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Abstract

Contemporary time stepping schemes applied to the solution of unsteady nonlinear fluid flow problems are considered.
The iterative solution of arising series of linear and nonlinear systems and the choice of the initial guess are addressed. The
computation of a better initial guess for two iterative linear system solvers (GCR and GMRES) is based on the history of
the evolution problem solving. For implicitly discretized nonlinear evolution problems, a reduced model technique is devel-
oped for computing a better initial guess for the inexact Newton method. The computational effect of the chosen initial
guess is compared with that of the standard (physically motivated) initial guess.
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1. Introduction

It is well known that large systems of equations must be solved iteratively: for nonlinear systems there is no
alternative and for linear systems direct methods are either too expensive or too restrictive. Any iterative tech-
nique consists of three basic procedures: the choice of the initial guess, the computation of the next iterate, and
the stopping criterion. Each procedure influences the efficiency of the iterative solution in its own way: smart
start, fast convergence, and prevention of oversolving. The fast convergence is conventionally achieved by a
combination of an appropriate Krylov type method and a preconditioning technique [1,25,33]. The stopping
criteria have been considered both for nonlinear (inexact Newton methods [16]) and linear solves [25–27].

This paper is devoted to the choice of the initial guess when a series of systems produced by time stepping
schemes has to be solved. The case of linear systems with a symmetric positive definite matrix and a series of
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right hand sides is considered in [5,7]. For linear systems with an unsymmetric matrix, the first method of com-
putation of a better initial guess was suggested in [36]. In this paper, we revise this method and suggest a new
choice of initial guess for series of linear systems with different unsymmetric matrices and right hand sides. For
Newton type solvers of nonlinear systems generated by fully implicit discretizations, the standard and phys-
ically motivated choice of the initial guess is to adopt the solution from the previous time step. Methods of
generating a better initial guess using a set of previous solutions have been investigated in [8]. We develop
a different methodology based on a model reduction (see [29,30] and references therein). This technology
opens a new way of generating initial guesses. The solution of a reduced model provides much better initial
guess than that from the previous time step. In spite of an extra work spent on the solution of the reduced
model, the total complexity of each time step decreases considerably, due to the super-linear convergence
of the inexact Newton solver.

In our experiments, the series of systems are generated by time stepping methods for different formulations
of unsteady Navier–Stokes equations. Depending on application, the series may have either common or dif-
ferent matrices (linear systems), or have different nonlinear operators (nonlinear systems). Each series illus-
trates the efficiency of the appropriate technique for choosing the initial guess.

The plan of this paper is as follows. In Section 2, we consider series of linear systems. The systems with
the same matrix generated by the projection method for the unsteady 3D Navier–Stokes equations
are examined in Section 2.1. The systems with different matrices generated by the projection method
for the unsteady Low Mach number equations are considered in Section 2.2. Also we discuss a negative
example showing practical limitations for the presented method. In Section 3, series of nonlinear systems
are examined. After a review of a conventional fully implicit discretization and an Inexact Newton solver
(Section 3.1), we describe the proper orthogonal decomposition (Section 3.2) and the reduced model (Sec-
tion 3.3). In Section 3.4 the new method of fully implicit time stepping, the algorithm INB-POD, is intro-
duced and tested numerically.

2. Initial guess for series of linear systems

The series of linear systems considered in this section is produced by projection schemes for a class of
unsteady nonlinear fluid flow problems. The projection scheme applied to the Navier–Stokes equations gen-
erates a series of linear systems with the same matrix and different right hand sides. The projection scheme
applied to the Low Mach number approximation of the full Navier–Stokes system produces a series of linear
systems with different matrices and different right hand sides.

2.1. 3D unsteady Navier–Stokes equations

Let X 2 R3 be a domain with a piece-wise smooth boundary oX. The domain is occupied by a fluid with a
kinematic viscosity m and a density q. We denote by u(x, t) the velocity with components (u1,u2,u3) and by
p(x, t) = P(x, t)/q the normalized pressure of the fluid. The flow of incompressible fluid with prescribed values
of the velocity on oX obeys the Navier–Stokes equations:
ou

ot
� mDuþ ðu � rÞuþrp ¼ f in X; u ¼ g on oX divu ¼ 0 in X. ð1Þ
An important parameter for flow similarity is the Reynolds number Re ¼ UD
m , where U and D are characteristic

velocity and length, respectively.
One of the most efficient time stepping schemes for the computation of the approximate solution of (1)

uk . u(t0 + k Dt) is provided by the projection algorithm (pressure correction method) [18,24]:

Step 1: Predict the velocity ûkþ1 by solving
ûkþ1 � uk

Dt
� mD

ûkþ1 þ uk

2
þ 3

2
uk � 1

2
uk�1

� �
� r

� �
ûkþ1 þ uk

2
¼ fkþ1=2 �rpk in X; ûkþ1 ¼ g on oX;

ð2Þ
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Step 2: Project the predicted velocity onto the space of divergence free functions by solving the elliptic equa-
tion for the pressure correction dp
� divrdp ¼ � 1

Dt
div ûkþ1; ð3Þ

ukþ1 ¼ ûkþ1 � Dtrdp; pkþ1 ¼ pk þ dp. ð4Þ
The most expensive stage of the projection algorithm is the iterative solution of linear equation (3): the dis-
cretized operator is a stiff matrix, and the solution has to be found with a high precision. The matrix of (3)
is fixed, therefore, one has to solve a series of linear systems
Ax ¼ bk ð5Þ

with different right hand sides bk. The standard choice of the initial guess is the zero vector since the unknown
solution x represents a pressure increment.

In this paper, we do not discuss the discretization schemes in space. We only mention that for rectangular
grids with smooth variations of mesh size, one can apply finite difference schemes providing the second order
of accuracy at interior grid nodes. For close-to-boundary nodes, the order of accuracy of spatial discretization
may be lower, depending on the type of differential operator and boundary configuration [12]. The matrix A is
the product of finite difference discretizations of the divergence and gradient operators, and is singular and
stiff. Singularity is attributable to the Dirichlet boundary condition for the velocity components: the product
of mesh divergence and gradient operators is an approximation of the Laplace operator with Neumann
boundary condition and, therefore, is a singular matrix. Symmetry of the matrix depends on whether the
divergence and gradient mesh operators are conjugate with respect to Euclidian scalar product; in our discret-
ization they are not conjugate due to particular finite difference stencils in the close-to-boundary nodes. In
order to accelerate the convergence of iterative algorithms, we adopt the fictitious domain method [23] with
the fast direct solver for discrete separable operators [21,32].

For the iterative scheme we use the preconditioned generalized conjugate residual (GCR) method [33]

1. Compute r0 = b � Ax0. Set p0 = r0.
2. For j = 0,1,2, . . ., until convergence Do:

3. ai ¼
ðrj;ApjÞ
ðApj;ApjÞ

4. xj+1 = xj + ajpj

5. rj+1 = rj � aj Apj

6. Compute bij ¼ �
ðArjþ1;ApiÞ
ðApi ;ApiÞ

, for i = 0,1, . . ., j

7. pjþ1 ¼ rjþ1 þ
Pj

j¼0bijpi

8. EndDo

Although GMRES method requires less vectors to be accumulated, in comparison to the GCR method,
and provides similar convergence rate, the additional data available in GCR allow us to construct a very good
initial guess. Indeed, besides the Krylov subspace vectors K ¼ fpjg

k
j¼1 which are AT A-orthogonal, we possess

extra data, vectors fApjg
k
j¼1. Since the projection of b onto the space AK is equal to [36]
Xk

j¼1

ðb;ApjÞ
ðApj;ApjÞ

Apj;
the projection of the solution x = A�1b onto K is
x̂ ¼
Xk

j¼1

ðb;ApjÞ
ðApj;ApjÞ

pj. ð6Þ
This observation implies that the projection of an unknown solution onto the accumulated Krylov subspace
may be easily computed (k scalar products). The accumulation of the subspaces K and AK may be continued
for several right hand sides, if the initial guess for each subsequent solve is computed by (6), and x0 is set to x̂.
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It is evident that the larger is the subspace K, the better is the approximation x̂ to x. The accumulation of
vectors pj and Apj is limited by a practical capacity of the computer memory: as soon as it is exhausted,
the data pj and Apj are erased and the new accumulation process begins. Another restriction for the number
of accumulated vectors is imposed by the expense of computation of k scalar products. It should be smaller
than the cost of the iteration stage.

We illustrate the method on the test case 3D-2Z of quasi-periodic flow described in details in [34]. The
obstacle (thin cylinder) is lifted 1 mm above the plane of symmetry of the rectangular channel (Fig. 1).
The unsymmetry produces quasi-periodic flows with vortex separations for Re = 100. The inflow and out-
flow Dirichlet boundary conditions simulate the Poiseuille flow, the other part of the boundary represents
the no-slip condition. We consider the mesh 80 · 72 · 72 and 800 time steps with Dt = 0.01. The size of
system (5) is 3.5 · 105, the stopping criterion is irji < 10�5 which implies 1011-fold reduction of the initial
residual for x0 = 0. The system (5) is solved by the preconditioned GCR method with the fictitious
domain preconditioner [23] on 16 processors of a COMPAQ cluster of alpha ev6 processors
(667 MHz). In Table 1 we show the total number of GCR iterations, ntot, and the total GCR time t,
for different maximal dimensions of the accumulated Krylov subspace max #K. We observe that the min-
imal computation time is achieved for moderate (50–80) dimensions of Krylov subspaces. The reduction of
the total number of iterations for higher values of max #K does not compensate the increase of the pro-
jection (6) expense. We remark that for the fully developed flow the projection with even max #K ¼ 50
provides 105–106-fold reduction of the initial residual due to the trivial initial guess. This results in 4–5
GCR iterations per time step, in contrast to 11–12 iterations for x0 = 0. However, the actual speed-up
is 1.5 due to the overhead of the projection computation.
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Fig. 1. Computational domain in the case of quasi-periodic flow.

Table 1
Total number of GCR iterations, the iterative solution time and maximal dimension of the accumulated Krylov subspace

max #K 0 50 80 125

ntot 10,385 5272 4525 4187
t (s) 1668 1108 1107 1217
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2.2. Low-Mach number approximation

The non-reactive flow of compressible fluid with prescribed values of the velocity on oX obeys the full
system of Navier–Stokes equations [11]. The low-Mach number approximation [17] reduces these equations to
ou

ot
þ ðu � rÞu

� �
þrp ¼ T

Re
Duþ 1

3
rr � u

� �
in X; u ¼ g on oX;

oT
ot
þ ðu � rÞT

� �
¼ T

RePr
DT in X; T ¼ gT on CD;

oT
on
¼ 0 on CN ;

divu ¼ 1

RePr
DT in X;

ð7Þ
where T ðx; tÞ ¼ T ðx; tÞ�=T ðx; tÞ�inlet the normalized temperature of the fluid connected with its density by
qT = 1, Pr is the Prandt number. The system (7) is the simplest model in reactive flow modeling of short-
contact-time chemical reactors. From the CFD perspective the chemical reactor can be modeled as a box-cyl-
inder of very large length and small diameter with an inner surface section covered by a catalyst (platinum or
rhodium). The flow should be Poiseuille flow far away from the catalytic surface. We are mainly interested in
disturbance of the non-reactive flow due to high temperature gradient between the surface of the catalyst that
stays in permanent regime at about 1300 K and preheated flow inlet at fixed temperature in the range 300–
800 K. The Reynolds number of the flow is 750 and Prandt number is 0.72.

The pressure correction method [17] may be successfully applied to the solution of (7):

Step 1: Predict the velocity component ûkþ1
i

ûkþ1 � uk

Dt
� 3T k � T k�1

2Re
D

ûkþ1 þ uk

2
rr � û

kþ1 þ uk

6

� �
þ 3

2
uk � 1

2
uk�1

� �
� r

� �
ûkþ1 þ uk

2

¼ fkþ1=2 �rpk in X; ûkþ1 ¼ g on oX. ð8Þ
Step 2: Find the pressure correction and project the predicted velocity
�r � ð2T k � T k�1Þrdp ¼ � 1

Dt
r � ûkþ1 þ 1

DtRe Pr
Dð2T k � T k�1Þ;

ukþ1 ¼ ûkþ1 � Dtð2T k � T k�1Þrdp; pkþ1 ¼ pk þ dp.
ð9Þ
Step 3: Advance the temperature on the computed vector field
T kþ1 � T k

Dt
� 3T k � T k�1

2Re Pr
D

T kþ1 þ T k

2
þ ukþ1 þ uk

2
� r

� �
T kþ1 þ T k

2
¼ 0

in X; T kþ1 ¼ gT on CD;
oT kþ1

on
¼ 0 on CN .
Similarly to the projection scheme for solving (1), the most expensive step is the iterative solution of linear
equation (9): the discretized operator is a stiff matrix, and the solution has to be found with a high precision.
However, the matrix of (9) is not fixed since it depends on 2Tk � Tk�1. This implies the solution of a series of
linear systems
Akx ¼ bk ð10Þ

with different matrices Ak and different right hand sides bk. The matrix Ak is the product of the diagonal matrix
2Tk � Tk�1 and finite difference discretizations of the divergence and gradient operators, and is singular and
stiff. By analogy with the pressure correction method for problem (1), singularity of the matrix for (9) is attrib-
utable to Dirichlet boundary condition for the velocity components. Symmetry of the matrix depends on
whether the divergence and gradient mesh operators are conjugate; in our discretization the are not conjugate
due to particular finite difference stencils in the close-to-boundary nodes. The principal feature of the series
{Ak} is that the matrices (and their eigenvectors and eigenvalues) vary slowly with the growth of k since
the temperature Tk changes slowly at each time step. The iterative acceleration is provided by the fictitious
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domain method [23] with the fast direct solver for discrete separable operators [21,32]. By analogy with the
solution of (1), the standard choice of the initial guess is the zero vector since the unknown solution x repre-
sents a pressure increment.

Since the matrices Ak are different, their common Krylov subspace cannot be generated and the advantages
of the GCR method may not be used. In this case we suggest to accumulate the sequence of independent
Krylov subspaces and associated images of matrices Ak. To this end, we adopt the generalized minimal resid-
ual (GMRES) method [33] for the solution of (10). The Krylov subspace K consists of mutually orthonormal
vectors fvjgm

j¼1 such that
Table
Total n

No pro
Projec
AV m ¼ V mþ1H mþ1;m;
where matrix Vm is composed of the vectors vj and Hm+1,m is an upper Hessenberg matrix containing the pro-
jection of Ak onto Vm. We correct an initial guess x0 by the solution of the projected onto K system for the
error ek

0, Akek
0 ¼ Akx0 � bk:
x̂ ¼ x0 � V mĤ�1
m;mĜmV T

mðAkx0 � bkÞ; ð11Þ
where Ĝm is a sequence of Givens rotations such that Ĝ�1
m reduces Hm+1,m to an upper triangular matrix Ĥm;m.

It is Givens rotation that facilitates the solution with the upper Hessenberg matrix. We notice that all the
ingredients of the projection (11) are available in the standard realization of the GMRES method [2,33].

In the framework of a series (10), the choice of a better initial guess may be stated as follows. Assume that
k � 1 systems have been solved and for the ith system, i = k � l, . . .,k � 1, the following data are accumulated:
mi, V mi , Gmi , Hmi;mi . Then the initial guess xk

0 for the kth system is computed by the sequence of projections (11)
xiþ1
0 ¼ xi

0 � V mi Ĥ
�1
mi;mi

Ĝmi V
T
mi
ðAixi

0 � biÞ; i ¼ k � l; . . . ; k � 1 ð12Þ
with xk�l
0 ¼ 0.

In contrast to the projection (6), the number of accumulated data l is restricted not only by the practical
capacity of the computer memory, but the discrepancy between the eigenvectors and eigenvalues of Ak�l

and Ak�1. In the framework of model (7), the time step Dt = 0.005 is small in comparison with the character-
istic time scale, (�5), and the time variation of the temperature is small within one time step. Thus, the matri-
ces Ak�3, Ak�2, Ak�1 have very close eigenstructures. The chemical reactor is the tube with the rectangular
cross section. The X-dimension of the tube is 20, Y dimension is 8, and Z-dimension is 1. The strip of the cat-
alyst of width 1 is located at distance 1 from the inlet and is heated at temperature as much as four times
higher than the temperature at the inlet. On the other part of the boundary we pose Neumann boundary con-
ditions for the temperature. The flow at the inlet and outlet is Poiseuille flow with the Reynolds number 750
and Prandt number 0.72. The other part of the boundary has the no-slip condition. We consider a rectangular
mesh 80 · 64 · 40. The number of degrees of freedom approaches 106 and the number of unknowns in systems
(10) is �2 · 105. The solution stabilizing to the steady-state (f = 0, u0 = 0) is simulated within 500 time steps,
Dt = 0.005. The stopping criterion for the GMRES iterations is the reduction of the residual norm to 10�3

which implies 106-fold relative reduction. The preconditioner is the fictitious domain method [23]. The system
(5) is solved on 16 processors of a COMPAQ cluster of alpha ev6 processors (667 MHz). In Table 2 we present
the total number of GMRES iterations, ntot, the total number of projections (11), nproj, at time steps 101,
. . ., 500, compared to the case of xk

0 ¼ 0. The projection uses three previous Krylov subspaces (l = 3). We
notice that the projection (11) with l = 3 reduces the norm of the initial residual (due to the trivial initial guess)
by four orders of magnitude. However, the remaining two orders of magnitude for the residual norm are
dumped within 5–7 GMRES iterations, in contrast to the case xk

0 ¼ 0, yielding 106-fold relative reduction
for 11–14 GMRES iterations. The slow down of the convergence rate and the cost of the projection procedure
2
umber of GMRES iterations and the iterative solution time, with and without projected initial guess, at time steps 101, . . ., 500

ntot nproj t (s)

jection 5012 0 357
tion l = 3 3208 1044 309



Table 3
Number of GMRES iterations and residual norms for the model 1D diffusion equation

k 1 4 7 10 4 7 10

xk
0 ¼ 0 xk

0 by (11)

kAkxk
0 � bkk 31 31 31 31 0.5 0.2 0.7

nit 12 15 15 12 12 11 9
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(projection onto a Krylov subspace costs one GMRES iteration) reduce the computational gain to 15% of the
computational work (ntot + nproj) and 15% of the solution time.

If the matrices in the series (10) are not ‘‘close’’ to each other, the projection (11) may even increase the
initial residual, in comparison with the trivial initial guess. For example, our numerical evidence shows that
the projection (11) is useless for the series of systems produced by the Newton method (cf. Table 4). On
the other hand, if the matrices are not sufficiently close to each other, then the reduction of the initial residual
may not compensate the expenses of the projection (11) requiring the computation of the current residual.
Consider, for example, the model 1D diffusion equation on the interval [0, 1]
�ðT ku0Þ0 ¼ 1; uð0Þ ¼ uð1Þ ¼ 0; T kðxÞ ¼ 2þ sin pðxþ 0:1kÞ; k ¼ 1; . . . ; 10.
We discretize the equation with the finite differences on the uniform mesh, h = 10�3. To provide an affordable
convergence rate, we choose the preconditioner as the finite differences approximation of the second derivative
with Dirichlet boundary conditions. The stopping criterion for the GMRES iterations is the reduction of the
residual norm to 10�6. In Table 3, we present the number of GMRES iterations and the effectiveness of the
projection (11) for l = k � 1: the reduction of iteration count (3–4) does not compensate the cost of the
projection (3,6,9 matrix vector multiplications for k = 4,7,10).

We conclude this section with the remark that the projection (11) may save certain amount of computa-
tions, if the eigendata of matrices of systems (10) are relatively close to each other, and the number of GMRES
iterations and the computer memory allow to accumulate the projection data. In this respect, we mention a
Ritz’s value based strategy [14,31] for the choice of appropriate vectors from a series of Krylov subspaces.

3. Initial guess for series of nonlinear systems

In this section the series of nonlinear systems is generated by fully implicit discretizations of unsteady non-
linear problems.

3.1. Fully implicit solvers

Let L(u) be a nonlinear discrete operator representing a spatial approximation of a parabolic boundary
value problem. The simplest robust technique for time approximation of unsteady problems is the backward
Euler time stepping:
ui � ui�1

Dt
þ LðuiÞ ¼ gi. ð13Þ
The main advantage of the method is its unconditional stability. Being the first order scheme (in time), it may
be generalized to higher order approximations (e.g., backward differences formulae). In general, the ith time
step of a fully implicit scheme may be represented by the nonlinear system
F iðuiÞ ¼ 0; ð14Þ

where Fi contains all the problem data and previous solutions. For instance, in the case of scheme (13),
F i ¼ ui þ LðuiÞDt � ui�1 � giDt.
The price to be paid for the robustness of the method is its arithmetical complexity: at each time step, a
nonlinear system has to be solved. In last decade, several robust nonlinear solvers have been proposed,
analyzed, and implemented [4,15,28]. However, the efficient solution of large nonlinear systems remains a
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challenge. One way to obtain efficient nonlinear solvers is to use nonlinear multigrid [6] or Jacobian free
Newton–Krylov methodology (see [19] and references therein) where the solution of the linearized Newton
step problem is solved by a Krylov method. The main effort is then to provide a good preconditioner for
the Krylov method. Our choice of a good initial guess to the Newton method can be complementary to the
choice of efficient preconditioner for the Newton–Krylov method. In this paper we address a particular
Newton–Krylov solver, the inexact Newton backtracking method, although this is not mandatory.

Consider a nonlinear system
F ðuÞ ¼ 0.
The inexact Newton backtracking [9,10,28] method offers global convergence properties combined with poten-
tially fast local convergence.

ALGORITHM INB. LET u0, gmax 2 [0,1) AND 0 < hmin < hmax < 1 BE GIVEN.
FOR k = 0,1,. . . (UNTIL CONVERGENCE) DO:

CHOOSE INITIAL gk 2 [0,gmax] AND sk SUCH THAT
kF ðukÞ þ F 0ðukÞskk 6 gkkF ðukÞk; ð15Þ

gk ¼
min gmax;

jkF ðukÞk�kF ðuk�1ÞþF 0ðuk�1Þsk�1kj
kF ðuk�1Þk

n o
; k > 0;

0:5; k ¼ 0:

(
ð16Þ

WHILE iF(uk + s k)i > [1 � t(1 � gk)]i F(uk)i DO:
CHOOSE h 2 [hmin,hmax].
UPDATE sk h sk AND gk 1 � h(1 � gk).

SET

ukþ1 ¼ uk þ sk. ð17Þ
The algorithm has a solid theoretical background [9,10]:

Theorem 1. Let F be continuously differentiable. If {uk} produced by the algorithm INB has a limit point u such

that F 0(u) is invertible, then F(u) = 0 and uk! u. Furthermore, if F 0 is Lipschitz continuous at u, then
kukþ1 � uk 6 bkuk � ukkuk�1 � uk; k ¼ 1; 2; . . .
for a constant b independent of k.

Inequality (15) implies the approximate iterative solution of the system
F 0ðukÞsk ¼ �F ðukÞ ð18Þ

with relative reduction of the residual (for trivial initial guess) gk. The forcing term gk (16) is chosen dynam-
ically so that to avoid oversolving the systems (18). Backtracking is used to globalize the convergence, and
updated sk and gk always satisfy (15). The iterative solution of (18) requires only evaluation of F 0(uk) on a
vector. This allows to replace F 0(uk)v by its finite difference approximation, e.g.,
F 0ðukÞv ¼
1

d
½F ðuk þ dvÞ � F ðukÞ�. ð19Þ
Hereinafter, the GMRES method restarted after each 30 iterates (GMRES(30)) method is used for the itera-
tive solution of (18).

We recall that the arithmetical complexity of the method is expressed as the total number of function eval-
uations nevF and the total number of preconditioner evaluations nevP (if any); the remaining overheads are
negligible.

The algorithm INB presumes the choice of initial guesses of two types: uk for nonlinear iterations, and uk,0

for linear iterations.
As it was mentioned in Section 2.2, the method (11) of computation of the initial guess for the sequence of

systems (18) is ineffective. More precisely, the total numbers of function and preconditioner evaluations, nevF,
nevP do not decrease in comparison with the trivial initial guess. To illustrate the assertion, we consider the



Table 4
Complexity of the algorithm INB (NITSOL) for different numbers of Krylov subspaces used in the projection

l in (12) 0 1 2

nlit 306 290 363
nevF 344 350 442
nevP 325 329 420
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steady counterpart of the equation (26) with v ” 1 discretized on a square mesh with h = 2�6. The nonlinear
system with 3969 unknowns is solved by the algorithm INB implemented in the NITSOL package [28] with
GMRES(30) iterations (for other details we refer to Section 3.4). The stopping criterion for the INB algorithm
is iF(uk)i < 10�7iF(0)i. In Table 4 we show the total number of linear iterations nlit, nevF and nevP for different
strategies of choosing the initial guess for GMRES iterations: the trivial vector corresponding to l = 0 in (12),
or l 6¼ 0 in (12) corresponding to l consequent projections on the l newest Krylov subspaces. The data of Table
4 indicate that the complexity of the INB algorithm increases with l growing. The inefficiency of the strategy
(12) may be explained by essential differences in spectral properties of subsequent Jacobian matrices. In con-
trast, an appropriate choice of the initial guess for nonlinear iterations reduces considerably the arithmetical
complexity of the method. The next subsections explain this issue in detail.

3.2. Proper orthogonal decomposition

Proper orthogonal decomposition (POD) provides a way to find optimal lower dimensional approxima-
tions of the given series of data. More precisely, it produces an orthonormal basis for representing the data
series in a certain least squares optimal sense [29,30]. Combined with the Galerkin projection, the POD is a
tool for generation of reduced models of lower dimension. The reduced models may give a better initial guess
for the Newton solution at the next time step.

The POD provides the definite answer to the question: What m-dimensional subspace S � RN is the most
close (in the least squares sense) to the given set of n RN-vectors fuign

i¼1,
S ¼ arg min
S2RN�m

Xn

i¼1

kui � P Suik2
?

Here PS is the orthogonal projection onto S. Define the correlation matrix R = XXT, X = {u1. . .un}, and find
m eigenvectors of the problem
Rwj ¼ kjwj; k1 P � � �P kN P 0
corresponding to m largest eigenvalues k1 P � � �P km. Then
S ¼ spanfwjgm
j¼1 ð20Þ
and
Xn

i¼1

kui � P Suik2 ¼
XN

j¼mþ1

kj. ð21Þ
The computational cost of finding m largest eigenvalues of symmetric matrix R is modest. Indeed, our expe-
rience shows that for m � 10, the application of the Arnoldi process [22] requires a few tens of R-matrix–
vector multiplications in order to retrieve the desirable vectors with very high accuracy (cf. Table 9). In spite
of large dimension N and density of R, the matrix–vector multiplication is easy to evaluate, due to the factored
representation R = XXT. The arithmetical cost of the evaluation Xa (and XTb) is Nn multiplications and not
more than Nn additions, therefore, R-matrix–vector multiplication costs at most 4Nn flops.

3.3. Generation and solution of the reduced model

Each time step of the scheme (13) generates the equation (14) which we call the original model. A reduced
model is generated on the basis of POD for a sequence of solutions fuigie

i¼ib
; ie � ib þ 1 ¼ n at n time steps. The
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eigenvectors fwjgm
j¼1 may be considered as the basis of m-dimensional subspace with projector Vm =

{w1 . . .wm} 2 RN·m. The reduced model is the Galerkin projection onto this subspace:
V T
mF iðV mûiÞ ¼ 0; ð22Þ
or, equivalently,
F̂ iðûiÞ ¼ 0; ð23Þ

where the unknown vector ûi 2 Rm and F̂ i : Rm ! Rm.

The reduced model is the nonlinear equation of very low dimension m. For its solution, we adopt the same
INB algorithm with the finite difference approximation of the Jacobian-vector multiplication. Being the formal
Galerkin projection, each evaluation of function F̂ iðûi

kÞ in the kth INB iterate is the sequence of the following
operations: ui

k ¼ V mûi
k, f i

k ¼ F iðui
kÞ, f̂ i

k ¼ V T
mf i

k . Therefore, the overhead is matrix–vector multiplications for
Vm and V T

m, i.e., 4Nm flops. We notice that usually m � 10 and the evaluation of function F(u) is much more
expensive than 4Nm. This implies a negligible contribution of the overhead.

Another important consequence of low dimensionality of (23) is that the INB algorithm may be applied
without any preconditioner. If the reduced Jacobian ðF̂ iðûi

kÞÞ
0 were known explicitly, the GMRES iterations

would converge within at most m GMRES iterations due to m-dimensionality of the reduced model. Since
d� 1 in (19), 1

d½F̂ iðûi
k þ dv̂Þ � F̂ iðûi

kÞ� is an approximation of the matrix–vector multiplication ðF̂ iðûi
kÞÞ
0v with

a relative error O(d), so that m GMRES iterations provide at most O(d) accuracy. The assumption d� �
(the stopping tolerance for the INB algorithm) implies convergence within m iterations for each system (18).

3.4. Fully implicit solver with POD-reduced model acceleration

Coupling POD and Galerkin projection for the generation of the reduced model gives a powerful tool for
acceleration of the fully implicit schemes. Let n, the length of data series, be defined, as well as the desirable
accuracy � for Fi: iFi(ui)i 6 �. For any time step i = 1, . . . perform:

ALGORITHM INB-POD
IF i 6 n, SOLVE Fi(ui) = 0 BY PRECONDITIONED INB WITH THE INITIAL GUESS ui

0 ¼ ui�1
AND ACCURACY �

ELSE

1. IF(mod(i,n) = 1):

(I) FORM X = {ui� n. . .ui�1};
(II) FIND SO MANY LARGEST EIGENVECTORS wj OF R = XXT

THAT
PN

j¼mþ1kj 6 �;
(III) FORM Vm = {w1. . .wm}
2. SET ûi
0 ¼ V T

mui�1

3. SOLVE F̂ iðûiÞ ¼ 0 BY NON-PRECONDITIONED INB WITH THE INITIAL GUESS ûi
0 AND ACCURACY �/10

4. SET ui
0 ¼ V mûi

5. SOLVE Fi(ui) = 0 BY PRECONDITIONED INB WITH THE INITIAL GUESS ui
0 AND ACCURACY �

Several remarks are in order. The absence of the preconditioner for the reduced model is dictated by two
reasons: (a) it is not clear how to construct a preconditioner for the reduced model, (b) it is hardly needed if m

is small. The reduced model is slightly oversolved: this provides better initial guess ui
0. The number of eigen-

vectors is chosen adaptively in the above algorithm: it allows to form a reduced model that approximates the
original model with the desirable accuracy �. Actually, this condition my be replaced by a more rough condi-
tion Nkm+1 < � or even by a fixed number m, m = 10–40. The solution of the eigenvalue problem may be
performed asynchronously with the implicit solution: as soon as Vm is formed, the reduced model becomes
the active substep. Moreover, the POD and the implicit INB solution may be performed on different comput-
ers: the data to be exchanged are X and V only, and the communication delay does not block the simulation.
The underlying client-server architecture of the method makes it very appealing in grid computing applica-
tions [35]. Another appealing feature of the method is its modularity: computation of the reduced model solu-
tion is separated from the original solver and is based on its simple algebraic modification. It makes the INB-
POD algorithm easy to implement in codes with a complex architecture.
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We note that our approach differs from the mesh sequencing method [20] where an initial guess for the
Newton method is searched on a series of coarser grids. The latter technique is based on explicitly known
inter-grid transfer operators and coarser grids. Therefore, it inherits the restrictions typical for the multigrid
methods. The POD approach does not depend on the geometry and discretization parameters, and uses only
the solution series generated on the fine grid. Hence, it is less restrictive although it requires extra memory for
the storage of the basis Vm.

In order to illustrate the basic features of the proposed methodology, we choose the backward Euler
approximation of the unsteady 2D Navier–Stokes equations. We consider the classical driven cavity problem
in the streamfunction-vorticity formulation [11]:
ox
ot
� 1

Re
Dxþ ðwyxx � wxxyÞ ¼ 0 in X; ð24Þ

� Dw ¼ x in X; ð25Þ
wjt¼0 ¼ 0 in X;

w ¼ 0 on oX;

ow
on

����
oX

¼
vðtÞ if y ¼ 1;

0 if 0 6 y < 1:

�

Here, X = (0,1)2, Re = 1000, and v(t) is the unsteady boundary condition leading the flow. Eliminating the
vorticity, we obtain the streamfunction formulation:
o

ot
ðDwÞ � 1

Re
D2wþ ðwyðDwÞx � wxðDwÞyÞ ¼ 0 in X;

wjt¼0 ¼ 0 in X;

w ¼ 0 on oX;

ow
on

����
oX

¼
vðtÞ if y ¼ 1;

0 if 0 6 y < 1:

� ð26Þ
Three different types of flows are simulated: converging to the steady solution (stabilizing), quasi-periodic in
time, and quasi-periodic in time with variable periods (arrhythmic). These three cases are defined by the
unsteady boundary velocity v(t). We set v(t) = 1 + (t + 10)�1 for the stabilizing flow, v(t) = 1 + 0.2sin(t/10)
for the quasi-periodic flow, and v(t) = 1 + 0.2sin([1 + 0.2sin(t/5)]t/10) for the arrhythmic flow, see Fig. 2.
We motivate the chosen parameters as follows. In the case of v(t) = 1, the unsteady solution is stabilized within
ts � 150. Therefore, to get a quasi-periodic solution, we need the periodic forcing term with the period T < ts

but comparable with ts, T � ts. Indeed, if T� ts, the inertia of the dynamic system will smear out the ampli-
tude of the oscillations; if T > ts, the dynamic system will have enough time to adapt to the periodic forcing
term and to demonstrate periodic behavior. The function sin(t/10) has the period T = 20p which fits perfectly
the above restrictions for the quasi-periodicity. The arrhythmic flow is a simple modification of the quasi-
periodic flow by arrhythmic scaling of the time t! [1 + 0.2sin(t/5)]t. It is well known that the feasible time
step Dt for approximation of periodic solutions satisfies 12Dt = T, i.e., D t � 5. Therefore, in the case of
v(t) = 1, the stabilization will occur within 30 time steps. This is not enough for the demonstration of the
POD-acceleration. Therefore, we artificially extend the stabilization time by choosing the unsteady stabilizing
boundary condition v(t) = 1 + (t + 10)�1.

For the discretization in time, we chose the backward Euler scheme (13). For the discretization in space
(developed by P. Brown), we adopt the P1 finite element spaces applicable to the biharmonic problems as
it was shown in [13]. This discretization is also equivalent to that obtained with standard finite differences.
We consider two uniform grids with mesh steps h = 2�7, 2�8 providing 16,129 and 65,025 unknowns, respec-
tively. Typical quasi-periodic solution isolines are shown in Fig. 3. The nonlinear problems (14) are solved by
the NITSOL package [28] with the preconditioned GMRES(30) iterations. The stopping criterion for the INB
algorithm is kF iðui

kÞk < 10�7kF 0ð0Þk. For the preconditioner P, we use the discretized version of 1
ReD

2. For a
uniform mesh, systems of the form Pw = u can be solved very efficiently using a fast solver [3]. For small and
moderate Reynolds numbers, this preconditioner provides independence of the convergence rate of the mesh
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Fig. 2. Different types of boundary velocity v(t).

Fig. 3. Streamfunction isolines w = �0.1, �0.08, �0.06, �0.04, �0.02, 0, 0.00005, 0.0001, 0.0005, 0.001, 0.0025 for quasi-periodic solution
at time t = 500, h = 2�7.
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size. Evaluations of the Jacobian are replaced by the finite difference approximations of the first order (19).
Therefore, the dominant contribution to the arithmetical work is given by the number of function evaluations
nevF and the number of preconditioner evaluations nevP for each time step.

The time measurements presented below have been performed on a COMPAQ alpha ev6 processor running
at 667 MHz.

In Table 5, we present the performance of the standard NITSOL solver with the initial guess equal to the
solution at the previous time step ui

0 ¼ ui�1. We consider the three types of the unsteady solution at several
time steps and on two meshes. The numbers of function and preconditioner evaluations do not depend on
the mesh size. Consequently, the CPU time (per time step) increases by factor 5 when the number of unknowns
is multiplied by factor 4. Slight disproportionality is attributable to the arithmetical complexity of the precon-
ditioner evaluation. However, both nevF and nevP may depend on the time step: for stabilizing solution, they



Table 5
Performance of the algorithm INB (NITSOL) for ui

0 ¼ ui�1

Mesh step h = 2�7 h = 2�8

Time step, i 10 20 30 10 20 30

Stabilizing solution

kF iðui
0Þk 0.005 0.0014 0.0006 0.015 0.004 0.0018

nevF 127 107 96 118 93 83
nevP 122 102 91 113 88 78
CPU time 2 1.73 1.54 9.7 7.3 7

Quasi-periodic solution

kF iðui
0Þk 0.13 0.28 0.03 0.36 0.79 0.09

nevF 150 191 172 166 186 189
nevP 144 185 167 160 180 183
CPU time 2.4 3.1 2.9 13.4 15.3 16.1

Arrhythmic solution

kF iðui
0Þk 0.005 0.77 0.46 0.01 2.2 1.3

nevF 122 215 201 115 205 227
nevP 117 208 195 110 198 221
CPU time 2.0 3.5 3.3 9.2 16.7 19.5

222 D. Tromeur-Dervout, Y. Vassilevski / Journal of Computational Physics 219 (2006) 210–227
decrease monotonically, whereas for the other cases they may oscillate within certain range. The reason is
evident: in the first case, the choice ui

0 ¼ ui�1 provides better initial guess ðkF iðui
0ÞkÞ as t!1, while in the

other cases the quality of the initial guess ui
0 ¼ ui�1 depends on the time moment t, see Fig. 2.

Now we examine the speed-up of computation by POD and its basic features. To this end, we consider the
performance of the algorithm INB-POD with the following parameters: the data (solutions) series are
{u20k�10 . . .u20k+9}, k = 1,2, . . ., i.e., n = 20, and the dimension of the reduced model is fixed to m = 10. In
Tables 6 and 7 we present the arithmetical complexity of certain time steps, in terms of nevF, nevP and the
Table 6
Performance of the algorithm INB-POD (NITSOL) for the stabilizing solution

Mesh step h = 2�7 h = 2�8

Time step, i 32 42 52 32 42 52

kF iðui
0Þk;�10�7 4.4 15 7 14 37 12

nevF 25 + 12 25 + 30 24 + 19 27 + 14 27 + 27 25 + 12
nevP 0 + 10 0 + 27 0 + 16 0 + 12 0 + 24 0 + 10
CPU time 0.1 + 0.16 0.1 + 0.4 0.1 + 0.3 0.7 + 0.9 0.7 + 1.8 0.6 + 0.7

Table 7
Performance of the algorithm INB-POD (NITSOL) for the non-stabilizing solutions

Mesh step h = 2�7 h = 2�8

Time step, i 32 52 72 32 52 72

Quasi-periodic solution

kF iðui
0Þk;�10�6 25 0.9 0.5 22 1 2.6

nevF 54 + 74 45 + 22 44 + 11 44 + 55 45 + 11 44 + 19
nevP 0 + 69 0 + 19 0 + 9 0 + 51 0 + 9 0 + 16
CPU time 0.2 + 1.1 0.2 + 0.3 0.2 + 0.15 1.2 + 4.2 1.1 + 1.1 1.1 + 1.2

Arrhythmic solution

kF iðui
0Þk;�10�4 4 3.6 1.7 5.5 4.3 1.8

nevF 50 + 110 51 + 96 49 + 94 50 + 98 42 + 80 49 + 77
nevP 0 + 105 0 + 91 0 + 89 0 + 93 0 + 75 0 + 72
CPU time 0.2 + 1.7 0.2 + 1.5 0.2 + 1.5 1.3 + 7.7 1.0 + 6.4 1.1 + 5.9
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CPU time, as well as the quality of the initial guess kF iðui
0Þk due to the reduced model, ui

0 ¼ V mûi. The first
entry of each sum in the Tables corresponds to the contribution of the reduced model, the second is due to
the original model. The first observation is that the acceleration is significant, �2–5-fold in comparison with
the standard algorithm INB. The reason is in much better initial guess for the original model solver (cf.
kF iðui

0Þk). Due to the super-linear convergence of the INB algorithm, this results in smaller values of nevF, nevP.
The price to be paid for this reduction is the cost of the reduced problem solution. As it was mentioned before,
the complexity of function F̂ evaluation only slightly exceeds that for F, whereas the number of preconditioner
evaluations is zero for the reduced model. Since in the considered application (as well as in the absolute major-
ity of applications), the complexity of the preconditioner evaluation dominates over the complexity of the
function evaluation, the speed-up is attributable to the ratio of nevP for the standard algorithm and the accel-
erated one. As it is seen from the tables, this ratio depends on the type of unsteady solution and on the time
moment. For the stabilizing and quasi-periodic solutions, the reduced model is capable to recover the solution
at the next time step very accurately ðkF iðui

0Þk � 10�6Þ which provides the essential reduction of nevP (and
nevF). However, at the time step 32, the quasi-periodic flow is not yet very well stabilized, and the prediction
of the reduced model is not as good ðkF iðui

0Þk � 10�5Þ yielding only 2-fold acceleration. For the arrhythmic
flow, the quality of the prediction is even worse ðkF iðui

0Þk � 10�4Þ, and the typical acceleration factor is 2-
3. At early stages of the arrhythmic flow, the acceleration may be small, as it is observed for the time step
32. Here, the solution from the previous time step occasionally turns out to be almost as good as the initial
guess predicted by the reduced model, �0.01 versus �0.001. As a result, the reduction of nevP is only 10-
20%, and the overall acceleration is insignificant. On the other hand, the complexity of the reduced model
solution does not vary considerably: nevF ranges from 25 to 50 for all the cases. The reason is low dimension-
ality (m = 10) of the reduced problem.

In order to present the overall picture of the POD acceleration, we demonstrate in Fig. 4 the elapsed time of
the INB and INB-POD computation of the three flows on the two meshes for all the time steps. The POD
acceleration starts at the 31th time step. The eigenbasis is computed in parallel on other processors of the
COMPAQ cluster every 20th time step starting from the 30th, and the time of the computation is not shown.
The elapsed time mean values are computed for the time steps 31, . . ., 100. The quasi-constant reduced model
computational time (Time POD) illustrates the effect of the low dimensionality of the reduced model. We
remark that for the saturated case the POD basis provides very efficient acceleration for the time steps next
to Vm update and that the acceleration becomes less efficient for the obsolete basis Vm (time steps 50, 70,
90). However, for the quasi-periodic and arrhythmic cases the INB-POD elapsed time does not systematically
increase until the next Vm update.

We remark that the arrhythmic flow is a very tough test for the methodology: the solution at the next time
step hardly can be approximated by a composition of several solutions at previous time steps. Consequently,
the POD-reduced model is not capable to provide a very good initial guess and many-fold speed-ups. May the
extension of data (solution) series, n, and/or enrichment of the reduced model basis, m, increase the speed-up?
Controversial tendencies do not allow to answer the question a priori: the larger m is, the better is the predic-
tion of the reduced model, but its quality is limited by the accuracy of the representation of ui+1 via the series
fuib . . . uieg; on the other hand, the complexity of the reduced model solution increases for large m. Therefore,
the answer depends on the particular problem and parameters and must be based on a numerical evidence. For
the case of the arrhythmic solution on the mesh h = 2�8, we present in Table 8 the complexity of certain time
steps for several pairs m,n. The 2-fold increase of m does provide a better initial guess but the increased cost of
the reduced model solution is not compensated by the speed-up of the original model solution. On the other
hand, the 2-fold increase of n does not provide a better resolution of the reduced model: due to irregularity (in
time) of the unsteady solution, the extension of data series may not provide a better approximation. More-
over, the extension of data series may slightly deteriorate the performance of the algorithm INB-POD. The
reason is that the more ‘‘useless’’ solutions contribute to the basis of the reduced model, the less adequate
is the reduced model (with fixed m). We notice that for the unsteady problems with ‘‘predictable’’ solutions
(stabilizing or quasi-periodic) the positive effects of the increase of n may be more pronounced, with the excep-
tion that for the quasi-periodic solution the choice n > T/Dt seems to be not feasible. The increase of m is
always constrained by the compromise between the cost of the solution of the reduced model and the actual
speed-up of the original model.
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Finally, we examine the performance of the Arnoldi process with 50 matrix multiplications used in the com-
putation of m largest eigenvalues of matrix R. We set m = 10, n = 20, and consider the case of quasi-periodic
solution generating the sequence of vectors u13, . . .,u32. In Table 9 the computed Ritz values corresponding to



Table 8
Performance of the algorithm INB-POD (NITSOL) for the arrhythmic solution and different m,n

Time step, i 32 52 72 112 152

m = 10, n = 20, X = {u20k�10 . . .u20k+9}
kF iðui

0Þk;�10�4 5.5 4.3 1.8 6 1.4
nevF 50 + 98 42 + 80 49 + 77 48 + 101 51 + 78
nevP 0 + 93 0 + 75 0 + 72 0 + 96 0 + 73
CPU time 1.3 + 7.7 1.0 + 6.4 1.1 + 5.9 1.1 + 8.0 1.2 + 6.0

m = 20, n = 20, X = {u20k�10 . . .u20k+9}
kF iðui

0Þk;�10�4 0.5 0.4 2.0 0.4 0.4
nevF 101 + 67 96 + 61 99 + 80 107 + 69 86 + 58
nevP 0 + 63 0 + 57 0 + 75 0 + 65 0 + 54
CPU time 4.0 + 5.2 4.2 + 4.8 4.2 + 6.3 4.7 + 5.3 3.5 + 4.5

m = 10, n = 40, X = {u40k�30 . . .u40k+9}
kF iðui

0Þk;�10�4 3.9 5.5 6.0 3.6
nevF 42 + 86 52 + 93 58 + 97 45 + 90
nevP 0 + 81 0 + 88 0 + 92 0 + 85
CPU time 1.0 + 6.7 1.2 + 7.2 1.3 + 7.6 1.1 + 7.1

m = 20, n = 40, X = {u40k�30 . . .u40k+9}
kF iðui

0Þk;�10�4 0.5 0.7 0.5 0.3
nevF 86 + 59 100 + 64 109 + 70 87 + 54
nevP 0 + 55 0 + 60 0 + 66 0 + 50
CPU time 4.0 + 4.5 4.5 + 4.9 4.8 + 5.4 3.6 + 4.1

Table 9
Accuracy of the Arnoldi process with 50 multiplications by matrix R

Mesh size # dof k1 iRw1 � k1w1i/k1 k10 iRw10 � k10w10i/k10

h = 2�6 3969 2.6E + 2 4E � 16 1.8E � 9 3E � 6
h = 2�7 16,129 1.2E + 3 5E � 16 1.1E � 8 1E � 6
h = 2�8 65,025 4.7E + 3 5E � 16 5.6E � 8 8E � 7
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the eigenvalues k1 and k10 of R are shown together with their relative residuals. We see that even for very small
values k10 the relative residual is small and decreases with h! 0. Another important observation is that 10
eigenvectors is more than enough for a good accuracy of the POD approximation: kk < 10�7, k P 10.

4. Conclusions

Three methods for the choice of the initial guess in the iterative solution of the series of linear and nonlinear
systems have been considered. The systems have been generated by the contemporary time stepping schemes
applied to the unsteady nonlinear fluid flow problems. The computational effect of the chosen initial guess has
been compared with that of the standard (physically motivated) initial guess. The influence of parameters as
well as possible restrictions has been numerically studied. The study shows that the efficiency of the initial
guess based on the Krylov subspace data depends on the difference between the matrices in the series. If
the matrices are the same (pressure correction step in the Navier–Stokes solver), the GCR data provide the
very good initial guess. This results in the computational speed-up. If the matrices are slightly different (pres-
sure correction step in the low Mach number solver), the GMRES data provide a better initial guess in com-
parison with trivial one, which may save some computational work. However, the efficiency depends severely
on the discrepancy between the matrices: the iterative solution of the Newton method series is not accelerated
at all. The need to accelerate the Newton method solver has led us to the new choice of the initial guess. It is
computed by the solution of the reduced model generated by the Galerkin projection onto the basis of the
proper orthogonal decomposition for the solution series. This choice of the initial guess results in the consid-
erable computational speed-up of the fully implicit solution of unsteady nonlinear problems.
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