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1. INTRODUCTION

The nonstationary convection–diffusion equation underlies the simulation of contaminant transport in
porous media (see [1]). Therefore, the design and analysis of efficient numerical schemes for this equation
is a key point in the successful solution to many applications. The parameters of real-life problems impose
minimal constraints on the diffusion and convection coefficients: the diffusion tensor can be full, anisotro-
pic, and heterogeneous (i.e., it varies from mesh to mesh), while the convective transport field can vary
strongly in space. As a result, diffusive processes dominate in some areas of the computational domain,
while convective processes prevail in others. If the computational domain has complex geometry and the
solution is nonsmooth in some areas (for example, near a source or at the interface of geological layers),
unstructured locally refined (possibly anisotropic) meshes have to be used. We employ tetrahedral meshes,
which are best suited for the discretization of complex-shaped computational domains and local refinement.

The above-mentioned properties of the coefficients and meshes restrict the class of possible discretiza-
tions. For example, well-elaborated finite-difference methods [2] are difficult to apply on unstructured tet-
rahedral meshes. In our view, the most promising approximations for this class of problems are those based
on finite-element methods (FEMs) [3] and finite-volume methods (FVMs), which are addressed below in
the context of numerical scheme design.

Traditionally, the design of numerical schemes for the convection–diffusion equation begins with a spa-
tial approximation of the diffusion operator. The simplest and most popular technique for this is the FEM
with the space of continuous piecewise linear functions [3]. This method is denoted by 

 

P

 

1

 

-FEM. Its short-
comings include nonmonotonicity on arbitrary unstructured meshes and the lack of approximation of
numerical fluxes at cell interfaces. The mixed finite element method (MFEM) [4] simultaneously approxi-
mates both the solution and the diffusive fluxes. As applied to diffusion problems, a shortcoming of the
MFEM is that it is not monotone on unstructured and anisotropic meshes [5]. The Galerkin method with
discontinuous elements (discontinuous Galerkin (DG) [6]) is a modern alternative to the above techniques
when flexibility is needed in the specification of the degree of the approximating polynomial for each cell
or when the meshes used are not conformal. Since these advantages are not important for the class of prob-
lems under consideration, while the behavior of the DG method is similar to the MFEM [7], we do not
address this method below.

The FVM is widely used in engineering applications. For unstructured triangulations, the FVM with a
two-point diffusive flux approximation imposes considerable constraints on meshes (mesh orthogonality or
Delaunay and Voronoi meshes [8]), while the FVM with multipoint flux stencils requires meshes with reg-
ular cells [9]. Moreover, the construction of a linear FVM scheme is considerably complicated for a full dif-
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fusion tensor. A nonlinear monotone FVM scheme on two-dimensional unstructured triangular meshes for
full diffusion tensors was proposed in [10] and was later improved in [11]. Following the idea of this
method, a three-dimensional monotone FVM scheme was constructed in [12].

The transition from the diffusion to convection–diffusion problems leads to additional difficulties in the
design of stable schemes in the case of dominating convection. First, regularization can be used to stabilize
schemes (see [2]). A classical example is 

 

P

 

1

 

-FEM combined with the streamline upwinding Petrov–Galer-
kin (SUPG) algorithm [13]. In the case of MFEM and FVM, the convective term is approximated by an
upwind scheme. Second, the convective operator can be approximated using shock-capturing schemes
based on the Godunov [14], Lax and Friedrichs [15], etc., methods. Examples are methods involving dis-
continuous finite elements (DFEM) [16, 17] and flux correction [18]. The latter technique ensures monoto-
nicity and minimum numerical diffusivity but does not apply to full and heterogeneous diffusion tensors.
These methods approximate nonsmooth solutions with low numerical diffusivity without oscillations.

Time stepping in nonstationary convection–diffusion problems can be based on explicit schemes,
implicit schemes, or splitting methods [19]. Both explicit and implicit schemes make use of the same spatial
approximation of the convection and diffusion terms (FEM, MFEM, or FVM; as applied to a two-dimen-
sional test problem, the methods were compared in [5]). Splitting schemes [16, 17, 20] make it possible to
choose the most suitable approximation method for each spatial operator. That is why, in our view, these
schemes will underlie promising time-stepping methods for the nonstationary convection–diffusion equa-
tion.

Two splitting methods are discussed in detail in this paper. The first was proposed by Jaffre [21], and
splitting in it arises only formally from the orthogonality of two subspaces. For this reason, the method has
a higher order of accuracy. The idea behind the method is that different approximations are used for the
elliptic and hyperbolic parts of the spatial operator. Specifically, an explicit scheme is used for the convec-
tive term, and the Crank–Nicholson scheme, for the diffusion term. Diffusive fluxes are determined using
the MFEM, while the scalar solution is found by applying DFEM. The second splitting method was devel-
oped by the authors. It involves a new nonlinear FVM scheme [12] and is monotone on arbitrary tetrahedral
meshes.

This paper is organized as follows. A model convection–diffusion problem is formulated in Section 2.
The relevant mesh elements and mesh spaces are defined in Section 3. Two splitting schemes are described
in Section 4. In Section 5, these schemes and two implicit methods are compared in terms of their orders of
accuracy with classical spatial discretizations for a smooth solution. In Section 6, we estimate the perfor-
mance of the schemes as applied to concentration front transport and discuss their monotonicity and numer-
ical diffusion.

2. NONSTATIONARY CONVECTION–DIFFUSION PROBLEM

Let 

 

Ω

 

 be a bounded polyhedral domain in 

 

�

 

3

 

 with a boundary 

 

∂Ω

 

. Consider the following model con-
vection–diffusion problem (for simplicity, with homogeneous Dirichlet boundary conditions):

 

(1‡)

(1b)

(1c)

 

Here, 

 

C

 

 is the contaminant concentration, 

 

b

 

 = 

 

b

 

(

 

x

 

)

 

 is a conservative convective flux field, 

 

F

 

 = 

 

F

 

(

 

x

 

)

 

 is the
function of sources or sinks, and 

 

D

 

 = 

 

D

 

(

 

x

 

)

 

 is a symmetric positive definite 

 

3 

 

×

 

 3

 

 diffusion tensor.
The mixed formulation of problem (1) is

 

(2‡)

(2b)

(2c)

(2d)

 

where 

 

r

 

 is the diffusive flux. The finite-element discretizations are based on weak formulations [22, 4] of
problems (1) and (2).

∂C
∂t
------- ∇– D∇C b ∇C⋅+⋅ F in Ω 0 T ],,(×=

C 0 on ∂Ω 0 T ],,(×=

C C0 x( ) in Ω at t 0.= =

∂C
∂t
------- ∇ r b– D

1– r⋅ ⋅+ F in Ω 0 T ],,(×=

r –D∇C in Ω 0 T ],,(×=

C 0 on ∂Ω 0 T ],,(×=

C C0 x( ) in Ω at t 0,= =
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3. TETRAHEDRAL MESH AND MESH SPACES

Let a conformal tetrahedral mesh 

 

ε

 

h

 

 be introduced in the computational domain 

 

Ω

 

. Denote the mesh cells
by 

 

E

 

i

 

, 

 

i

 

 = 1, 2, …, 

 

N

 

E

 

; the nodes by 

 

O

 

i

 

 = (

 

x

 

i

 

, 

 

y

 

i

 

, 

 

z

 

i

 

), 

 

i

 

 = 1, 2, …, 

 

N

 

P

 

; and the cell interfaces by 

 

f

 

i

 

, 

 

i

 

 = 1, 2, …,

 

N

 

F

 

. The index sets for internal and boundary nodes are denoted by 

 

�

 

I

 

 and 

 

�

 

B

 

, respectively. Similarly, the
index set for cell interfaces is divided into internal and boundary subsets 

 

�

 

I

 

 and �B. For any set �, the num-
ber of its elements is designated as N�. The set of all cell interfaces is denoted by ∂εh.

To construct approximating schemes, we need finite-element spaces. Specifically, we define the space of
discontinuous piecewise linear functions on εh

the space of piecewise constant functions on εh

the space of piecewise constant functions on ∂εh 

the lowest order Raviart–Thomas space of fluxes

and the space of discontinuous fluxes

where

The constraint Rh ⊂ H(div, Ω) [4] means that the normal component of a vector function from Rh is con-
tinuous at any internal cell interface. The basis functions of Rh are linear inside the tetrahedra and have a
unit flux through one of the cell interfaces and a zero flux through the others. The basis functions in Wh, Λh,

and  are specified over elements (or cell interfaces) since there are no continuity constraints.

4. DISCRETIZATION METHODS FOR THE PROBLEM

Consider two splitting schemes for approximating Eq. (1): Jaffre’s scheme, which uses DFEM for the
convection operator and MFEM for the diffusion operator (a brief presentation can be found in [21]), and a
new splitting scheme with a monotone FVM approximation of the diffusion operator and DFEM for the con-
vection operator.

4.1. Jaffre’s Scheme: DFEM for the Convection Operator and MFEM for the Diffusion Operator 

At every time step, Jaffre’s scheme computes finite-element approximations of the concentration

 ∈ Wh and the diffusive fluxes  ∈ Rh. A single step of the scheme consists of three substeps:

I.

(3‡)

Wh v L2 Ω( )∈ v E P1 E( )∈ v ∂E ∂Ω∩  = 0 E∀ εh∈, ,{ };=

Lh v L2 Ω( )∈ v E P0 E( )∈  E∀ εh∈,{ };=

Λh λ L2 ∂εh( )∈ v f P0 f( )∈  f∀ ∂εh∈,{ };=

Rh r H div Ω,( )∈ r E RT0 E( )∈  E∀ εh∈,{ };=

R̃h r L2 Ω( )( )3∈ r E RT0 E( )∈  E∀ εh∈,{ };=

RT0 E( ) r P1 E( )( )3 r = 
a dx+

b dy+

c dz+⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

a b c d �∈, , , , ,∈

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

.=

R̃h

Ch
n 1+ rh

n 1+

Ch

n
1
2
---+

Ch
n

–
∆t/2

------------------------wh xd

E

∫ 3
2
---∇ rh

n 1
2
---∇– rh

n 1–⋅ ⋅⎝ ⎠
⎛ ⎞ wh xd

E

∫ bCh
n

E

∫–+ ∇wh xd⋅

+ bCh in,
n

∂E

∫ nwh sd⋅ F
n
wh x wh∀d

E

∫ Wh E( ), E∀ εh;∈ ∈=
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II.

(3b)

 and (3c)

III.

(3d)

Here, Wh(E) is the restriction of Wh to the tetrahedron E; n is the outward unit normal to ∂E; ( ) is

the vector of the values  (respectively, ) at the vertices of E, i.e.,  = ( , , , );

where  =  is the mean of  on E; and QE = , where min(i) and

max(i) are the respective minimum and maximum values of  over all the tetrahedra E' containing the ith
vertex of E.

At predictor step (3a), the intermediate concentration  is explicitly calculated, which is then used
in (3b) and (3c) to determine the convective terms. Since functions from Wh are discontinuous at the cell
interfaces fi (i ∈ �I), we must specify what we mean by the trace of a function on each cell interface. In the

integral over ∂E,  is the concentration at the element E. At step (3b), (3c), the convection operator is
approximated by an explicit scheme in time, while the Crank–Nicholson scheme is used for the diffusion
operator. Moreover, we apply an upwind approximation in the convective term in order to make the scheme

stable; i.e.,  in the integral over a cell interface is taken on the tetrahedron on which the convective
flux in the outward normal direction to that interface is positive.

After steps (3a)–(3c) are performed, a slope-limiting procedure [24, 25] in the form of minimization
problem (3d) is applied to the resulting solution . This problem is solved as follows.

Introducing a Lagrange multiplier µ, we pass to the dual formulation of minimization problem (3d): find

( , λ) ∈ QE × � such that

(4)

Denote by � the projector of the vector CE onto the hypercube QE. For fixed µ, the minimization problem

Ch
* Ch

n
–

∆t
-------------------wh xd

E

∫
∇ rh

n ∇+ rh
n 1+⋅ ⋅

2
---------------------------------------⎝ ⎠
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E
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n
1
2
---+

E

∫–+ ∇wh xd⋅

+ bCh in/out,

n
1
2
---+

∂E

∫ nwh sd⋅ F
n

1
2
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wh x wh∀d

E

∫ Wh E( ), E∀ εh,∈ ∈=

D
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n rh
n 1+

+
2

----------------------⎝ ⎠
⎛ ⎞

Ω
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Ch
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Ch*+
2
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Ω
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Ch
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J CE( ) 1
2
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.
i 1=

4

∑=

CE* CE
n 1+
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PE C �
4

ci = 4CE*
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4
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is solved by V(µ) = �(  + µe), where e = (1, 1, 1, 1), since

Instead of solving the maximization problem in (4), we use the properties of V(µ) and describe a simpler

method for finding λ. Note that F(µ) =  –  is a continuous, piecewise linear, and monotone func-
tion. Therefore, the equation F(µ) = 0 has the unique solution λ, which is to be found. The derivative F '(µ)

is discontinuous at points of the form {di =  – max(i)  and {di =  – min(i – 4) . Arranging
all di in ascending order, we see that F(µ) is linear, monotone increasing, and continuous at the points di on
the intervals [di, di + 1]. Let σi = F(di). Since problem (3d) is well-posed, there exists i for which σi ≤ 0 and
σi + 1 ≥ 0. Recovering the linear function F(µ) on [di, di + 1], we find the desired solution to the problem:

(5)

Let us return to Jaffre’s scheme. Step (3b), (3c) is implemented using the orthogonal decomposition

Wh(E) = Wh(E) = Lh(E) ⊕ (E), where Lh(E) is the space of constants on E and (E) is the space of linear
functions on E with a zero mean. Then, the second step splits into two substeps:

II‡.

(6‡)

(6b)

IIb.

(6c)

Here,  and  are the linear components of  and  that are orthogonal to a constant, while  and

 are the means of  and  on the tetrahedron. By the definition of Rh, no diffusive fluxes are involved
in (6c). Step (6c) is executed locally over tetrahedra possibly using the data from neighboring tetrahedra

( ).

System (6a), (6b) is the standard formulation of the MFEM. Replacing Rh by  and introducing

Lagrange multipliers λh ∈ Λh, we obtain a hybrid formulation of step (6a), (6b): find ( , , ) ∈
Lh ×  × Λh for which

(7‡)
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2
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2 µ2

2
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(7b)

(7c)

The algebraic system generated by Eqs. (7) becomes (see [4])

(8‡)

(8b)

(8c)

where rn + 1 is the expansion of  over the basis of (E), c* and λn + 1 are the vectors of  and 
in cells and at cell interfaces, and F1 and F2 contain all the terms involving the source Fn + 1/2 and the values
from the time levels n and n + 1/2. Let AE, BE, and GE denote the restrictions of the matrices A, B, and G to

the element E. The elements of AE and BE are defined in terms of the basis functions qE, i ∈ (E), i =
1, 2, 3, 4:

Here and below, (·, ·)S denotes the inner product in L2(S), S is a subdomain of �
3
, and (·, ·) ≡ (·, ·)Ω. The matrix

C T in (8c) is responsible for the continuity of the diffusive fluxes  through the cell interfaces fi, i ∈ �I.
It is formed by assembling the local components whose elements are expressed by the formula

where fE, j is the jth face of E, and nE, j is the outward unit normal to fE, j with respect to E. Grid equations (7a) and
(7b) are formed separately on each tetrahedron and do not involve any variables from other elements. There-
fore, (8a) and (8b) result from the assembly of local MFEM systems. Some of the unknowns are eliminated
from linear system (8a)–(8c). First, since A is a positive definite block matrix, we can eliminate rn + 1:

(9‡)

(9b)

Second, since BTA–1B is a block diagonal matrix, we can eliminate c*:

(10)

The elimination of the unknowns is elementwise on each tetrahedron. The resulting system has a positive
definite symmetric matrix of order . It is solved by the conjugate gradient method with the ILU2 pre-

conditioner [23] (modified incomplete second-order factorization with two thresholds). After λn + 1 is deter-
mined by (10), the mean concentrations and the fluxes are locally recovered by the formulas

(11‡)

(11b)

An important feature of this scheme is that splitting with respect to physical processes is only a method
for solving Eqs. (3b) and (3c). Therefore, no additional approximation error is introduced into the method,
and it can be regarded as second-order accurate in time and space.

Note that the above decomposition of Wh(E) is not possible on tetrahedra having points on a boundary
with Dirichlet conditions. In this case, steps (6a)–(6c) are formally executed, while the boundary of the
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domain is divided into two parts: ∂Ω = ∂Ωin ∪ ∂Ωout, where ∂Ωin = { fi , i ∈ �B : b ·  < 0} and ∂Ωout =

{fi , i ∈ �B : b ·  ≥ 0}; here,  is the outward normal to ∂Ω. The boundary conditions are strictly satisfied

on ∂Ωin, while on ∂Ωout they are satisfied only in the sense of mean face concentrations λh ∈ Λh. Numerical
experiments confirm the efficiency and stability of this treatment of the boundary conditions.

4.2. Splitting Scheme: DFEM for the Convection Operator and Monotone FVM for the Diffusion Operator 

As in the previous scheme, the concentration is approximated by piecewise linear discontinuous func-
tions from Wh. The scheme involves splitting over physical components, and the diffusion and convection
operators are handled at different substeps. More specifically, at each substep, we solve the incomplete
equation (see [20, 19])

I.

(12‡)

II.

(12b)

III.

(12c)

IV.

(12d)

V.

(12e)

The convection operator is approximated by an explicit predictor–corrector scheme with an upwind reg-

ularization in the corrector. The intermediate concentration  is calculated in predictor (12a), while

 in the corrector is calculated from the convective fluxes at the intermediate time level. In the integral

over the boundary,  is taken on the tetrahedron lying upstream. The slope-limiting procedure (12c),

which is similar to (3d), is applied to . Next, implicit scheme (12d) is used to calculate the addition to

the mean concentration due to the diffusive fluxes  through the ith faces of E. The values of  and

 are determined by the nonlinear finite-volume method (NFMON) [12]. Its goal is to derive as sparse
a monotone approximation matrix as possible by forming two-point diffusive flux approximations. Then,

the solution  remains nonnegative for nonnegative . The idea of the two-dimensional NFMON
for diffusion problems was set forth in [10]. The method was improved in [11], since the treatment of the
case of an anisotropic diffusion tensor in [10] suffered from a flaw: the approximation matrix of the diffu-
sion operator could be nonmonotone for certain two-dimensional mesh geometry. In this paper, the NFMON
in three dimensions [12] is applied to convection–diffusion problems. The geometric constructions pre-
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sented below guarantee that the approximation matrix of the diffusion operator is monotone for arbitrary
tetrahedral meshes and heterogeneous diffusion tensors.

First, we formulate the method for an isotropic homogeneous diffusion tensor D. Let � = 
be the set of collocation points of the degrees of freedom for the discrete concentration. The set � includes the
centers of the inscribed spheres for each tetrahedron and the centers of mass of the external faces fi, i ∈ �B. For
each vertex Oi, i ∈ �I, there exist four points Xi, j ( j = 1, 2, 3, 4) in � such that Oi lies inside the tetrahedron
formed by them (the nearest points are picked). Therefore, there exist nonnegative coefficients λi, j satisfying
the conditions

The coefficients λi, j ≥ 0 are used for linear interpolation of the concentration at the nodes of the original
mesh given its values at the points of �:

(13)

Consider the following geometric constructions for the NFMON: two neighboring tetrahedra T+ =
AO1O2O3 and T– = BO1O2O3 in the original mesh εh (see Fig. 1) and the corresponding elements X+ and X–

from � (the centers of inscribed spheres). We introduce the following notation (here and below, i, j, and k
are assumed to be different; i.e., {i, j, k} = {1, 2, 3}, {2, 1, 3}, {3, 1, 2}):

na is the normal to the common face O1O2O3 directed from T+ to T–.
Ti is the tetrahedron X+X–OjOk.
Vi is the volume of Ti, i = 1, 2, 3.
nij is the normal to the interface between Ti and Tj directed from Ti to Tj.

 ( ) is the outward normal to the faces containing the vertices X+ (X–), Oj, and Ok.

The lengths of all the normals are equal to the areas of the corresponding faces.
The diffusive flux ri on each tetrahedron Ti is defined using the Green’s identity
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Integrating it to second-order accuracy and taking into account  +  + nij + nik = 0, we obtain

(14)

Flux (14) is determined in terms of the concentrations  and  at the points X+, X–, as well as at ,

and , for which linear interpolation (13) is used. The total diffusive flux r · na through O1O2O3 is repre-
sented as a linear combination of three fluxes ri · na:

(15)

The expression for µi is derived by analogy with the two-dimensional case [10]:

(16)

Formula (16) yields the following properties of diffusive flux (15) through O1O2O3:
(i) If the values ri · na/ |na | approximate the diffusive flux density, then r · na/ |na | is also its approxima-

tion:

(17)

(ii) The approximation stencil for the flux is two-point:

(18)

Here, g+ and g– are determined by substituting (16) and (14) into (15) and are positive for nonnegative con-
centrations.

If O1O2O3 lies on the domain boundary, the Green’s identity on the tetrahedron X+O1O2O3 with the vol-
ume V+ yields the equation

(19)

where  are known from the boundary conditions.

For an anisotropic diffusion tensor, the algorithm for the formation of � is different. Consider the tetra-
hedron T = O1O2O3O4 in the original mesh εh. Let Ri be the position vectors of the vertices Oi, and let Ni be
the outward normals to the faces opposite to Oi with the lengths of the normals equal to the areas of the cor-
responding faces. Inside T, a point XT is defined by its position vector

(20)

where  = . For an isotropic tensor, expression (20) gives the coordinates of the inscribed
sphere. Each tetrahedron Ei ∈ εh adds to � the point Xi defined by (20). The center of mass of each face fi (i ∈
�B) is also added to �. As before, the coefficients µi are given by (16).

If the diffusion tensor is heterogeneous (i.e., it varies from tetrahedron to tetrahedron), then the degrees

of freedom , , and  are introduced at the center of mass M of O1O2O3. Let  ( ) be the tet-

rahedron X+MOjOk (X–MOjOk, respectively),  ( ) be its volume,  ( ) be an approximation of the
diffusive flux inside this tetrahedron, and D+ (D–) be the diffusion tensor in it. Integration by analogy with
(14) produces

(21)
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Here, the star means a plus or a minus,  is normal to MOjOk,  is the normal to MX∗Ok, and all the

normals are exterior with respect to . The lengths of the normals are equal to the areas of the correspond-

ing faces. The additional degrees of freedom  are eliminated by assuming that the normal flux compo-

nent is continuous:  · na =  · na. The total flux is again calculated by formula (15), where ri · na =  ·

na =  · na. The coefficients µi satisfying (17) and (18) were computed in [12]:

(22)

This choice of µi again yields a two-point approximation stencil for the diffusive flux. Thus, for homo-
geneous and heterogeneous diffusion tensors, the discrete diffusive fluxes are defined by (15), (16), or (22).

To implement step (12c), we find the projection  of the solution  onto the points of � and solve

the NFMON problem for the desired concentrations  at the points of �:

(23)

Here, V is a diagonal matrix of element volumes and A( ) is an asymmetric FVM matrix whose elements

depend on . All the off-diagonal and diagonal nonzero elements of A( ) are negative and positive,

respectively, for nonnegative . Moreover, the transpose (A( ))T is row diagonally dominant. There-

fore, ((A( ))T is an M-matrix and ([(A( ))T]–1)ij ≥ 0. Since (A–1)T = (AT)–1, the matrix A( ) is mono-
tone (see [26]). Nonlinear system (23) is solved by the Picard iteration algorithm

with the initial approximation  =  ≥ 0. Since the matrix V + A( )∆t is monotone for any nonne-

gative , all the iterative approximations  are nonnegative as well; i.e., scheme (23) is mono-
tone.

After  is determined, we use the formula

and find the addition to the mean concentrations due to diffusive fluxes, as required in (12e).

5. NUMERICAL RESULTS FOR PROBLEMS WITH SMOOTH SOLUTIONS

Below, the splitting schemes described above are compared with two implicit approximations of Eq. (1):
the implicit BDF scheme for P1-FEM with SUPG stabilization [13] and the BDF MFEM scheme [4] with
an upwind approximation of the convective term.

5.1. Notation 

Since the methods described above make use of different function spaces, for each of them, we introduce
a norm for evaluating the error in the numerical solution against the analytical solution to the differential
problem. For the BDF P1-FEM scheme with SUPG stabilization, the norms are defined as
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In the BDF MFEM scheme, the concentration Ch is a piecewise constant function that approximates the
mean concentration over an element. For this reason, the norms are defined as

where |Ei | is the volume of the element Ei ∈ εh, (Ei) is the mean of the analytical solution C(x) on Ei, and
Ch(Ei) is the value of Ch on Ei.

In the splitting schemes, the concentration is approximated in the space of piecewise linear functions that
are discontinuous on the element boundaries. The norm corresponding to discontinuous piecewise linear
functions is defined as

Here, ,j is the jth vertex of the tetrahedron Ei; and Ch( ) is the value of Ch at the point  on Ei.
Since Jaffre’s scheme simultaneously finds a piecewise linear discontinuous concentration and a piecewise
constant concentration (with the help of MFEM) approximating the mean value, while estimating the errors
in this scheme, we also use the norms ||· ||2, E and ||· ||∞, E. In the DFEM + FVM splitting scheme, in addition
to a discontinuous piecewise linear approximation, the finite-volume method approximates the concentra-
tion at special points XT of �. The approximation error at these points is estimated using the norms

The approximation error in fluxes can be calculated for all the schemes, except for P1-FEM. For this pur-
pose, we introduce the norms for the approximation errors in diffusive fluxes:

where  ( ) is the mean of the normal component of the exact diffusive flux density through the face fi

(the jth face of Ei) and  ( ) is the normal component of the flux density rh through the face fi (the
jth face of Ei), which is by definition a constant on this face.

5.2. Diffusion-Dominated Problem 

As a solution to the test problem, we considered the function C(x, y, x, t) = (1 – x2)sin(y)e–zsin(t) in the
unit cube Ω = (0; 1)3. Dirichlet conditions were set on the boundary. The convective flux b = (0.1; z/10;
–y/10) was a combination of translational motion in the direction of the abscissa axis and rotation about it.
The diffusion tensor D = I was a unit tensor. Three uniform structured meshes were used in the computa-
tions. The coarsest of them consisted of 3072 tetrahedra (mesh 1). The other two were obtained by uniformly
refining the first and contained 24 576 (mesh 2) and 196 608 (mesh 3) elements, respectively (the mesh size
was halved in each refinement procedure). In all the schemes, the time steps used in the tests were 0.025 for
mesh 1, 0.0125 for mesh 2, and 0.00625 for mesh 3. The errors were calculated for the solution at the time
T = 1.

Table 1 shows that the traditional P1-FEM with SUPG regularization is second-order accurate. For dif-
fusion-dominated problems, the BDF MFEM scheme (Table 2) is second-order accurate for concentrations
and first-order accurate for diffusive fluxes. Both schemes are unconditionally stable.
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The results produced by Jaffre’s scheme (Table 3) are very similar to BDF MFEM; i.e., for dominating
diffusion, the behavior of the scheme is determined by the use of MFEM for approximating the diffusion
operator. It was found that the convergence with respect to the norm ||· ||2, E is quadratic for concentrations
and linear for diffusive fluxes.

The method with DFEM for convection and FVM for diffusion exhibited linear convergence for diffusive
fluxes and quadratic convergence for concentrations in the special norm ||· ||2, � (Table 4). In both splitting
schemes, the CFL condition is imposed on the time step, since the convection is approximated by an explicit
method.

5.3. Convection-Dominated Problem 

The computational domain, meshes, time steps, and convective fluxes were the same as in the previous
problem. The diffusion tensor D = 10–5I was diagonal and isotropic (spherical). The test function was C(x,
y, z, t) = x2sin(y)e–zsin(t). Its choice is explained by the desire to obtain a nonnegative right-hand side on the
discretization of Eq. (1a) in order to verify the monotonicity of the schemes. Recall that only the NFMON
guarantees the absence of negative concentrations in this case (although it is unsuitable for problems admit-
ting negative concentrations).

The BDF P1-FEM scheme with SUPG (Table 5) exhibits the same behavior as in the previous problem,
and it is still second-order accurate. On the contrary, the BDF MFEM scheme (Table 6) exhibits linear con-
vergence for concentrations and no convergence for fluxes: the stabilization of the convective term generates
numerical diffusion that considerably exceeds the actual one. Jaffre’s scheme not only remains second-order
accurate for concentrations in the norm ||· ||2, E but also exhibits this property in the norm ||· ||2 (Table 7). The
cause is that only convective terms are involved in formula (6), which determines the linear concentration

Table 1.  Dominating diffusion: BDF FEM with SUPG

Mesh ||∆C||∞, P ||∆C||2
1 3.4 × 10–3 1.6 × 10–3

2 9.8 × 10–4 4 × 10–4

3 3.1 × 10–4 1 × 10–4

Table 2.  Dominating diffusion: BDF MFEM

Mesh ||∆C||∞, E ||∆C||2, E ||∆r||∞ ||∆r||2
1 1.6 × 10–3 3.3 × 10–4 4.6 × 10–2 1.2 × 10–2

2 4.7 × 10–4 8.7 × 10–5 2.5 × 10–2 5.8 × 10–3

3 1.5 × 10–4 2.2 × 10–5 1.4 × 10–2 2.8 × 10–3

Table 3.  Dominating diffusion: Jaffre's scheme

Mesh ||∆C||∞, P' ||∆C||2 ||∆C||∞, E ||∆C||2, E ||∆r||∞ ||∆r||2
1 6.2 × 10–2 5 × 10–3 1.7 × 10–3 3.3 × 10–4 4.6 × 10–2 1.2 × 10–2

2 2.4 × 10–2 1.7 × 10–3 4.7 × 10–4 8.7 × 10–5 2.6 × 10–2 5.8 × 10–3

3 1.1 × 10–2 5.2 × 10–4 1.5 × 10–4 2.2 × 10–5 1.5 × 10–2 2.8 × 10–3

Table 4.  Dominating diffusion: DFEM + FVM

Mesh ||∆C||∞, P' ||∆C||2 ||∆C||∞, � ||∆C||2, � ||∆r||∞ ||∆r||2
1 6.2 × 10–2 5.3 × 10–3 5 × 10–3 1.4 × 10–3 1.1 × 10–1 2.8 × 10–2

2 2.5 × 10–2 1.8 × 10–3 1.8 × 10–3 4 × 10–4 5.6 × 10–2 1.3 × 10–2

3 1.1 × 10–2 5.6 × 10–4 5.1 × 10–4 1.2 × 10–4 2.8 × 10–2 6 × 10–3
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component. Thus, for pure diffusion problems, only mean concentrations on elements can be approximated
to second order accuracy, while, in the case of dominating convection, the method is also capable of con-
structing piecewise linear approximations of the same order. The same is true of the DFEM + FVM scheme
(Table 8) with the norm ||· ||2, E replaced by ||· ||2, �.

5.4. Problem with a Full Diffusion Tensor 

As an analytical solution, we used C(x, y, z, t) = x2sin(y)e–zsin(t) + 1. The diffusion tensor was full and
anisotropic:

The computational domain, meshes, time steps, and convective fluxes were the same as in the previous prob-
lems. The test function was bounded away from zero to guarantee that the numerical solution is nonnegative,
as required by the NFMON (the source fails to be positive everywhere in Ω).

Tables 9–12 show that, for concentrations, the order of accuracy of the traditional FEM with SUPG is
higher than the first, while the BDF MFEM scheme is first-order accurate. Like the FEM, the splitting
schemes are also high-order accurate for concentrations. The schemes computing diffusive fluxes exhibit
linear convergence in the norm ||∆r ||2.
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Table 5.  Dominating convection: BDF FEM with SUPG

Mesh ||∆C||∞, P ||∆C||2
1 3.9 × 10–3 9.5 × 10–4

2 1.4 × 10–3 2.5 × 10–4

3 6.5 × 10–4 6.6 × 10–5

Table 6.  Dominating convection: BDF MFEM

Mesh ||∆C||∞, E ||∆C||2, E ||∆r||∞ ||∆r||2
1 3.5 × 10–2 4.4 × 10–3 2 × 10–5 2 × 10–6

2 2.7 × 10–2 2.7 × 10–3 2.5 × 10–5 2.2 × 10–6

3 1.7 × 10–2 1.5 × 10–3 3 × 10–5 2.4 × 10–6

Table 7.  Dominating convection: Jaffre's scheme

Mesh ||∆C||∞, P' ||∆C||2 ||∆C||∞, E ||∆C||2, E ||∆r||∞ ||∆r||2
1 1.9 × 10–2 5.7 × 10–4 4.3 × 10–3 2.8 × 10–4 1 × 10–6 1.8 × 10–7

2 8.2 × 10–3 1.4 × 10–4 1.9 × 10–3 6.6 × 10–5 9.7 × 10–7 8.3 × 10–8

3 3.5 × 10–3 3.6 × 10–5 8.4 × 10–4 1.5 × 10–5 7.8 × 10–7 3.8 × 10–8

Table 8.  Dominating convection: DFEM + FVM

Mesh ||∆C||∞, Pl ||∆C||2 ||∆C||∞, � ||∆C||2, � ||∆r||∞ ||∆r||2
1 1.1 × 10–2 5.7 × 10–4 3 × 10–3 4 × 10–4 2.9 × 10–6 3.8 × 10–7

2 4.8 × 10–3 1.4 × 10–4 8.7 × 10–4 1 × 10–4 1.5 × 10–6 1.8 × 10–7

3 1.2 × 10–3 3.7 × 10–5 2.5 × 10–4 2.5 × 10–5 7.6 × 10–7 8.3 × 10–8
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6. NUMERICAL RESULTS FOR CONCENTRATION FRONT PROPAGATION

Consider the front of concentration propagating from a constant source occupying a section on the
boundary of the domain Ω = (0; 1) × (–0.5; 0.5) × (–0.5; 0.5). More specifically, the following inhomoge-
neous boundary conditions are set at x = 0:

The initial concentration is zero in the entire domain Ω , and the convective flux is b = (1, 0, 0). For the
solution to have a sharp front, the diffusion tensor is chosen to be small with respect to convection: D =
10–4I.

The analytical solution to this problem in the half-space x ≥ 0 was found in [27]. Passing to the bounded
domain Ω , we set Dirichlet conditions on all its boundaries. The numerical solutions are compared with the
analytical one at the time T = 0.5 on two meshes (structured and unstructured) with roughly identical mesh
sizes (see Fig. 2). The unstructured mesh was obtained from the structured one by adding random values to
the coordinates of each interior point. The ordinates of the points were left unchanged in order to make the
resulting solutions and the mesh in the plane y = 0 more visual.

Figures 2–6 display the exact and approximate solutions at T = 0.5 in the plane y = 0 for the (a) structured
and (b) unstructured meshes. The contour lines correspond to the concentration values 0.2, 0.4, 0.6, 0.8, and 1.
All the methods, except for splitting with NFMON, are nonmonotone, so the solution takes negative values
(Table 13). Figure 7a shows that FEM with SUPG exhibits strong oscillations and higher numerical diffu-
sion than the DFEM schemes. Since the FEM is strongly dispersive, a concentration contour line corre-

C 0 y z, ,( )
1 if y 1/4, z 1/4,< <
0 otherwise.⎩

⎨
⎧

=

Table 9.  Full diffusion tensor: BDF FEM with SUPG

Mesh ||∆C||∞, P ||∆C||2
1 2.7 × 10–3 1 × 10–3

2 1.1 × 10–3 2.6 × 10–4

3 4.9 × 10–4 7.8 × 10–5

Table 10.  Full diffusion tensor: BDF MFEM

Mesh ||∆C||∞, E ||∆C||2, E ||∆r||∞ ||∆r||2

1 4.9 × 10–3 5.9 × 10–4 5.7 × 10–3 1.5 × 10–4

2 1.3 × 10–3 1.8 × 10–4 5 × 10–3 7.1 × 10–4

3 3.7 × 10–4 7.8 × 10–5 2.6 × 10–3 3.5 × 10–4

Table 11.  Full diffusion tensor: Jaffre's scheme

Mesh ||∆C||∞, P' ||∆C||2 ||∆C||∞, E ||∆C||2, E ||∆r||∞ ||∆r||2

1 1.6 × 10–2 1 × 10–3 4.4 × 10–3 6.6 × 10–4 5.5 × 10–3 1.4 × 10–3

2 5.1 × 10–3 3 × 10–4 1.2 × 10–3 2 × 10–4 3 × 10–3 7 × 10–4

3 1.5 × 10–3 1 × 10–4 3.6 × 10–4 8.3 × 10–5 1.5 × 10–3 3.5 × 10–4

Table 12.  Full diffusion tensor: DFEM + FVM

Mesh ||∆C||∞, Pl ||∆C||2 ||∆C||∞, � ||∆C||2, � ||∆r||∞ ||∆r||2

1 2.3 × 10–2 1.4 × 10–3 5.3 × 10–3 1.1 × 10–3 7.4 × 10–3 1.8 × 10–3

2 7.5 × 10–3 4.5 × 10–4 1.9 × 10–3 3.4 × 10–4 3.8 × 10–3 8.9 × 10–4

3 2.9 × 10–3 1.3 × 10–4 6.2 × 10–4 9.7 × 10–5 1.9 × 10–3 4.4 × 10–4
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sponding to 1 appears in Fig. 3 in the area where the solution must be the identical unit. The MFEM scheme
exhibits the highest numerical diffusion, strongly smearing the front (see Fig. 7b). The solutions produced
by the splitting schemes are similar, but the DFEM + MFEM solution (Fig. 7c) has small negative concen-
trations, which are absent from the DFEM + NFMON solution (Fig. 7d). Monotonicity is achieved at the
expense of the linearity of the problem, which has to be solved at every time step, thus requiring more CPU
time (20% more as compared to Jaffre’s scheme). Note that the DFEM + NFMON scheme is unsuitable for
negative concentrations, since a positive solution must be obtained at the convective step.

To make the dissipative and dispersion properties of the schemes visual, the analytical and numerical
solutions to the problem along the horizontal axis are presented in each panel in Fig. 7. Here, the analytical
solution is shown by the solid line, and the numerical solutions on structured and unstructured meshes, by
the dotted line with crosses and by circles, respectively. For convection-dominated problems, the plots in

(b)(a)

Fig. 2.

Fig. 3. P1-FEM+SUPG solution.



1364

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 48     No. 8      2008

 VASSILEVSKI, KAPYRIN

Figs. 2–7 reveal that the classical methods are inferior to the new DFEM methods in terms of numerical
diffusion and monotonicity. Note that the solutions obtained on structured and unstructured meshes with

(a) (b)

(a) (b)

(a) (b)

Fig. 4. MFEM solution.

Fig. 5. DFEM + MFEM solution.

Fig. 6. DFEM + NFMON solution.

Table 13.  Minimal mean concentration in the course of the solution

Mesh FEM MFEM DFEM + MFEM DFEM + FVM

Structured –1.3 × 10–1 –5.4 × 10–3 –1 × 10–2 0

Unstructured –1.8 × 10–1 –6.4 × 10–2 –6.9 × 10–4 0
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similar mesh sizes differ little from each other; i.e., the methods are not sensitive to the choice of a mesh.

7. CONCLUSIONS

The analysis of the numerical schemes used in this paper has revealed their strong and weak points as
applied to convection–diffusion problems. The traditional implicit linear finite element method with SUPG
stabilization was shown to be second-order accurate. However, it fails to approximate diffusive fluxes on
cell interfaces. Moreover, in problems with pronounced concentration fronts, it exhibits strong nonmonoto-
nicity, thus being inferior to the splitting schemes in terms of numerical diffusion. The BDF MFEM scheme
reveals high-order accuracy for diffusion-dominated problems. However, the method is not recommended
for convection-dominated problems, since it exhibits very high numerical diffusion.

The splitting schemes have an order of accuracy higher than the first for concentrations and are first-order
accurate for fluxes. They ensure that the mass conservation law holds in each mesh cell. Supplemented with
discontinuous finite elements, these methods are most suitable for the simulation of concentration front
propagation, in which case they exhibit low numerical diffusion. For problems with a nonsmooth solution,
Jaffre’s scheme demonstrates only slight violations in monotonicity as compared with the traditional FEM.
The new scheme with a nonlinear FVM gives results similar to those produced by Jaffre’s scheme and, addi-
tionally, is monotone, which is important for applications. However, it becomes unstable in the presence of
negative concentrations.

In applications, such as subsurface contaminant transport, the splitting schemes are most suitable, since
the media are strongly heterogeneous and possess full diffusion tensors, convective transport dominates in
some layers, and the solution can be nonsmooth.

ACKNOWLEDGMENTS

We are grateful to J. Jaffre, K.N. Lipnikov, and D.A. Svyatski for fruitful discussions of the problem. We
also thank V.I. Agoshkov for discussing the manuscript and his helpful remarks.

This work was supported in part by the Russian Foundation for Basic Research (project no. 04-07-
90336) and by the programs “Computational and Information Issues of the Solution to Large-Scale Prob-
lems” and “Optimal Methods for Solving Problems in Mathematical Physics” of the Department of Math-
ematical Sciences of the Russian Academy of Sciences.

1.00.80.60.40.20

1.0

0

0.8

0.6

0.4

0.2

1.00.80.60.40.20

1.0

0

0.8

0.6

0.4

0.2

1.00.80.60.40.20

1.0

0

0.8

0.6

0.4

0.2

1.00.80.60.40.20

1.0

0

0.8

0.6

0.4

0.2

(a)

(c) (d)

(b)

Fig. 7. Analytical and numerical solutions on the line y = z = 0. 
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