wi:
For a given l, consider how the left-hand side of the main equation depends on the perturbed value l + Dl. We assume that
the perturbation Dl 2 [Dl�(l),Dl+(l)], where the scalars Dl�(l) < 0 and Dl+(l) > 0 are defined by the formulas:
Dl�ðlÞ ¼maxfa� ðuMÞaþðlÞ; b� ðuMÞbþðlÞg � l;

DlþðlÞ ¼minfa� ðuMÞa�ðlÞ; b� ðuMÞb�ðlÞg � l:
It can be easily verified that, for any Dl of the mentioned interval, the equality
u0ðlþ DlÞ ¼ u0ðlÞ þ Dl �
u00�ðlÞ; if Dl 2 ½Dl�ðlÞ;0�;
u00þðlÞ; if Dl 2 ½0;DlþðlÞ�

(
ð21Þ
holds, where the notations
u00�ðlÞ ¼ �WðlÞ �
XbþðlÞ�1

i¼b�ðlÞþ1

wi; u00þðlÞ ¼ �WðlÞ �
XaþðlÞ�1

i¼a�ðlÞþ1

wi ð22Þ
are used. Equality (21) implies that u00�ðlÞ and u00þðlÞ are, respectively, the left and right derivatives of u0(l).
By the formulas in (22), the points l in which u0(l) is not differentiable, i.e. u00�ðlÞ– u00þðlÞ, are among those for which

there exists, at least one, i such that either l = a � (uM)i or l = b � (uM)i. They correspond to the jog points on the graph in
Fig. 1. For all other values of l, the left-hand side of the main equation is differentiable, and its derivative is equal to W(l).

We have W(l) > 0 for all values of l such that the set {i : a < (uM)i + l < b} is not empty. This typically holds in the prob-
lems of practical interest within a wide interval around the optimal value l⁄. On this interval, the left-hand side of the main
equation is strictly monotonically decreasing with l.

3.2. Implementation issues

Here we present an algorithm for solving the main equation (15). Its main feature is that it avoids explicit calculation of
the vector u(l), except u(0) which, as noticed above, can be easily calculated by projecting uM on the box.

Since the sign of u0(0) = m � wTu(0) determines the sign of l⁄, one can decide whether to increase l if u0(0) > 0, or to de-
crease it if u0(0) < 0. Depending on this, the l-shifted components of uM move with l up or down in Fig. 2.

It is typical for the solution to monotonic regression problem (1M) that a few components of uM have the same value. In
the case of the FE problem, this means that some of the adjacent cells in the areas, where the monotonicity is violated, may
have the same value of (uM)i. It can be easily verified that, if two components of uM are of the same value then the values of
these components in p(uM + le) remain equal for any l.

We take this observation into account in our algorithm, and we assume that the components of uM with the same value
are represented in the new vector uM by only one component of this value. The weight corresponding to the new component
is assumed to be equal to the sum of weights wi of the components which are represented by the new component. For the
sake of simplicity, we shall continue using the same notations uM and w for the new vectors. Furthermore, n will also denote
the number of components of the new vectors, although these vectors may be shorter. The further assumption that the com-
ponents of the new (shortened) vector uM are sorted in increasing order implies that (uM)i < (uM)i+1.
Fig. 2. The l-shift of uM with the components (uM)i sorted in increasing order.

3134 O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142
The basic idea is the following. Suppose that u0(0) > 0. Then starting from l = 0, the value of l is increased, step by step, by
adding Dl+(l). As the result, every new value of l is equal to
minfa� ðuMÞa�ðlÞ; b� ðuMÞb�ðlÞg:
The value of u0(l) is updated by formula (21). The values of l generated in this way correspond to the jog points. This pro-
cedure terminates when u0(l) becomes negative. The root l⁄ belongs to the interval between the final value of l and the
previous one. Since the function u0(l) is linear on this interval, one Newton step gives l� ¼ l�u0ðlÞ=u00�ðlÞ.

The outlined idea is formally presented by Algorithm 1. The input parameters of this algorithm are a, b, m, shortened uM

and w. It returns l⁄.

Algorithm 1.
l 0
Compute a�, a+, b� and b+ by (20) for l = 0

u0 m� a
Pa�

i¼1wi �
Pb�

i¼a�þ1ðuMÞiwi � b
Pn

i¼b�þ1wi

if u0 = 0 then
l⁄ 0 and stop

if u0 > 0 then

a a�; b b�; W
Pb

i¼aþ1wi

while u0 > 0 do
la a � (uM)a, lb b � (uM)b

if la < lb then
Dl la � l, l la, DW wa, a a � 1

else
Dl lb � l, l lb, DW �wb, b b � 1

u00 �W, u0 u0 + u00Dl, W W + DW
if u0 < 0 then

a aþ; b bþ; W
Pb�1

i¼a wi

while u0 < 0 do
la a � (uM)a, lb b � (uM)b

if la < lb then
Dl lb � l, l lb, DW wb, b b + 1

else
Dl la � l, l la, DW �wa, a a + 1

u00 �W, u0 u0 + u00Dl, W W + DW
l⁄ l � u0/u00

So far, it was assumed that the indices in (20) exist for all values of l generated by Algorithm 1. For the case when a� or b+

may not exist, we recommend to introduce two extra components:
ðuMÞ0 ¼ ðuMÞ1 � 2ðb� aÞ and ðuMÞnþ1 ¼ ðuMÞn þ 2ðb� aÞ
with w0 = wn+1 = 0. Any upper estimate for jl⁄j can be used here instead of b � a.
The value of l⁄ returned by Algorithm 1 is used for producing the solution vector u⁄ = p(uM + l⁄e) by formula (18). The

projection can be easily obtained with the use of the final values of indices a and b generated by Algorithm 1 and with con-
sideration of whether la < lb or not. This information facilitates the identification of those components of u⁄which are equal
to a or b. The rest of the components are simple shifts of the form (uM)i + l⁄.

Note that for running Algorithm 1, it is not necessary to sort all components of uM in increasing order. Suppose that, in the
case of u0(0) > 0, the optimal shift l⁄ is known to be bounded above by �l, i.e. l� < �l. Then it is sufficient to sort in increasing
order only two subsets of components of uM, namely, those for which a� �l < ðuMÞi < a and those for which
b� �l < ðuMÞi < b. The other components, if shifted by Algorithm 1, would not cross the boundaries defined by a and b.

It is necessary to emphasize that the computational burden of Algorithm 1 grows with n not faster than linearly. For pro-
ducing a sufficiently accurate solution to monotonic regression problem (1M), i.e. an approximation to uM, we suggest to use
the GPAV algorithm [7–11]. Although the worst case complexity of the GPAV algorithm is estimated as O(n2), its computa-
tional time grows in practice just a bit faster than linearly with n. Moreover, the solution uM produced by this algorithm is in
a form close to the shortened version required for running Algorithm 1.

All these considerations of the computational burden allow us to conclude that the postprocessing of FE solution is a rel-
atively inexpensive procedure. In our numerical experiments, the postprocessing time was significantly shorter than the
time of producing the FE solution, and this difference was growing with n.

O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142 3135
4. Numerical experiments

For each of the two problems presented below, we produce a FE solution that is subsequently postprocessed. This solution
gives the value of m in constraint (C) of problem (1). At the first stage of the postprocessing, the GPAV algorithm [7–11] is
applied to solving problem (1M) for producing a monotonicity recovering solution. At the final stage, this monotone solution is
used by Algorithm 1, as described in Section 3, for producing a postprocessed solution that solves problem (1) comprising all
the constraints.

Problem 1 [26]. Given a positive scalar T, a domain X = (0;+1) � (�1;+1), a diagonal diffusion tensorD and a divergence-
free vector field~b, find the solute concentration C(x,y, t) that solves the two-dimensional non-stationary advection–diffusion
problem:
@C
@t
�rDrC þ~brC ¼ 0 in X� ½0; T�
with the following initial and boundary conditions. Initial conditions:
Cðx; y;0Þ ¼ 0 in X:
Neumann boundary conditions:
@C
@x

����
x!þ1

¼ 0 y 2 ð�1;þ1Þ; t > 0;

@C
@y

����
y!�1

¼ 0 x 2 ð0;þ1Þ; t > 0:
Non-homogeneous Dirichlet boundary conditions:
Cð0; y; tÞ ¼
1; if jyj < 0:25;
0; otherwise:

�

This problem is widely used for testing numerical algorithms. Its exact solution is given, e.g. in [26]. The one presented by
Fig. 3 (top left) corresponds to t = 0.5, the simplest advection field ~b ¼ ð1;0Þ and the scalar diffusion tensor
D ¼ 10�4 0
0 10�4

 !
:

In Problem 1, we denote v = (x,y)T. The features of the equations and boundary conditions that define this problem allow for
drawing some useful conclusions about the monotonicity of its solution for any fixed value of t 2 (0;T], without invoking the
exact solution.

A simple analysis of the problem formulation shows that the solution C(x,y, t) is monotonically non-increasing in x and y
in the subdomain X1 = [0;+1) � [0;+1). This means that
Cðx0; y0; tÞP Cðx00; y00; tÞ ð23Þ
for all v0 = (x0,y0)T 2X1 and v00 = (x00,y00)T 2X1 such that v0 6 v00.
In the subdomain X2 = [0;+1) � (�1;0], the solution C(x,y, t) is non-increasing in x and non-decreasing in y. This implies

that inequality (23) holds for all v0, v00 2X2 such that x0 6 x00 and y0 P y00.
Thus, depending on the location vi of node i, the convex cone of the directions of local decrease (non-increase) is defined

as follows:
Ki ¼
fðx; yÞT : x P 0; y P 0g; if vi 2 X1;

fðx; yÞT : x P 0; y 6 0g; if vi 2 X2:

(

This a priori available information about the local monotonicity can be used, completely or partially, for generating con-
straints of the form (M). In our simplest procedure it is used partially. Namely, for each node i of the mesh and for each
of its adjacent nodes j, we check if vj � vi 2 Ki. If so, we add the inequality ui � uj P 0 to those already generated. The com-
putational burden of this procedure grows linearly with the number of nodes. We also consider below its extension that
allows for taking into account the local monotonicity more completely.

The postprocessing was applied to a FE solution to Problem 1 for t = 0.5. For producing this solution, the unstructured
quasi-uniform mesh shown in Fig. 4 (left) was generated by the software Ani2D [30], and then the streamline upwinding
Petrov–Galerkin (SUPG) method was applied for two different time steps, Dt = 0.02 and Dt = 0.005. Fig. 3 (top right) shows
2D plot of the resulting numerical solution for Dt = 0.02 represented by a piecewise-linear function. The white lines are
concentration isolines corresponding to the range [0;1] with the step 0.2. One can observe unwanted features, like negative
concentrations and numerous spurious oscillations presented by the isolines C = 0 and C = 1. The exact solution is, of course,
free of such features (see Fig. 3 (top left)).

Fig. 3. Solutions to Problem 1: exact (top left), SUPG for Dt = 0.02 (top right), monotonicity recovering (bottom left), postprocessed for 0 6 C 6 1 (bottom
right).

Fig. 4. The computational grid in Problem 1 (left) and a node from X1 whose monotonicity cone {(x,y)T : x P 0, y P 0} contains no adjacent nodes (right).

3136 O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142
The solution to problem (1M) depicted in Fig. 3 (bottom left) shows that if nothing more than an incomplete monotonicity
is invoked, the monotonicity recovering stage of the postprocessing allows for eliminating most of the oscillations, i.e. it per-
forms a monotonic smoothing. The final stage of the postprocessing that additionally involves constraints (B) and (C) is
aimed at eliminating the remaining oscillations as shown in Fig. 3 (bottom right) for 0 6 C 6 1 in (B). The shift performed
in the postprocessing was of a relatively small value, l⁄ = 0.0046.

We will study now how the incompleteness of the information used in monotonicity constraints (M) and box constraints
(B) affects the quality of the resulting monotonicity recovering and postprocessed solutions.

Fig. 5. SUPG solution to Problem 1 for Dt = 0.02 (left) and its postprocessed versions: with the non-negativity constraint C P 0 (center) and with the
maximum principle constraint 0 6 C 6 1 (right).

O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142 3137
The completeness of information about the bounds in (B) is of no less importance for the postprocessing than the com-
pleteness of the exploited monotonicity. This is illustrated in Fig. 5 showing how the quality of the postprocessed solution
deteriorates when the incomplete information about the bounds, C P 0, is used instead of the complete one, 0 6 C 6 1. The
same figure shows the ability of the complete information used in (B) to repair the incompletely recovered monotonicity, cf.
(center) and (right) in Fig. 5. The violations of the maximum principle are summarized for the generated solutions in Table 1.
Note that the monotonicity recovering stage reduces the most severe violation of the non-negativity condition by one order
of magnitude.

The quality of monotonicity recovering depends on how completely the monotonicity relations are presented by con-
straints (M). As it is apparent from Fig. 3 (bottom left) and Fig. 5 (center), the monotonicity was restored incompletely. This
is caused by the incomplete use of the a priori available information about the monotonicity.

The complete use implies, in particular, that uj � ui P 0 must hold for all nodes i and j such that
vj � vi 2 Ki; ð24Þ
but not only for those adjacent, like in the simplest procedure. In some cases, the use of only adjacent nodes guarantees com-
plete monotonicity recovering. An example is the case of the regular grid used for solving Problem 2 below. This is not the
case in Problem 1 because of the unstructured mesh. Some nodes i of this mesh, like the one in Fig. 4 (right), have no adjacent
nodes j for which (24) holds. For such ‘orphaned’ nodes, the value of ui does not impose any upper bound on uj for the distant
nodes j satisfying (24). This may result in an incomplete monotonicity recovering. There exist orphaned nodes of another
type. Such nodes j have no adjacent nodes i for which (24) holds.

The deficiency of monotonic relations in (M) caused by the orphaned nodes can be compensated by extending the set of
nodes for which (24) is verified from adjacent to more distant couples. To emphasize the importance of using more complete
information about the monotonicity, we conduct the following experiments.

For generating monotonicity relations (M), we now verify (24) for j from two layers of i’s neighbors. The resulting post-
processed solution for C P 0 is presented in Fig. 6 (left). One can see that, in comparison with the one layer case in Fig. 5
(center), the crest on the top looks more localized (see the corresponding zooms on Fig. 7), and the bottom part looks better
smoothed.

The presence of the mentioned crest indicates that the monotonicity was still recovered incompletely. This is due to the
remaining orphaned nodes located in the vicinity of the line y = 0 that is the interface between the subdomains X1 and X2. To
eliminate the crest, we exploit the fact that the solution does not increase with x along that line. Based on this a priori avail-
able information about the local monotonicity, we generate extra constraints of the form (M) as follows. We introduce addi-
tional monotonicity relations for the cells crossed by the line y = 0, even though the central nodes of such couples of cells
may belong to different subdomains. Note that this interface line crosses cell i if at least one of the nodes adjacent to i be-
longs to the subdomain that is different from the one containing i. We call them interface cell and node. In our implemen-
tation, if two interface nodes i and j are such that xi < xj and j belongs to the two layer neighborhood of i, then we add the
inequality ui � uj P 0 to those already generated. The resulting solution presented in Fig. 6 (center) demonstrates substantial
improvement in the monotonicity recovering in comparison with the other solution Fig. 6 (left). Some further smoothing is
performed at the final stage of the postprocessing, see Fig. 6 (right). In this solution the spurious oscillations are removed
more completely than in the postprocessed solution that is based on the less complete information about the monotonicity,
cf. Fig. 6 (right) and Fig. 5 (right) in the areas close to C = 0.

Note that in the case of Dt = 0.02 the major part of the spurious oscillations is removed by the postprocessing based on the
narrowest set of the considered monotonicity relations (one layer). For the smaller time step Dt = 0.005, the result is differ-
ent: only the use of the widest set of the relations (two layers and supplementary constraints along y = 0) allows to get rid of
the oscillations. The original SUPG solution for Dt = 0.005 and its postprocessed versions obtained for different monotonicity
relations are shown in Fig. 8.

Table 1
Problem 1: solution minima and maxima excluding the boundary.

SUPG for Dt = 0.02 Monotonicity recovering Postprocessed (C P 0) Postprocessed (0 6 C 6 1)

Min �8.71E�2 �1.00E�2 0.00E+0 0.00E+0
Max 1.17E+0 1.11E+0 1.10E+0 1.00E+0

Fig. 6. Solutions to Problem 1 with two layers of neighbors. Monotonicity recovering solution without supplementary monotonicity constraints along the
line y = 0 (left). Solutions with such constraints: monotonicity recovering (center) and postprocessed with 0 6 C 6 1 (right).

Fig. 7. Zoomed and scaled (3 times) areas of C P 0.95 of the monotonized solutions obtained using one layer (left) and two layers (right) of adjacent cells.

3138 O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142
Table 2 presents errors with respect to the collocated exact solution U⁄, namely: k�u�U�kw for the SUPG, kuM �U⁄kw for
the monotonicity recovering stage, and ku⁄ �U⁄ kw for the final stage of the postprocessing with 0 6 C 6 1. The numerical
values of these errors are in a good agreement with inequalities (4), whatever the monotonicity relations are used. One
can observe also the decrease of the errors kuM �U⁄kw and ku⁄ �U⁄kw when the set of the monotonicity relations enlarges.
The numerically demonstrated validity of inequalities (4) shows how the postprocessing improves the accuracy with respect
to the exact solution. This improvement means that the postprocessing preserves the approximation accuracy.

In the case of Problem 1, we saw that unstructured grids and mesh skewness may require extra efforts for establishing
monotonicity relations. Regular meshes, like the one in the next problem, make this process easier.

Problem 2. Consider the following stationary diffusion problem:
�rDrC ¼ 0 in X 2 R2;
where
D ¼ QDQT ;

Q ¼
cos p

4 sin p
4

� sin p
4 cos p

4

 !
and D ¼

1 0
0 10�2

� �
:

The domain X is a square with a square hole: X = X0nX00, where X0 = [�0.5,0.5]2 and X00 ¼ ð� 1
18 ;

1
18 Þ

2. Let C0 = @X0 and
C1 = @X00 denote the external and internal boundaries of X, respectively, see Fig. 9. The boundary conditions are of the
Dirichlet type:
C ¼ 0 on C0;

C ¼ 2 on C1:

Fig. 8. (a) SUPG solution to Problem 1 for Dt = 0.005; and its postprocessed versions: (b) with one layer of neighbors; (c) with two layers of neighbors; (d)
with two layers of neighbors and supplementary monotonicity constraints along the line y = 0.

Table 2
Errors with respect to the collocated exact solution to Problem 1.

Monotonicity relations Solution Error value

Dt = 0.005 Dt = 0.02

No relations SUPG 9.12E�2 9.90E�2
One layer Monotonicity recovering 8.47E�2 9.67E�2

Postprocessed 8.06E�2 9.63E�2

Two layers Monotonicity recovering 8.43E�2 9.65E�2
Postprocessed 8.05E�2 9.62E�2

Two layers & line y = 0 Monotonicity recovering 8.42E�2 9.64E�2
Postprocessed 8.05E�2 9.30E�2

O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142 3139
Taking into account the symmetry of the problem, we introduce four cones:
X1 ¼ fðx; yÞT : �x 6 y 6 xg;
X2 ¼ fðx; yÞT : �y 6 x 6 yg;
X3 ¼ fðx; yÞT : x 6 y 6 �xg;
X4 ¼ fðx; yÞT : y 6 x 6 �yg:

Fig. 9. Computational domain and grid for Problem 2.

Fig. 10. Solutions to Problem 2: HMFEM (left), monotonicity recovering (center), postprocessed (right).

3140 O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142
They cover the domain X. Note that the lines y = x and y = �x that define the boundaries of the cones are parallel to the main
axes of the diffusion tensor.

It can be easily derived from the formulation of Problem 2, without invoking its exact solution, that if v0 belongs to a sub-
domain X \Xk for some 1 6 k 6 4, then
Cðv0ÞP Cðv00Þ; 8v00 2 X \Xk such that v00 � v0 2 Xk: ð25Þ
This means that the solution C(x,y) is monotonically non-increasing along any of such directions v00 � v0. Relation (25) allows
for defining in Problem 2, for any node vi, its monotonicity cone Ki as follows: if node vi 2Xk for some 1 6 k 6 4, then Ki = Xk.

Like in the simplest procedure presented above for Problem 1, only the adjacent nodes are involved here in the construc-
tion of monotonicity constraints (M) for Problem 2. In contrast to Problem 1, the simplest procedure guarantees now the
complete monotonicity recovering. This is assured by the 36 � 36 triangular grid of a regular structure used for solving Prob-
lem 2, see Fig. 9 (right). To show the completeness, consider any node j0 2 Ki which is not adjacent to node i. Due to the grid
structure, there exists a node j 2 Ki adjacent to i and such that j0 2 Kj. The spatial relation between these three nodes implies
three monotonic relations of which ui � uj0 P 0 is redundant, because it follows from the other two relations: ui � uj P 0 and
uj � uj0 P 0. Therefore, one can skip including ui � uj0 P 0 in (M) without any loss of the monotonicity. The same refers to
uj � uj0 P 0 if nodes j and j0 are not adjacent. Thus, any monotonicity relation ui � uj0 P 0 between non-adjacent nodes,
although not included in (M), is implicitly presented in (M) by a chain of constraints involving adjacent nodes only.

Fig. 10 (left) depicts the solution produced by the hybrid mixed finite element method (HMFEM). This figure shows spu-
rious oscillations resulting in negative values of C, see Fig. 11 (left). The minimal value is close to �0.31, see Table 3. The same
table presents the minimal and maximal values for all the produced solutions. The solution to problem (1M) recovers the
monotonicity completely and removes the oscillations. However, it still contains negative values, see Fig. 11 (right). Table 3

Fig. 11. Location of negative concentrations in the solutions to Problem 2: HMFEM (left) and monotonicity recovering (right).

Table 3
Problem 2: solution minima and maxima excluding the boundary.

FE Monotonicity recovering Postprocessed

Min �0.309 �0.027 0
Max 1.83 1.83 1.67

Table 4
CPU time in seconds for HMFEM and the postprocessing.

Number of unknowns HMFEM time Postprocessing time

10240 0.37 0.03
40960 1.51 0.15
163840 7.20 0.50

O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142 3141
shows that, at the monotonicity recovering stage, the most severe violation of the non-negativity condition is reduced by one
order of magnitude. The postprocessed solution shown in Fig. 10 (right) is non-negative, meets the conservativity require-
ment and retains the recovered monotonicity.

Table 4 enables comparison of the CPU time required for running the HMFEM solver and the postprocessing algorithm. It
shows how the time scales with the number of unknowns. One can see that the postprocessing is much faster than HMFEM.
Moreover, the postprocessing grows almost linearly with the number of unknowns, and it is approximately one order faster
than HMFEM.
5. Conclusion

We have developed a computationally efficient procedure of postprocessing FE solutions. It is aimed at recovering the
monotonicity that may be partially lost in the available FE solution. The postprocessed solution satisfies the maximum prin-
ciple and the conservativity condition. As it has been shown, it also retains the accuracy of the discrete FE approximation.
The quality of the recovered monotonicity depends on how completely constraints (M) model the monotonicity. Our exam-
ples show how some properties of the original problem, like a symmetry of the expected solution, can be exploited for con-
structing constraints (M), but we cannot offer any universal procedure. Nevertheless, our monotonic smoothing can be
applied in subdomains where it is still possible to establish monotonicity relations.
Acknowledgement

This work was partially supported by the Royal Swedish Academy of Sciences, the Russian Foundation of Basic Research
(Grant 11-01-00971), the Federal Program ‘‘Scientific and pedagogical staff of innovative Russia’’.

3142 O. Burdakov et al. / Journal of Computational Physics 231 (2012) 3126–3142
References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs, New Jersey, 1993.
[2] R.E. Barlow, D.J. Bartholomew, J.M. Bremner, H.D. Brunk, Statistical Inference under Order Restrictions, Wiley, New York, 1972.
[3] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley, New York, 1993.
[4] E. Bertolazzi, G. Manzini, A second-order maximum principle preserving finite volume method for steady convection–diffusion problems, SINUM 43

(2005) 2172–2199.
[5] H. Block, S. Qian, A. Sampson, Structure algorithms for partially ordered isotonic regression, J. Comput. Graph. Stat. 3 (1994) 285–300.
[6] A.N. Brooks, T.J.R. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the

incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259.
[7] O. Burdakov, O. Sysoev, A. Grimvall, M. Hussian, An O(n2) algorithm for isotonic regression problems, in: G. Di Pillo, M. Roma (Eds.), Large Scale

Nonlinear Optimization, Springer, Verlag, 2006, pp. 25–33.
[8] O. Burdakov, A. Grimvall, O. Sysoev, Data preordering in generalized PAV algorithm for monotonic regression, J. Comput. Math. 24 (2006) 771–790.
[9] O. Burdakov, A. Grimvall, O. Sysoev, Generalized PAV algorithm with block refinement for partially ordered monotonic regression, in: A. Feelders, R.

Potharst (Eds.), Proceedings of the Workshop on Learning Monotone Models from Data at the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases, 2009, pp. 23–37.

[10] O. Sysoev, O. Burdakov, A. Grimvall, A segmentation-based algorithm for large-scale partially ordered monotonic regression, Comput. Stat. Data Anal.
55 (2011) 2463–2476.

[11] O. Burdakov, A. Grimvall, O. Sysoev, MATLAB algorithms for solving partially ordered monotonic regression problems. <http://www.mai.liu.se/	olbur/
SOFTWARE/>.

[12] E. Burman, A. Ern, Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes, Compt. Rend. Mathematique
338 (2004) 641–646.

[13] P.G. Ciarlet, Discrete maximum principle for finite-difference operators, Aequationes Mathematicae 4 (1970) 338–352.
[14] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, New York, 1978.
[15] P.G. Ciarlet, P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng. 2 (1973) 17–

31.
[16] A. Danilov, Yu. Vassilevski, A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes, Russian J. Numer.

Anal. Math. Modell. 24 (2009) 207–227.
[17] Z. Dostál, Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities, Springer, 2009.
[18] Ph.E. Gill, W. Murray, M.A. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Rev. 47 (2005) 99–131.
[19] Ph.E. Gill, W. Murray, M.H. Wright, Practical Optimization, Academic Press, London, 1981.
[20] V. John, P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I—A review, Comput.

Methods Appl. Mech. Eng. 196 (2007) 2197–2215.
[21] I. Kapyrin, A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes,

Dokl. Math. 76 (2007) 734–738.
[22] S. Korotov, M. Křížek, P. Neittaanmäki, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math.

Comput. 70 (2001) 107–119.
[23] D. Kuzmin, On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection, J. Comput. Phys. 219 (2006) 513–531.
[24] C. Le Potier, Schema volumes finis monotone pour des operateurs de diffusion fortement anisotropes sur des maillages de triangle non structures,

Comp. R. Mathematique 341 (2005) 787–792.
[25] C. Le Potier, Finite volume scheme satisfying maximum and minimum principles for anisotropic diffusion operators, in: R. Eymard, J.-M-. Hedard

(Eds.), Finite Volumes for Complex Applications V, Wiley-ISTE, 2008, pp. 103–118.
[26] F.J. Leij, J.H. Dane, Analytical solutions of the one-dimensional advection equation and two-or three-dimensional dispersion equation, Water Resour.

Res. 26 (1990) 1475–1482.
[27] K. Lipnikov, D. Svyatskiy, M. Shashkov, Yu. Vassilevski, Monotone finite volume schemes for diffusion equations on unstructured trangularans shape-

regular polygonal meshes, J. Comput. Phys. 227 (2007) 492–512.
[28] K. Lipnikov, D. Svyatskiy, Y. Vassilevski, Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, J. Comput.

Phys. 228 (2009) 703–716.
[29] K. Lipnikov, D. Svyatskiy, Y. Vassilevski, Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, J. Comput.

Phys. 229 (2010) 4017–4032.
[30] K. Lipnikov, Y. Vassilevski, Ani2D—a 2D generator of anisotropic meshes, <http://sourceforge.net/projects/ani2d/>.
[31] R. Liska, M. Shashkov, Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems, Commun.

Comput. Phys. 3 (2008) 852–877.
[32] W.L. Maxwell, J.A. Muchstadt, Establishing consistent and realistic reorder intervals in production–distribution systems, Oper. Res. 33 (1985) 1316–

1341.
[33] K. Nikitin, Yu. Vassilevski, A monotone nonlinear finite volume method for advection–diffusion equations on unstructured polyhedral meshes in 3D,

Russian J. Numer. Anal. Math. Modell. 25 (2010) 335–358.
[34] J. Nocedal, S.J. Wright, Numerical Optimization, second ed., Springer, 2006.
[35] R. Roundy, A 98% effective lot-sizing rule for a multiproduct multistage production/inventory system, Math. Oper. Res. 11 (1986) 699–727.
[36] T. Robertson, F.T. Wright, R.L. Dykstra, Order Restricted Statistical Inference, Wiley, New York, 1988.
[37] V.R. Santos, On the strong maximum principle for some piecewise linear finite element approximate problems of nonpositive type, J. Fac. Sci. Univ.

Tokyo Sect. IA Math. 29 (1982) 473–491.
[38] K. Schittkowski, Numerical Data Fitting in Dynamical Systems – A Practical Introduction with Applications and Software, Kluwer Academic Publishers,

Dotrecht, 2002.
[39] Yu. Vassilevski, I. Kapyrin, Two splitting schemes for nonstationary convection–diffusion problems on tetrahedral meshes, Comput. Math. Math. Phys.

48 (2008) 1349–1366.
[40] G. Yuan, Z. Sheng, Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys. 227 (2008) 6288–6312.

http://www.mai.liu.se/~olbur/SOFTWARE/
http://www.mai.liu.se/~olbur/SOFTWARE/
http://www.mai.liu.se/~olbur/SOFTWARE/
http://sourceforge.net/projects/ani2d/

	Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions
	1 Introduction
	2 Postprocessing problem
	2.1 Monotonicity constraints
	2.2 Accuracy analysis
	2.3 Features of the postprocessing problem

	3 Postprocessing algorithm
	3.1 Properties of the main equation
	3.2 Implementation issues

	4 Numerical experiments
	5 Conclusion
	Acknowledgement
	References

