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The progress in adaptive mesh generation achieved
over recent years makes it possible to attempt to gener-
ate optimal meshes or, at least, their approximations.
For problems with anisotropic solutions, optimal
meshes are also anisotropic. Therefore, estimates of
interpolation errors for anisotropic meshes are required
for approximation analysis of optimal meshes. Such
error estimates in 

 

L

 

∞

 

 for optimal triangulations were
derived in [1] and [2] for the two- and three-dimen-
sional cases, respectively. However, the proofs in [1, 2]
are not analogous and contain some inaccuracies con-
cerning the lower bound on the interpolation error for
an optimal mesh. More specifically, both proofs are
somewhat incomplete in the case of indefinite Hessians
on 

 

arbitrary

 

 simplices. Since optimal meshes can have
arbitrary elements, these proofs have to be refined.
Moreover, the estimates for the interpolation error in 

 

L

 

∞

 

can easily be extended to 

 

L

 

p

 

. We present a complete
corrected proof of the error estimate that unifies the
two- and three-dimensional cases and, then, extend the
result to estimates in 

 

L

 

p

 

.

OPTIMAL MESHES AND THE ERROR IN 

 

L

 

∞

 

Let 

 

Ω ∈ 

 

R

 

d

 

 (

 

d

 

 = 2, 3) be a polyhedral domain and

 

Ω

 

h

 

 be its conformal simplicial partition (triangular for

 

d

 

 = 2 and tetrahedral for 

 

d

 

 = 3) into 

 

�

 

(

 

Ω

 

h

 

)

 

 mesh ele-
ments. Let 

 

C

 

k

 

(

 

D

 

)

 

 be the space of functions defined in

 

D

 

 ⊂ 

 

 with continuous partial derivatives of up to the
order 

 

k

 

. The space of functions that are continuous in 

 

Ω

 

and linear on each simplex is denoted by 

 

P

 

1

 

(

 

Ω

 

h

 

)

 

. Let

 

: 

 

C

 

0

 

( ) 

 

→ 

 

P

 

1

 

(

 

Ω

 

h

 

)

 

 be the linear interpolation oper-

ator on the mesh 

 

Ω

 

h

 

.

Ω

�Ωh Ω

 

Definition 1.

 

 Given 

 

u

 

 

 

∈ 

 

C

 

0

 

( )

 

, a mesh 

 

(

 

N

 

T

 

, 

 

u

 

)

 

consisting of no more than 

 

N

 

T

 

 elements is called opti-
mal if it solves the optimization problem

 

(1)

 

Note that, in practice,  can be any projector on

 

P

 

1

 

(

 

Ω

 

h

 

)

 

, for example, a finite-element projection operator.

 

Theorem 1.

 

 

 

Suppose that

 

 

 

u

 

 

 

∈ 

 

C

 

2

 

( )

 

, 

 

its Hessian

 

 

 

H

is nonsingular in

 

 

 

Ω

 

, 

 

and any simplex

 

 

 

∆ ∈ 

 

 

 

satisfies
the estimate

 

(2)

 

where

 

 

 

H

 

∆

 

 = 

 

H

 

(arg det

 

H

 

(

 

x

 

)

 

|

 

)

 

 

 

and

 

 

 

λ

 

1

 

(

 

H

 

∆

 

)

 

 

 

is the

eigenvalue of

 

 

 

H

 

∆

 

 

 

nearest to zero. Then

 

(3)

 

Hereafter, 

 

C

 

(

 

z

 

)

 

 denotes a positive constant depend-
ing on 

 

z

 

 and independent of the remaining parameters.
Note that the upper bound for  is sim-

ilar to the lower bound and was proved in [1] (in the
two-dimensional case) and in [2] (in the three-dimen-
sional case).

Before proving the theorem, we formulate and
prove the following result.

 

Lemma 1.

 

 

 

Let

 

 

 

∆

 

 

 

be a simplex with edges

 

 

 

e

 

i

 

,

 

 

 

and let
u

 

2

 

 

 

∈ 

 

P

 

2

 

(

 

∆

 

)

 

 

 

be a quadratic function with a nonsingular
Hessian

 

 

 

H

 

2

 

 

 

that has a spectral decomposition

 

 

 

H

 

2

 

 =

 

Λ

 

2

 

W

 

2

 

. 

 

Then

 

(4)

Ω Ωopt
h

Ωopt
h NT u,( ) u �Ωhu– L∞ Ω( ).

Ωh: � Ωh( ) NT≤
minarg=

�Ωh

Ω
Ωopt

h

H ps H∆( )ps– L∞ ∆( ) q∆ λ1 H∆( ) ,<

0 q∆ q 1, p s, 1 2 … d ,, , ,=<≤<

|
x ∆∈
max

C q( )
Ω H

� Ωopt
h( )

-------------------⎝ ⎠
⎛ ⎞

2
d
---

u �Ωopt
h u–

L∞ Ω( ).≤

u �Ωopt
h u–

L∞ Ω( )

W2
T

C ∆̂
2
d
--- 1

8
--- H2ei ei,( )

ei

max u2 �∆u2– L∞ ∆( ),≤ ≤
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where  is the image of ∆ under the mapping  = R(x)

with R = W2, which reduces H2 to the canonical
form

Proof. According to the multipoint Taylor formula
[3, 4] for quadratic functions, we have

(5)

where pi(x) is a linear function on ∆ that reaches 1 at the
vertex ai and vanishes at the remaining vertices of ∆.

Consider the two-dimensional case first. Using (5),
we obtain

because the error on an edge is maximal at the midpoint
of the edge. If detH2 > 0, we have

For detH2 < 0, the two-dimensional result in [5] states
that, for any quadratic function u2 and a prescribed
value ε of the interpolation error, the maximum possi-

ble area of a triangle is  and the maximum error on

the triangle is reached at one of the midpoints of ei and

is equal to |(H2ei, ei)|. Therefore,

and the proof of estimate (4) in the two-dimensional

case is completed. Since | | = , where |H2| is

defined as |H2| = |Λ2|W2, estimate (4) can be rewrit-
ten as

∆̂ x̂

Λ2

Ĥ2
1    0

0    1 ± 
,   d 2,   H ˆ 2 

1   0   0

0    1 ±   0

0   0    1 ± 

,   d  = 3.= = =

u2 x( ) �∆u2 x( )–

=  
1
2
--- H2 x ai–( ) x ai–( ),( ) pi x( ),

i 1=

d 1+

∑–

u2 x( ) �∆u2 x( )–
x ∆∈
max u2 x( ) �∆u2 x( )–

x ei∈
max

ei

max≥

=  
1
8
--- H2ei ei,( )

ei

max

∆̂ 3
4

------- diam∆̂( )2≤ 3
4

------- H2ei ei,( )
ei

max=

≤ 2 3 u2 �∆u2 x( )– L∞ ∆( ).

5ε
4

----------

1
8
---

ei

max

4

5
------- ∆̂ 1

8
--- H2ei ei,( )

ei

max≤ u2 �∆u2– L∞ ∆( ),=

∆̂ ∆ H2

W2
T

C ∆ H2

2
d
--- 1

8
--- H2ei ei,( )

ei

max u2 �∆u2 x( )– L∞ ∆( ).≤ ≤

In the three-dimensional case, the faces of ∆ are
denoted by fi (i = 1, 2, 3, 4). Then, using the two-dimen-
sional result, we have

where eij are the edges of fi. Moreover,

where fi* is the face for which the displacement of the
opposite vertex in a plane parallel to fi* generates a |H2|-
equilateral tetrahedron ∆i* with an face fi** belonging to
fi*. We have |∆i*  ≤ |∆  because | fi**  ≤ | fi*

and ∆ has the same height hi* as ∆i*. Therefore,

and

The lemma is proved.

Proof of Theorem 1. Let ∆ be an arbitrary simplex

of an optimal triangulation  and l =  be a
directed edge of ∆. According to the one-dimensional
multipoint Taylor formula,

where  ∈ [ , ]. By virtue of (2), we have

(6)

Therefore, for sufficiently small q such that Cq < 1, the
values of (H( )(x – ), (x – ) and (H∆(x – ),

(x – )) and have the same sign. Moreover, the values

of (H∆(x – ), (x – )), j = 1, 2, have the same sign

u2 x( ) �∆u2 x( )–
x ∆∈
max

≥    u 2 x ( ) � ∆ u 2 x ( ) – 
x f

 

i

 
∈

 max  
i

 
1 2 3 4

 
, , ,

 
=

 max

≥     
1
8
--- H 2 e ij e ij ,( ) 

j
 

1 2 3
 

, ,
 

=
 max  

i
 

1 2 3 4
 

, , ,
 

=
 max  C f i H 

2
 

i
 

1 2 3 4
 

, , ,
 

=
 max , ≥

f i H2i 1 2 3 4, , ,=
max f i* H2

hi* H2

hi* H2

--------------- C
∆ H2

hi* H2

---------------,≥ ≥

| H2
| H2

| H2
| H2

hi* H2
C ∆i* H2

1
3
---

C ∆ H2

1
3
---

≤≤

u2 x( ) �∆u2 x( )–
x ∆∈
max

≥ 1
8
--- H2ei ei,( )

ei

max C ∆ H2

2
3
---

≥ C ∆̂
2
3
---

.=

Ωopt
h ak1

ak2

u2 x( ) �∆u2 x( )–
x ∆∈
max u x( ) �∆u x( )–

x ak1
ak2

,[ ]∈
max≥

=  
1
2
--- H x̃ j( ) x ak j

–( ) x ak j
–( ),( ) p j x( )

j 1=

2

∑ ,
x ak1

ak2
,[ ]∈

max

x̃ j ak1
ak2

H x̃ j( ) H∆–( ) x ak j
–( ) x ak j

–( ),( )

≤ Cq H∆ x ak j
–( ) x ak j

–( ),( ) .

x̃ j ak j
ak j

ak j

ak j

ak j
ak j
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because the vectors x –  and x –  are parallel.
Therefore,

(7)

By Lemma 1, for the quadratic functions

(8)

there is an edge l such that

Then, in view of (2), there exists a constant B(q, )
such that

Here, |H| is the spectral modulus of H. Therefore, a sim-
plex with the maximum volume |∆||H| satisfies the esti-
mate

and

which proves (3).

OPTIMAL MESHES AND THE ERROR IN Lp

Definition 2. Given u ∈ C0( ) and p ∈ ]0, +∞], a

mesh (NT, u) consisting of no more than NT ele-
ments is called optimal with respect to the Lp norm if it
solves the optimization problem

(9)

ak1
ak2

1
2
--- H x̃ j( ) x ak j

–( ) x ak j
–( ),( ) p j x( )

j 1=

2

∑
x ak1

ak2
,[ ]∈

max

≥ 1 Cq–( ) 1
2
--- H∆ x akj

–( ) x akj
–( ),( )pj x( )

j 1=

2

∑
x ak1

ak2
,[ ]∈

max

≥ C 1 Cq–( ) H∆l l,( ) .

u2 x( ) �∆u x( ) 1
2
--- H∆ x ai–( ) x ai–( ),( ) pi x( ),

i 1=

d 1+

∑–=

H∆l l,( ) B̃ ∆ H∆

2
d
---

.≥

B̃

H∆l l,( ) B̃ ∆ H∆

2
d
---

B q B̃,( ) ∆ H

2
d
---

.≥ ≥

u x( ) �∆u x( )–
x ∆∈
max B q B̃,( ) ∆ H

2
d
---

≥

u �Ωopt
h u–

L∞ Ω( ) B q B̃,( ) ∆ H

2
d
---

∆ Ωopt
h⊂

max≥

≥ B q B̃,( )
Ω H

� Ωopt
h( )

-------------------⎝ ⎠
⎛ ⎞

2
d
---

,

Ω
Ωopt

h

Ωopt
h NT u,( ) u �Ωhu– Lp Ω( ).

Ωh: � Ωh( ) NT≤
minarg=

Theorem 2. Let the assumptions of Theorem 1 be
satisfied. For an indefinite Hessian H, it is additionally

assumed that, for any simplex ∆ ⊂ ,

(10)

Then, for optimal meshes with respect to the Lp norm,

(11)

where | | := (det|H| |H|.
Proof. It is based on the following estimate for any

quadratic function u2 with a Hessian H2:

(12)

where | | = (det|H2| |H2|. Indeed, for p ∈ [1,
+∞[, we have

Applying Lemma 1, we derive

For p ∈ ]0, 1[, we have measd{x ∈ ∆|u2(x) – �∆u2(x) =
0} = 0 since det(H2) ≠ 0 and

which implies

Ωopt
h

c0 H∆ζ ζ,( ) H x( )ζ ζ,( ) c1 H∆ζ ζ,( ) ζ∀ Rd,∈≤ ≤
a.e. x ∆, c0 0, c1 0.> >∈

C q c0 c1, ,( )
Ω H

d 2 p+
pd

----------------

�
2
d
---

Ωopt
h( )

---------------------- u �Ωopt
h u–

Lp Ω( ),≤

H )
1–

2 p d+
----------------

u2 �∆u2– Lp ∆( ) C ∆ H2

2 p d+
pd

----------------

,≥

H2 )
1–

2 p d+
----------------

u2 �∆u2– Lp ∆( )

u2 �∆u2– L1 ∆( )

∆
1 1

p
---–

--------------------------------------≥

≥ C ∆
u2 �∆u2– L∞ ∆( )

∆
1 1

p
---–

--------------------------------------- C ∆
1
p
---

u2 �∆u2– L∞ ∆( ).=

u2 �∆u2– Lp ∆( ) C ∆
1
p
---

∆̂
2
d
---

≥

=  C ∆ H2
detH2

1
2
---–

⎝ ⎠
⎛ ⎞

1
p
---

∆ H2

2
d
--- C ∆ H2

2 p d+
pd

----------------

detH2

1
2 p
------

---------------------- C ∆ H2

2 p d+
pd

----------------

.= =

u2 �∆u2–
p

x( ) u2 �∆u2–
p 1–

x( ) u2 �∆u2– x( )=

≥ u2 �∆u2– L∞ ∆( )
p 1–

u2 �∆u2– x( ), a.e. x ∆,∈

u2 �∆u2– L∞ ∆( ) u2 �∆u2– Lp ∆( )

p 1–
p

------------

u2 �∆u2– L1 ∆( )

1
p
---

=

≥ C ∆
1
p
---

u2 �∆u2– L∞ ∆( ) C ∆ H2

2 p d+
pd

----------------

.≥
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To extend this result to arbitrary functions u ∈ C2( )
that satisfy (2) and (10) (for indefinite H), we use the
multipoint Taylor formula

Defining

we have �∆u = �∆u2. Then, by virtue of (10),

for functions u with indefinite H and, by virtue of (2),

for functions u with definite H. This implies that ∀p ∈
]0, +∞[

(13)

where

Using the Hölder inequality with r = 1 +  and s = 1 +

  +  = 1 , we obtain

By using (13), this can be rewritten as
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u x( ) �∆u x( )–

=  
1
2
--- H x̃i( ) x ai–( ) x ai–( ),( ) pi x( ), x ∆.∈

i 1=

d 1+
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---

Ωopt
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r
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1
r
---

.≤=

Ω H
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----------------

�
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