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A multi-model approach to intravenous filter optimization
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SUMMARY

We present a multi-model approach to the study of side-effects of endovascular implants. A 2D model
of elastic walls and a local 3D model of blood flow are combined with a 1D network blood circulation
model. The three numerical models form an endovascular computational stand. Copyright � 2010 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Development of endovascular devices is one of the most challenging problems in contemporary
medicine. Millions of endovascular implants are successfully installed annually. The design and
installation of the devices-implants should minimize perturbations of the blood flow in the vessel
as well as the impact on the vessel wall. This requires optimization of the device structure, choice
of appropriate materials, study of the place and the method of the device fixation, estimation of the
impact on the global circulation, evaluation of chemical species transport in the case of dissoluble
devices. Our work addresses modeling side-effects due to intravenous filters (Figure 1), which are
implanted into veins to capture and dissolute migrating thrombi. In particular, we consider correct
filter placement, computation of flow in the vicinity of the filter and captured thrombus, impact of
the installed filter on the elastic properties of the venous wall, transport of polymeric material in
case of dissoluble filter.

The cardiovascular models of different dimensions have been widely developed and discussed
[1–4]. The tasks of fluid–structure interaction and multi-modeling are the main points in such
works. Our approach to multi-modeling adopts the fluid–structure interaction using the immersed
boundary method [5, 6] and fluid–network interaction using defective boundary conditions [7],
and is genuine for the network–structure interaction. The key feature of the latter is the recovery
of vessel’s wall state equation, which requires less computational resources and is simpler in
adjustment from the point of averaged physiological data.
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Figure 1. Samples of intravenous filters (Comed Co.).

pulmonary arteries pulmonary veins

Figure 2. 1D structure of the pulmonary vessels.

2. METHODS

Three numerical models of different dimensionalities are proposed for the minimization of side-
effects due to installation of intravenous implants. The detailed disturbance of the blood flow
in the vicinity of the implant should be considered by means of 3D incompressible fluid flow
model. Global response to the local perturbations should be analyzed in the scope of 1D network
circulation model. The elastic vessel wall response to the device fixation and flow pulsations should
be taken into account through the 2D model of elastic structures and fluid–structure interaction
problem.

2.1. 1D network blood flow model

In the network circulation model, the domain is a set of 1D flexible channels connected in a closed
network consisting of four parts (arterial and venous parts of the pulmonary and systemic circles)
shown in Figures 2 and 3. The structure of the pulmonary network (Figure 2) was reconstructed
on the basis of reported clinical investigations [8, 9]. Implementation of the systemic circulation
structure (Figure 3) is more tedious. The data were gathered through a wide range of sources,
e.g. [10, 11] etc.

Blood flow is considered as pulsating flow of incompressible fluid streaming through the network
of elastic tubes (vessels). For every vessel we have mass and momentum conservation equations
in the characteristic form [12–14]:

�S/�t +�(Su)/�x = �(t, x, S,u,�i ), (1)

�u/�t +�(u2/2+ p/�)/�x = �(t, x, S,u,�i ), (2)

where t is the time, x the coordinate along the vessel, � the blood density, S(t, x) the vessel
cross-section area, u(t, x) the linear flow velocity averaged over the vessel cross section, p the
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Figure 3. 1D structure of the systemic vessels.

pressure (relative to the atmospheric pressure), � the mass inflow/outflow (e.g. due to the damage
of the vessel wall or blood transfusion), � the external force (e.g. gravity, friction, etc.), �i the
parameter of the i th impact (loss of blood, external stress, etc.). The elastic properties of the vessel
wall are described by the state equation defining the dependence of pressure p from the instant
vessel cross-section area S

p(S)= p∗+�c2
0 f (S), (3)

where c0 is the rate of small disturbance propagation in the vessel wall, p∗ is the pressure in the
tissues surrounding the vessel. The function f (S) depends on the type of the vessel. In this work
we set for intact vessels (i.e. vessels without installed endovascular devices) S-like dependence
[15] reported in many works. We use it in the following form [12, 14]:

f (S)=
{

exp(S/S̄−1)−1, S>S̄,

ln (S/S̄), S�S̄,
(4)

where S̄ is the vessel cross-section area under zero transmural pressure p(S)− p∗ and zero velocity.
All the vessels must be connected with each other at the nodes and to the heart by the appropriate

boundary conditions that are formed by Poiseuille’s pressure drop conditions and mass conservation
law combined with the appropriate compatibility condition for (1), (2)

pk(Sk(t, x̃k))− pl
node(t) = εk Rl

k Sk(t, x̃k)uk(t, x̃k), k =k1,k2, . . . ,kM , (5)∑
k=k1,k2,. . .,kM

εk Sk(t, x̃k)uk(t, x̃k) = 0, (6)

where l is the node’s index, k the vessel index, k1,k2, . . . ,kM and M are the indexes and the
number of the vessels meeting at the node; pl

node(t) the pressure at the vessels junction point;
Rl

k the hydraulic resistance for the flow from the kth vessel to the lth node. For branches incoming
into a node (having terminal point near the node), we set εk =1, x̃k = Lk , whereas for outgoing
branches (having entry point near the node), we set εk =−1, x̃k =0. In the case of the heart junction,
the product Sk(t, x)uk(t, x) in (5), (6) should be replaced with volumetric flow to or from the
appropriate chamber of the heart Qk .

2.2. Numerical implementation of 1D network blood flow model

For every vessel, Equations (1)–(4) are solved by the hybrid (first and second order) explicit
grid-characteristic method. This model also includes a set of stiff ordinary differential equations
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(ODEs), which describe the heart functioning in terms of the volume-averaged model [12]. The
system of ODEs is solved by A- and L-stable implicit third-order Runge–Kutta method.

Finite-difference approximation of the compatibility condition for (1), (2) along the characteristic
outgoing from the integration domain gives linear dependence un+1

k from Sn+1
k at the upper time

layer n+1 (see [12, 14] for details)

un+1
k =�k Sn+1

k +�k . (7)

This allows us to reduce the nonlinear equations (5), (6) to the system of two times less dimension

�F(�S)=� �f +R �P =�0, (8)

where

�f = {εkm (�km Skm +�km
)Skm }M

m=1,
�P ={pkm }M

m=1, (9)

R = {Ri j }M
i, j=1, Rii =−

M∑
j=1
j �=i

M∏
m=1
m �=i
m �= j

Rl
km

, Ri j =
M∏

m=1
m �=i
m �= j

Rl
km

, �=detR=
M∑

i=1

M∏
j=1
j �=i

Rl
k j

, (10)

R is a symmetric matrix describing the total node’s hydraulic resistance.
The numerical solution of the system (8) by the Newton method requires almost 10 times less

operations than the numerical solution of (5), (6). Moreover, the Newton method demonstrates
better convergence, particularly in the case of great diameter ratios for the vessels meeting at a
node.

2.3. 2D elastic wall model

In the elastic wall model the domain is the two-dimensional manifold whose position in space
can vary. The model of the elastic properties of the vessel wall is based on its fiber composition.
The fibers produce the elastic strain that resists the deformation of the vessel. This approach was
developed by Peskin and Tu [5] in the 2D case and by Peskin and Rosar [6] in the 3D case.

The wall is modeled as a set of elastic fibers. All fibers can be divided into three types:
elastic, smooth muscle, and collagen. We set their Young’s modules to 3×105, 3×105, 108 Nm−2,
respectively. Collagen fibers are distributed in the wall in unstrained state and begin to respond to
the deformation when the wall is considerably deformed.

The fibers are grouped according to geometric features. In accordance with the anatomic structure
of the vessel, we separate ring, beam, and helical fibers and locate them so that they uniformly
cover the wall of the vessel, see Figure 4.

2.4. Numerical implementation of 2D elastic wall model

In the numerical model, each fiber is represented by a set of nodes. To each node with Cartesian
coordinates X, we assign the Lagrange variable s as the distance along the fiber from X to a
reference point. The tension in the fiber obeys the generalized Hooke’s law

T = T̃

(∣∣∣∣�X

�s

∣∣∣∣−1

)
, (11)

Figure 4. Set of ring, beam, and helical fibers.
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Figure 5. Forces as the response to deformation of helical fibers (left) and ring fibers (right).

where T̃ is the elasticity coefficient of the fiber for |�X/�s|�1 and T̃ =0 for |�X/�s|<1. The
elastic force (response to the deformation) at each node of each fiber is computed as

F= �
�s

(T s), s= �X
�s

/∣∣∣∣�X
�s

∣∣∣∣ , (12)

where s is the unit tangent to the fiber at node X. In the numerical model all the derivatives are
replaced with the conventional finite difference discretizations.

The composition of the nodal elastic forces F forms the spatial distribution of wall response to
the deformation, see Figure 5. This response can be used for different purposes. For instance, it
may be interpreted as a volume force for the fluid motion, or as the counterbalance to the impact
of the implant.

2.5. 3D local blood flow model

Let � be a three-dimensional domain with a piecewise smooth boundary ��. The domain is
occupied by a fluid with a kinematic viscosity � and a density �. We denote by u(x, t) the velocity
with components (u1,u2,u3) and by p(x, t)= P(x, t)/� the normalized pressure of the fluid. The
flow of incompressible fluid with prescribed values of the velocity on �� obeys the Navier–Stokes
equations:

�u

�t
−��u+(u·∇)u+∇ p = f in �, u=g on ��, (13)

divu = 0 in �. (14)

An important parameter for flow similarity is the Reynolds number Re=Ū D̄/�, where Ū and
D̄ are characteristic velocity and length, respectively. In blood flow applications, the Reynolds
number varies from a fraction of one to several thousands [3]. Even within a single application, the
Reynolds number can depend on particular details. For instance, an implanted filter as an obstacle
has a characteristic length of 0.2 mm, whereas the filter with a catched thrombus (Figure 6) has a
characteristic length of 1 cm, yielding as much as 50-fold increase of Re. This observation shows
that the numerical scheme has to be robust in a wide range of Reynolds numbers.

2.6. Numerical implementation of 3D blood flow model

The time stepping scheme for the solution of unsteady equations (13)–(14) is provided by a variant
of the projection algorithm (pressure correction method) [16]: given uk �u(t0 +k�t), perform the
steps

Step 1: Semi-Lagrangian prediction of the velocity

ũk+1 =L(uk). (15)
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Figure 6. Example of a spherical thrombus catched by the filter.

Step 2: Momentum equation solution

ûk+1 −uk

�t
−��ûk+1 +(ũk+1 ·∇)ûk+1 = f k+1 −∇ pk in �,

u = gk+1 on ��

(16)

Step 3: Projection of ûk+1 onto the space of divergence-free functions by solving the elliptic
equation for the pressure correction 	p

−div∇	p = − 1

�t
div ûk+1, (17)

uk+1 = ûk+1 −�t∇	p, pk+1 = pk +	p. (18)

The numerical scheme for the approximate solution of (13) is based on the finite volume
discretization of differential operators in (16)–(18). The velocity components and the pressure are
assigned to staggered elements of the computational mesh. The computational mesh is the octree
mesh with cut cells. The octree meshes are locally refined hierarchical meshes with cubic cells
which have flexible octree structure, see Figure 7. The cut cells are formed by the intersection of
the domain � and the cells of the octree mesh generated in a cube containing �. Each cut cell is
a polyhedron since the intersection is approximated by the marching cube technique [17].

The semi-Lagrangian operator L for the velocity prediction is easy to implement if the velocity
were modeled as a set of particles. In this case, we would simply have to trace the particles through
the given velocity field uk . To this end, we search for particles which over a single time step end
up exactly at the point where each component of the predicted velocity ũk+1 is collocated. The
values of the velocity components that these particles carry are interpolated from the neighboring
collocation points for uk .

2.7. Multi-modeling

Interaction between the 1D, 2D, and 3D models is diverse (Figure 8). The elastic 2D wall is
combined with 3D fluid flow in the framework of the fluid–structure interaction problem. The
elastic 2D model is sensitive to implant installation and modifies the state equation (3) for the 1D
network circulation model. The 1D network circulation model affects boundary (inflow/outflow)
conditions for the 3D model, which enforces the vessel wall position and defines the pressure drop.
Below we briefly comment on these ideas.
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Figure 7. An octree mesh and its octree structure.

Figure 8. Multi-modeling scheme.

Fluid–structure interaction. The fluid–structure interaction is organized as an explicit coupling of
Equations (15)–(18) and (12) via the immersed boundary method [5, 6]:

Step I: Perform Steps 1,2,3 of the pressure correction method and compute the new velocity
field uk+1

Step II: Move the elastic wall in accordance with uk+1

Xk+1
n =Xk

n +�t
∑
m

uk+1	h(xm −Xk
n)vol(xm)

Step III: Compute fiber elastic forces

Fk+1
n =Fk+1

n (Xk+1
n )

Step IV: Interpolate the fiber elastic forces onto the fluid mesh

f k+1 =∑
n

Fk+1
n 	h(xm −Xk+1

n )area(Xk+1
n )

Here the velocity uk+1 defined on Eulerian fluid mesh with nodes xm is interpolated onto
Lagrangian wall mesh via discrete analogues [5, 6] of the Dirac function 	h(xm −Xk

n), and the elastic
force Fk+1

n defined on Lagrangian mesh is interpolated onto Eulerian mesh via 	h(xm −Xk+1
n ).

Notations vol and area stand for the representative volume and area of Eulerian and Lagrangian
mesh nodes, respectively.

Network–structure interaction. The equation of state (3) is just the empiric qualitative description
of the elastic wall properties. The drawback of such an approach is that the constant c0 should
be determined for every vessel and specific formula for S-like function f (S) should be stated
similar to (4). Our computational tests reveal that the flow pattern depends slightly on particular
form of (4). More realistic descriptions may be given by the simulation of pressure response to
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Figure 9. Equations of state for a vessel without the implant (left) and with the implant (right).

the cross-section alterations proposed in Section 2.4. It allows us to consider the elastic properties
of vessels with different fiber structures of the wall’s tissue as well as additional effects from
endovascular implants. The output of the 2D model replaces the empiric description given by (3).

A cava filter is incorporated in the 2D elastic model as a source of expansion forces exerted at
the closed curve. The curve is the intersection of the vessel and the plane passing through fixation
points of filter legs, see Figure 1. The implanted filter expands the vessel and the reaction of the
wall counterbalances the elastic force of filter opening. The deformed wall redistributes the strain
allowing to evaluate the updated pressure and replace the equation of state (3) in the vicinity of
filter implantation. We assume that the cava filter cross section cannot decrease below a given
threshold. The wall reaction is evaluated in different cross sections along the axial coordinate x .
This results in the set of modified wall state equations p(S(t, x), x) shown in the right picture of
Figure 9 instead of the single dependence p(S(t, x)) given by (3) and depicted in the left picture
of Figure 9. The common point of the curves in the right picture of Figure 9 corresponds to the
steady flow resulting in constant cross section along the vessel, which is equal to the cava filter
cross section at the unloaded state.

We note that prior to coupling of the 1D network circulation and the 2D elastic wall model we
have to calibrate the latter. The coefficients of the fiber model should be chosen so that the model
recovers the conventional equation of state (3), i.e. the dependence of the transmural pressure on
the area of vessel cross section shown in the left picture of Figure 9.

Fluid–network interaction. It is well known that the blood flow has quite a complex structure in
particular parts of the vascular network, e.g. arch of aorta, in the vicinity of endovascular implants,
growing clots, atherosclerotic plaques, etc. It is very difficult to provide a correct description of
such flows in terms of 1D models. We suppose that regions in which 3D effects are substantial
should be simulated by the 3D model coupled with the adjoining 1D regions. The 3D local fluid
flow model can provide the pressure drop due to the complex flexible obstacles inside the vessel
to the 1D network circulation model.

The 1D network circulation model produces the prescribed flux Qi =
∫

Si
u·nds at the ‘inlet’ and

‘outlet’ cross sections of 3D vessel-type domain �. Formally, the replacement of Dirichlet data
for all three velocity components with the prescribed flux data in the system (13),(14) results in
not a well-posed initial-boundary value problem. However, adding to Equations (13) and (14) the
extra equations for Qi and insertion in (13) of Lagrange multipliers make the problem well-posed
[7]. Moreover, the pressure correction method can be modified to solve the expanded unsteady
system. The coupling of the two models within a single time step can be achieved following the
approach of Quarteroni and Formaggia [3].

3. RESULTS

The velocity and pressure profiles along the cava vein with cava filter implanted in the middle
of the vessel are shown in Figure 10. Several successive time moments with time step of 0.1
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Figure 10. Velocity (left) and pressure (right) profiles along the vessel. The cava filter
is placed in the middle of the vessel.

Figure 11. Region where axial velocity component is greater than 7 cm/s. The cases of spherical thrombi
with diameters 0.96 and 1.44 cm are shown on left and right pictures, respectively.

second are represented. We observe the distinct pressure drop near the filter placement resulting in
appropriate increase and decrease in the velocity before and after the filter. Such a flow deceleration
may result in the formation of additional clots and vessel embolism. The results were obtained
with the 1D network circulation model coupled with the 2D elastic wall model as stated above
in the network–structure interaction section. The conventional wall state equation (3) is replaced
here by the wall reaction simulated with the 2D elastic wall model. The initial and modified wall
state equations are presented at the left and right pictures of Figure 9.

The solution of the 3D Navier–Stokes equations allows us to determine the pressure drop due to
a spherical thrombus caught by the filter in situation shown in Figure 6 [18]. We consider a segment
(12-cm long) of cava vein with elliptic cross section 1.6×2.4cm and the inlet/outlet Poiseuille-
type velocity profile with maximum module 8.8 cm/s. Blood is assumed to be incompressible fluid
with dynamic viscosity 0.0055Pas and density 1.5g/cm3. The clot is assumed to be a ball with
diameter 0.96 or 1.44 cm. The computed pressure drops are 7 and 22 Pa, respectively. In Figure 11
we show regions where axial velocity component is greater than 7cm/s.

4. DISCUSSION

The divergent form of mass and momentum balance equations (1), (2) in the 1D network circulation
model suggests the use of explicit grid-characteristic schemes of high-order (second, third) approx-
imation [12, 14]. Locally conservative Galerkin method [13] and implicit methods are conventional
for this system. Explicit formulation allows us to simplify the nonlinear system (8) for the vessel
junction point. The system is characterized by a matrix of resistances and coefficients of the
compatibility condition. The drawback of such an approach is the stability restriction on the time
step that depends on the spatial step and the rate of small disturbance propagation in the vessel
wall. The stability restriction may become substantial when rather small vessels are included in
the network or the rigid wall components are considered.
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We consider the closed network circulation model. Coupling of arterial and venous 1D networks
with the dynamic heart model [14] provides a feedback from the venous part. Nevertheless, a
model of the entire cardiovascular system should also include the model of micro-circulation
region as it contains observable blood volume and may impact on the global circulation through
different regulatory mechanisms. One possible approach to modeling flows in micro-vessels is
based on the replacement of capillary and venular networks with multilayer heterogeneous porous
media [19]. The other important issue in the 1D network circulation model is the reconstruction
of patient-specific parameters in terms of 1D structures similar to Figures 2 and 3. It is studied
thoroughly for large arteries but is still difficult to observe for the medium and small arteries and
veins. Ideally, these data should be extracted from patient-specific MRI investigations.

The recovery of vessel wall state equation (3) with the 2D elastic wall model allows us to
simulate the impact of different vessel abnormalities (stenosis, occlusion, clamping, wall tissue
aging) on elastic properties of the vessel and therefore on the global blood circulation. The elastic
wall model may be helpful in determination of the vessel shape under various values of transmural
pressure as well as implant installation. This is particularly important for the recovery of the venous
wall state equation as the latter is poorly approximated by (3) and other known analytic formulas.
The 2D elastic wall model can be combined with other models such as the 1D network circulation
or the 3D fluid flow models.

The developed 3D incompressible fluid flow model is based on the use of adaptive octree
meshes with cut cells. This approach allows us to compute the interaction between small obstacles
such as intravenous filters and the blood flow on a PC. The pressure correction time stepping
scheme suggests a simple and effective method for fluid–structure interaction where the elastic wall
motion and the fluid flow evolve simultaneously. The joint model provides evaluation of impacts
of the intravenous filter onto the vessel wall such as vessel shape deformation and filter drag. The
evaluation opens the way to optimization of filter design.

The developed 1D network circulation, 2D elastic wall, 3D fluid flow models will be combined
in the framework of multi-model software, the endovascular computational stand. This stand is
intended for the use by manufacturers and clinicians as well as the educational tool.
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