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The paper is devoted to the analysis of optimal simplicial meshes which minimize the gradient error of the
piecewise linear interpolation over all conformal simplicial meshes with a fixed number of cells NT. We
present theoretical results on asymptotic dependencies of Lp-norms of the gradient error on NT for spaces of
arbitrary dimension d. Our analysis is based on a geometric representation of the gradient error of linear
interpolation on a simplex and a relaxed saturation assumption. We derive a metric field Mp such that a
Mp-quasi-uniform mesh is quasi-optimal, for arbitrary d and p2 ]0, +∞]. Quasi-optimal meshes provide
the same asymptotics of the Lp-norm of the gradient error as the optimal meshes.
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1. Introduction

The paper is devoted to the analysis of optimal meshes. These
meshes minimize the gradient error of the piecewise linear inter-
polation over all conformal simplicial meshes with a fixed number of
cells NT. Possible anisotropy of optimal meshes hampers the inter-
polation error analysis. We present theoretical results on asymptotic
dependencies of Lp-norms of the error on NT for spaces of arbitrary
dimension d. Asymptotic analysis of optimal meshes minimizing Lp-
norm of the interpolation error was done in [1] for p=+∞, d=2, in
[2] for p=+∞, d=3, and in [3] for p 2]0, +∞], d=2,3 (a similar result
was obtained in [4] for convex functions only). The present work is
the generalization of these results to the case of the gradient error and
arbitrary d, p 2]0, +∞], provided that a relaxed saturation assumption
[5] holds true.

In practice, the conventional adaptive procedures produce meshes
close to optimal. Such meshes are called quasi-optimal. They give
slightly higher errors but the same asymptotic rate of error reduction.
Quasi-optimal meshes are shown to be uniform or quasi-uniform in
an appropriate continuous tensor metric. In most papers, the metric is
based on the continuous Hessian of the interpolated function: [1] for
p=+∞, d=2, [2] for p=+∞, d=3, [3] ([4] for convex functions) for
p 2]0, +∞], d=2,3, [6,7] for the gradient interpolation error, arbitrary
d and p 2[1, +∞]. The use of Hessian-based metrics requires a method
of the discrete Hessian recovery. The accuracy of the Hessian recovery
is very low producing relative errors as much as 50% and more, al-
though the adaptive methods exhibit surprisingly good behavior in
practice [8–10].

Error estimators [11–15] may provide a reliable alternative for
metric recovery. We consider linear interpolation of quadratic func-
tions and suggest a newmethod of computation of the gradient error.
The method yields a reliable and efficient estimator of the interpo-
lation error for general functions provided a relaxed saturation as-
sumption is valid. We prove the relaxed saturation assumption up to
the oscillation term which is small on a wide class of fine meshes.
With the estimator we derive a metric field Mp such that a Mp-quasi-
uniform mesh is quasi-optimal one with respect to Lp-norm of the
gradient error for arbitrary d and p 2]0, +∞]. Neither the metric, nor
the analysis of quasi-optimal meshes rely on the recovered Hessian
of the interpolated function. The estimator can be extended to FEM
discretizations of PDEs [15]. We mention also an alternative approach
to the construction of quasi-optimal finite element discretizations
based on the best tree approximation [16].

In addition to the error analysis, we discuss technical issues of the
numerical implementation. In particular, we consider recovery of a
continuous tensor metric field from a given piecewise constant tensor
metric field. Also we present our technique for generation of Mp-
quasi-uniform meshes with a prescribed number of elements.

The main results of this paper are as follows. First, we give an
asymptotic error analysis for optimal meshes in d-dimensional spaces
Lp, p 2]0, +∞]. Second, we present and motivate a new reliable and
efficient estimator for the gradient of interpolation error. Third, we
define a particular metric yielding quasi-optimal meshes. Asymptotic
error analysis for these meshes is given in d-dimensional spaces Lp,
p 2]0, +∞].

The paper outline is as follows. In Section 2 we present the new
method of metric recovery based on function values associated with
mesh edges. In Section 3 we derive the new error estimator for linear
interpolation of quadratic functions. In Section 4 we extend this esti-
mator to general functions using the relaxed saturation assumption. In
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Section 5 we prove that the relaxed saturation assumption holds
up to an oscillation term. A local gradient error analysis in general
spaces Lp is presented in Section 6. Asymptotic error analysis of both
optimal and quasi-optimal meshes is given in Section 7. In Section 8
we discuss algorithmic aspects of ourmethodology. Numerical experi-
ments illustrating our analysis are presented in Section 9.

2. Metric recovery based on simplex edge data

Let Δ be a d-simplex (triangle for d=2, tetrahedron for d=3)
with vertices ai, i=1,…, d1, d1=d+1, and edges ek, k=1, …, nd,
nd=d(d+1)/2, such that ek=aj−ai, k= j− i+ i(i−1)/2, 1≤ ib j≤d1.
Assume that a real number αk is assigned to each edge ek, k=1,…, nd.
In this section we shall construct a constant tensor metric M on Δ
such that

c1 jΔ j2 = d
M ≤ ∑

nd

k=1
jαk j≤c2 j∂Δ j2M; ð1Þ

where constants c1, c2 depend only on d. Here, jΔ jM and j∂Δ jM denote
the volume and the perimeter (sum of edge lengths) of the simplex Δ
in the metric M,

jΔ jM = detMð Þ1=2 jΔ j ; j∂Δ jM = ∑
nd

k=1
Mek; ekð Þ1=2:

Let u22P2(Δ) be a quadratic function with the Hessian H2 such
that u2(ai)=0, i=1,…,d1, and u2ðckÞ = −αk

8
, where ck=(ai+aj)/2

denotes themid-point of ek, k=1,…, nd. The explicit form of u2 will be
given later. The trace of u2 on ek is a quadratic function w2 vanishing
at endpoints ai, aj of ek with an extremum at ck. Therefore, w’2(ck)=0
and ∇u2(ck) ⋅ ek=0. Applying the multi-point Taylor formula [17,18]
for u2 at endpoints ai, aj of ek:

0 = u2 aið Þ = u2 ckð Þ−1
2
∇u2 ckð Þ⋅ek +

1
8

H2ek;ekð Þ ð2Þ

0 = u2 aj

� �
= u2 ckð Þ + 1

2
∇u2 ckð Þ⋅ek +

1
8

H2ek;ekð Þ

we obtain

αk = ðH2ek; ekÞ:

The Hessian H2 may be not positive definite and hence may not be
used to define the metricM. In order to make it positive semidefinite,
we take the spectral module of H2:

jH2 j = WT jΛ jW; ð3Þ

where H2=WTΛW is the spectral decomposition of the symmetric
matrix H2.

The degeneracy of the matrix |H2| is controlled by detH2. If detH2≠
0, we set M=|H2|.

Lemma 1. Letαk, k=1,…, nd generate thequadratic functionu2, u2(ai)=0,
i=1, …, d1, with Hessian satisfying (H2ek, ek)=αk and detH2≠0. Then
forM=|H2| the estimate (1) holds with

c1 = 2
d + 1ð Þ d + 2ð Þ

d!

� �−
1
d
; c2 = 1:

Proof. We denote H=H2. Since

j∂Δj2jHj = ∑
nd

k=1
jHjek; ekð Þ1=2

� �2

≥ ∑
nd

k=1
jHjek;ekð Þ≥ ∑

nd

k=1
j Hek; ekð Þj

= ∑
nd

k=1
jαkj;

we have c2=1.
To estimate c1, we generalize the Cayley-Menger determinant to

the case H≠ I:

detHjΔj2 =
−1ð Þd−1

2d d!ð Þ2 detK Hð Þ ð4Þ

where

K Hð Þ =
Ha11;a11ð Þ ⋯ Ha1d1 ;a1d1

� �
1

⋮ ⋱ ⋮ ⋮
Had11;ad11

� �
⋯ Had1d1

;ad1d1

� �
1

1 ⋯ 1 0

0
BBB@

1
CCCA; ð5Þ

aij≡ai−aj. Setting 1=(1,…,1)T2ℜd1, ki,j=(Haij, aij) and denoting by
[ki,j] the matrix with entries ki,j we rewrite K(H):

K Hð Þ = ki;j
h i

1

1T 0

 !
:

Since H=HT, we have

ki;j = Hai;aið Þ + Haj;aj

� �
−2 Hai;aj

� �
:

Let the ith row of the matrix V be equal to aiT, i=1,…,d1. Then

VHVT = Hai;aj

� �h i
:

In the following sequence of equalities we exploit the known
dependence of a matrix determinant on linear operations with rows
and columns:

−1ð Þd−1

2d
detK Hð Þ = −1ð Þd−1

2d
det

ki;j− Hai;aið Þ− Haj;aj

� �h i
1

1T 0

 !

=
−1ð Þd−1

2d
det

−2 Hai;aj

� �h i
1

1T 0

 !

= −det
Hai;aj

� �h i
1

1T 0

 !

= −det
V 1 0
0T 0 1

� � HVT 0
0T 1
1T 0

0
@

1
A

0
@

1
A

= det V 1ð Þdet HVT

1T

� �

= det

aT
1 1

aT
2−aT

1 0

⋮ ⋮
aT
d1
−aT

1 0

0
BBBBB@

1
CCCCCAdet Ha1 H a2−a1ð Þ ⋯ H ad1

−a1

� �
1 0 ⋯ 0

 !

= det

aT
2−aT

1

⋮
aT
d1
−aT

1

0
BB@

1
CCAdet H a2−a1ð Þ ⋯ H ad1−a1

� �� �

= detH det a2−a1 ⋯ ad1
−a1

� �� �2 = d!ð Þ2detHjΔj2

which proves Eq. (4).
Therefore,

jΔ j2jH j = det jH j jΔ j2 =
1

2dðd!Þ2 detKð jH j Þ

≤ 1
2dðd!Þ2 sup

α∈ℜnd

jdetKðHÞ j
max

k=1;…;nd

jαk jd
∑
nd

k=1
jαk j

� �d

:

ð6Þ
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For square matrices of order N with elements bi,j it holds

jdet½bi;j� j≤ j ∑
σ

∏
N

i=1
bi;σ j≤ N!max

σ
j ∏

N

i=1
bi;σ j ;

where the summation is performed over all possible permutations
σ of matrix rows and columns. Since |ki,j|=|(Hek, ek)|=|αk|, 1≤ ib
j≤d1, from definition (5) we derive that detK(H) is a homogeneous
polynomial of degree d of α and

sup
α∈ℜnd

jdetKðHÞ j
max

k=1;…;nd
jαk jd

≤ ðd + 2Þ! sup
α∈ℜnd

max
k=1;…;nd

jαk jd

max
k=1;…;nd

jαk jd
≤ ðd + 2Þ!:

Therefore, we conclude from inequality (6) that

jΔ j2jH j≤
1
2d

ðd + 1Þðd + 2Þ
d!

∑
nd

k=1
jαk j

� �d

;

jΔ j
2
d
jH j≤

1
2

ðd + 1Þðd + 2Þ
d!

� �1
d ∑

nd

k=1
jαk j ;

which implies

c1 = 2
ðd + 1Þðd + 2Þ

d!

� �−
1
d
:

If detH2=0, theHessianH2maynot be the basis for themetricM. In
this case wemodify the edge data specifying the quadratic function so
that its Hessian is positive definite and estimate (1) is satisfied. For the
sake of simplicity we restrict ourselves to the case 0≤α1≤α2≤…≤αnd

and αnd
≠0 (in the method presented in the next section non-

negativity of αk is guaranteed). We introduce the modified edge
data

α̃k = αk; k = 1;…;nd−1; α̃nd
= ð1 + δÞαnd

; ð7Þ

where δ 2]0, 1]. Let ũ2(δ)2P2(Δ) be a quadratic function such that
ũ2(ai)=0, i=1, …, d1, ũ2ðckÞ = −α̃k

8
, k=1, …, nd, and H̃2(δ) be its

Hessian. Due to Eqs. (4) and (5) p(δ)=detH̃2(δ) is a polynomial of
degree two. Since p(0)=detH̃2(0)=detH2=0, there exists δ02 ]0,1]
such that detH̃2(δ0)≠0. We set M=|H̃2(δ0)| and check

∑
nd

k=1
jαk j≤ ∑

nd

k=1
jα̃k j≤ ∑

nd

k=1
ð jH̃2ðδ0Þ jek;ekÞ

≤ ∑
nd

k=1
ð jH̃2ðδ0Þ jek; ekÞ1=2

� �2

= jΔ j2M;

∑
nd

k=1
jαk j≥

1
2
∑
nd

k=1
jα̃k j≥

ðd + 1Þðd + 2Þ
d!

� �−
1
d jΔ j

2
d
M:

Thus we suggested such a modification of edge data that the
recovered metric satisfies estimate (1) and using Lemma 1 we proved
the following theorem.

Theorem 2. Let a sequence 0≤α1≤…≤αnd
, αnd

≠0, generate the quad-
ratic function u2, u2(ai)=0, i=1,…, d1, with non-singular Hessian satis-
fying (H2ek, ek)=αk, k=1, …, nd−1, and (H2end

end
) equal to αnd

or αñd

from (7). Then for M=|H2| the estimate (1) holds with

c1 =
ðd + 1Þðd + 2Þ

d!

� �−
1
d
; c2 = 1: ð8Þ

3. Energy of the interpolation error for quadratic functions

In this section we derive a new edge-based representation of the
energy norm of the interpolation error. The application of Theorem 2
will give us the geometric representation of the error (11).

On a d-simplex Δ we define d1 linear functions λi through their
values at the vertices: λi(aj)=δij and nd quadratic bubble functions
bk=λiλj associated with edges ek=[ai,aj], k=1, …, nd. Note that
bk(ck)=1/4, bk(ck1)=0, k1≠k, bk(ai)=0, i=1, …, d.

The linear interpolation operator is defined as

iΔu = ∑
d1

i=1
uðaiÞλi

and the error of linear interpolation of a quadratic function u2 is

e2 = u2−iΔu2:

Any quadratic function u2 may be represented through its values at
ai, i=1, …, d1, and ck, k=1, …, nd:

u2 = iΔu2 + 4 ∑
nd

k=1
u2ðckÞ−iΔu2ðckÞð Þbk:

In particular, the function from Lemma 1 is u2 = −1
2

∑
nd

k=1
αkbk: The

error of linear interpolation of any u22P2(Δ) is

e2 = u2−iΔu2 = 4 ∑
nd

k=1
u2ðckÞ−iΔu2ðckÞð Þbk = −1

2
∑
nd

k=1
γkbk

where γk=−8(u2(ck)− iΔu2(ck)). Since

∇e2 = −1
2
∑
nd

k=1
γk∇bk;

we get

∥∇e2∥
2
L2

= jΔ j ðBγ;γÞ;

where γ=(γ1,…,γnd
)T and the nd×nd matrix B has elements

Bi;j =
1

4 jΔ j ∫
Δ

∇bi⋅∇bjdx: ð9Þ

Hereafter we omit the domain of integration in notations of inte-
gral norms unless this lead to an ambiguity.

The gradient error is only a number; it does not provide any
directional information. To recover this information, we split this
error into nd edge-based error estimates αk≥0 such that

∑
nd

k=1
αk = ðBγ;γÞ and αk∼ jγk j ; k = 1;…;nd:

The last requirement stems from the equidistribution of ||e2||L∞(ek)
over all edges of the simplex Δ [14]. Setting

αk = jγk j ðBγ;γÞ ∑
nd

k=1
jγk j

� �−1

ð10Þ

and using Theorem 2 we define the metric M such that

c1 jΔ j jΔ j
2
d
M ≤ ∥∇e2∥

2
L2

≤ c2 jΔ j j∂Δ j2M: ð11Þ

Remark 1. In general, other selections of nd non-negative numbers αk

satisfying ∑
nd

k=1
αk = ðBγ;γÞ are possible (see Remark 1, [14]). Accord-

ing to the numerical evidence, the choice (10) provides recovery
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of anisotropic tensor metrics and generation of adaptive anisotropic
meshes.

4. Energy of the interpolation error for general function

In this section, we derive a geometric representation of the ener-
gy norm of the interpolation error based on the relaxed saturation
assumption.

For p 2]0,+∞] we introduce a normed (quasi-normed for 0bpb1)
space with the norm (quasi-norm)

∥u∥pW1
p
= ∥u∥pLp + ∥∇u∥pLp :

We recall that for quasi-normed spaces the triangular inequality is
modified:

∥∇ðv + wÞ∥Lp ≤ Cp ∥∇v∥Lp + ∥∇w∥Lp
� �

; Cp = max 1;2
1−p
p

0
@

1
A; ð12Þ

which follows from (x+y)p≤xp+yp≤21−p(x+y)p.
For any function u2C(Δ )̅∩Wp

1(Δ) with p 2]0, +∞] we define its
quadratic interpolant

i2;Δu = iΔu + 4 ∑
nd

k=1
uðckÞ−iΔuðckÞð Þbk:

The generalization of estimate (11) is based on the saturation
assumption: There exists 0bqΔb1 such that

∥∇ðu−i2;ΔuÞ∥Lp ≤ qΔ∥∇ðu−iΔuÞ∥Lp : ð13Þ

The hypothesis (13) implies the relaxed saturation assumption:

cs∥∇ði2;Δu−iΔuÞ∥Lp ≤ ∥∇ðu−iΔuÞ∥Lp ≤ Cs∥∇ði2;Δu−iΔuÞ∥Lp ð14Þ

with cs =
1

2Cp
;Cs =

Cp

1−qΔCp
.

We define

γk = −8 uðckÞ−iΔuðckÞð Þ

= −8 i2;ΔuðckÞ−iΔi2;ΔuðckÞ
� �

= −8 i2;ΔuðckÞ−iΔuðckÞ
� �

;

ð15Þ

compute the metric M for αk=γk and combine the inequalities (11)
and (14) in order to estimate the interpolation error e≡u− iΔu in the
following theorem.

Theorem 3. Let inequality (14) hold true and the metric M be built
using (15), (9) and (10). Then

c2s c1 jΔ j jΔ j
2
d
M ≤ ∥∇e∥2L2 ≤ C2

s c2 jΔ j j∂Δ j2M ð16Þ

where

c1 =
ðd + 1Þðd + 2Þ

d!

� �−
1
d
; c2 = 1:

The geometric representation of the energy norm of the error (16)
is not final since it contains measures in different metrics. This will be
corrected by a simple re-scaling of the metric M (22) discussed in
Section 6.

Although the saturation assumption is conventional in numerical
analysis [19], its usage may be argued. We note that our analysis is
based on the relaxed saturation assumption (14) rather than the satu-
ration assumption (13).

5. Justification of the relaxed saturation assumption

In this section we justify the relaxed saturation assumption (14)
for general (possibly anisotropic) simplexes. The motivation is based
on the oscillation term studied in [5] in the context of an a posteriori
error analysis.

We define a quadratic function g = 1
2
ðGx; xÞ where G is a matrix

from the space G of symmetric d×d-matrices. Since i2,Δg=g, we write

u−i2;Δu = u−i2;Δu− g−i2;Δg
� �

= ðu−gÞ−i2;Δðu−gÞ:

We denote the Hessians of u and g by H and G, respectively. By
virtue of the multi-point Taylor formula [2,18]

∇ u−i2;Δu
� �

ðxÞ = ∇ u− g − i2;Δðu− gÞ
� �

xð Þ

= −1
2

∑
d1 + nd

j=1
H ζ x; sj

� �� �
−G

� �
x−sj
� �

;x−sj
� �

∇ pj
� �

;

where pj, j=1, …, d1+nd, are the basis functions for quadratic
Lagrangian interpolation with nodes sj=aj, j=1,…,d1, sk+d1

=ck,
k=1,…,nd, respectively, satisfying

∥∇ðpjÞ∥Lp ≤ C jΔ j
1
p max

1≤i≤d1
∥∇λi∥L∞ ≤ C jΔ j

1
p max

1≤i≤d1
dist−1ðai; fiÞ

≤ 2cðdÞ jΔ j
1
p j∂Δ jd−1

jΔ j :

Here dist(ai, fi) denotes the distance between ai and the opposite
face fi.

Since x−sj = ∑
d1 + nd

j=1
δjðxÞej with |δj|≤1, we derive

∑
d1 + nd

j=1
H ζ x; sj

� �� �
−G

� �
x−sj
� �

;x−sj
� �

≤ cðdÞ ∑
d1 + nd

j=1
HGej;ej
� �

≤ cðdÞ j∂Δ j2HG
;

where

HG = jHðζðx̂; ŝÞÞ−G j ; ðx̂; ŝÞ = arg max
x∈Δ;s∈Δ

jHðζðx; sÞÞ−G jðx−sÞ;x−sð Þ:

In order to emphasize the extremum features of HG, we re-denote

j∂Δ j jH−G j∞;Δ : = j∂Δ jHG
:

Therefore,

∥∇ðu−i2;ΔuÞ∥Lp ≤ CðdÞ jΔ j1=p j∂Δ jd−1

jΔ j j∂Δ j2jHðxÞ−G j∞;Δ :

We define the oscillation term

oscðH;ΔÞp = CðdÞ jΔ j1=p j∂Δ jd−1

jΔ j inf
G∈G

j∂Δ j2jHðxÞ−G j∞;Δ : ð17Þ

Taking v= i2,Δu− iΔu, w=u− i2,Δu and using the triangular in-
equality (12), we obtain

∥∇ðu−iΔuÞ∥Lp ≤ Cp ∥∇ðiΔu−i2;ΔuÞ∥Lp + ∥∇ðu−i2;ΔuÞ∥Lp
� �

≤ Cp ∥∇ðiΔu−i2;ΔuÞ∥Lp + oscðH;ΔÞp
� �

:

ð18Þ

Similar use of the triangular inequality leads us to

∥∇ðiΔu−i2;ΔuÞ∥Lp ≤ Cp ∥∇ðu−iΔu∥Lp + ∥∇ðu−i2;ΔuÞ∥Lp
� �

≤ Cp ∥∇ðu−iΔuÞ∥Lp + oscðH;ΔÞp
� �

;
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which implies

C−1
p ∥∇ðiΔu−i2;ΔuÞ∥Lp−oscðH;ΔÞp ≤ ∥∇ðu−iΔuÞ∥Lp : ð19Þ

Thus, we proved the following lemma.

Lemma 4. Estimate (14) holds with cs=Cp
−1, Cs=Cp up to the oscilla-

tion term (17).

The value of osc(H, Δ)p is small for p≤1, u2C2(Δ)̅ and small |∂Δ|.
Moreover, for arbitrary p 2]0, +∞] and u2C2(Δ)̅ we have

inf
G∈G

j∂Δ j2jHðxÞ−G j∞;Δ ≤ C inf
G∈G

jH−G j∞;Δ j∂Δ j2;

oscðH;ΔÞp ≤ cðdÞ j∂Δ jd + 1

jΔ j
p−1
p

inf
G∈G

jH−G j∞;Δ

and the value of osc(H, Δ)p is small in simplices satisfying

j∂Δ jd + 1

jΔ j
p−1
p

inf
G∈G

jH−G j∞;Δ = oð1Þ:

For instance, for shape regular simplices we have |∂Δ|d≤C|Δ| and

j∂Δ jd + 1

jΔ j
p−1
p

≤ C j∂Δ j jΔ j
1
p;

oscðH;ΔÞp ≤ C j∂Δ j jΔ j
1
p inf
G∈G

jH−G j∞;Δ:

6. Gradient error of interpolation in general spaces Lp

In the previous sections, we considered the energy norm of the
error corresponding to p=2. The relaxed saturation assumption as
well as its justification were discussed for general positive p. In this
section we generalize Theorem 3 to the case of p 2]0, +∞] and derive
the final geometric representation of the gradient of the interpolation
error in Theorem 6.

Lemma 5. For any p 2]0, +∞] and any non-negative v2P2(Δ) it holds

C
−
1
p

1 = p jΔ j
1
p
−1

∥v∥L1 ≤ ∥v∥Lp ≤ Cp jΔ j
1
p
−1

∥v∥L1 ð20Þ

with

Cp = 1 if 0bp≤1;

Cp = ðd + 1Þðd + 2Þðd!Þ
1
p ∏

d

j=1
ðp + jÞ

 !−
1
p

if 1bpb + ∞;

C∞ = lim
p→ + ∞

Cp = ðd + 1Þðd + 2Þ;

C1=∞ = lim
p→ + ∞

C1=p = 1:

8>>>>>>>>>>><
>>>>>>>>>>>:

Proof. First we prove the right inequality (20).

Let p 2]0,1[. We estimate ||v||Lp
p

using Hölder's inequality with
s=p−1N1 and r=(1−p)−1 for which s−1+r−1=1:

∥v∥pLp = ∫
Δ

vpdx ≤ jΔ j1−p∥v∥pL1

that is

∥v∥Lp ≤ Cp jΔ j
1
p
−1

∥v∥L1 :

For p=1 the last estimate is trivial.
Let p 2]1, +∞]. We present 0 ≤ v = ∑

d + 1

i=1
aiλi + ∑

nd

k=1
ckbk with

some ai≥0, ck≥0. Then

∥v∥L1 = ∫
Δ

vdx =
jΔ j

d + 1
∑

d + 1

i=1
ai +

jΔ j
ðd + 1Þðd + 2Þ ∑

nd

k=1
ck

and

∑
d + 1

i=1
ai + ∑

nd

k=1
ck ≤ ðd + 1Þðd + 2Þ

jΔ j ∥v∥L1 :

Since ∀pN1, 1≤ i≤d+1, 1≤k≤nd it holds

∥bk∥
p
Lp

≤ ∥λi∥
p
Lp

= d! jΔ j = ∏
d

j=1
ðp + jÞ;

we derive

∥v∥Lp≤ d! jΔ j = ∏
d

j=1
ðp + jÞ

 !1
p

∑
d + 1

i=1
ai + ∑

nd

k=1
ck

 !
≤ Cp jΔ j

1
p
−1

∥v∥L1 :

In order to show the left inequality (20) for p 2]0, +∞[, we set
w=v1/q and write

∥v∥1 = q
L1

= ∥w∥Lq ≤ Cq jΔ j
1
q
−1

∥w∥L1 = Cq jΔ j
1
q
−1

∥v∥1 = q
L1 = q

which implies ∀qN0

∥v∥L1 ≤ Cq
q jΔ j1−q∥v∥L1 = q

and for p=1/q

C
−
1
p

1 = p jΔ j
1
p
−1

∥v∥L1 ≤ ∥v∥Lp :

For p=+∞ we define C1=∞ = lim
p→ + ∞

C1=p = 1 and derive

C1=∞ jΔ j−1∥v∥L1 = lim
p→ + ∞

C
−
1
p

1 = p jΔ j−1∥v∥L1≤ lim
p→ + ∞

jΔ j−
1
p∥v∥Lp = ∥v∥L∞ :

Now we consider the error of linear interpolation of a quadratic
function e2=u2− iΔu2. Since the function

vðxÞ = ∑
d

j=1

∂e2
∂xj

 !2

is quadratic, we can apply Lemma 5

∥∇e2∥Lp = ∥v∥1 = 2
Lp = 2

≤ C1 = 2
p = 2 jΔ j

1
p
−1

2∥v∥1 = 2
L1

= C1 = 2
p = 2 jΔ j

1
p
−1

2∥∇e2∥L2 : ð21Þ

Let M be the metric generated by Theorem 2 and let the scaled
metric be

Mp = ðdetMÞ−
1

d + pM ð22Þ

for which it holds

jΔ j
1
p j∂Δ jM = jΔ j

1
p
Mp

j∂Δ jMp
; jΔ j

1
p jΔ j

1
d
M = jΔ j

1
p
+ 1

d
Mp

:
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By virtue of inequalities (11) and (21)

∥∇e2∥Lp ≤ C1 = 2
p = 2 jΔ j

1
p
−1

2∥∇e2∥L2 ≤ Cp=2c2
� �1=2 jΔ j

1
p j∂Δ jM

= Cp=2c2
� �1=2 jΔ j

1
p
Mp

j∂Δ jMp
:

ð23Þ

Using the same arguments, we can apply the second half of
Lemma 5:

∥∇e2∥Lp = ∥v∥1 = 2
Lp = 2

≥ C−1 = p
2 = p jΔ j

1
p
−1

2∥v∥1 = 2
L1

= C−1 = p
2 = p jΔ j

1
p
−1

2∥∇e2∥L2 :
ð24Þ

In view of estimates (11) and (24)

∥∇e2∥Lp≥C−1 = p
2 = p c1 = 2

1 jΔ j
1
p jΔ j

1
d
M = C−1 = p

2 = p c1 = 2
1 jΔ j

1
p
+ 1

d
Mp

: ð25Þ

For p=+∞ we have M∞=M and use

∥w∥L∞ = lim
p→ + ∞

1
jΔ j ∫

Δ

wpdx

 !1
p
= lim

p→ + ∞
jΔ j−

1
p∥w∥Lp

which yields

∥∇e2∥L∞ = lim
p→ + ∞

jΔ j−
1
p∥∇e2∥Lp ≤ lim

p→ + ∞
jΔ j−

1
pðCp=2c2Þ1 =2 jΔ j

1
p
Mp

j∂Δ jMp

= lim
p→ + ∞

ðCp=2c2Þ1=2 j∂Δ jMp
= ðC∞c2Þ1 =2 j∂Δ jM∞

;

ð26Þ

∥∇e2∥L∞ = lim
p→ + ∞

jΔ j−
1
p∥∇e2∥Lp ≥ lim

p→ + ∞
jΔ j

1
pC−1 = p

2 = p c1 = 2
1 jΔ j

1
p
+ 1

d
Mp

= c1 = 2
1 jΔ j

1
d
M∞

:

ð27Þ
Applying estimates (14), (23), (25), (26) and (27) we prove the

following theorem.

Theorem 6. Let the relaxed saturation assumption (14) hold true and
the metricMp be built using. (15), (9), (10) and (22). Then for any u2C
(Δ)̅ ∩ Wp

1(Δ), p 2]0, +∞]

csC
−1 = p
2 = p c1 = 2

1 jΔ j
1
p

+ 1
d

Mp
≤ ∥∇ðu−iΔuÞ∥Lp≤ CsðCp=2c2Þ1=2 jΔ j

1
p
Mp

j∂Δ jMp
:

ð28Þ

7. Gradient error on optimal and quasi-optimal meshes

In this section we take advantage of the local analysis summarized
in Theorem 6 and present the asymptotic analysis of interpolation
errors on optimal and quasi-optimal meshes.

Let Ω2ℜd be a polyhedral domain and Ωh be its conformal d-
simplicial partitioning into N (Ωh) cells (elements). Let C(Ω)̅ denote
the space of continuous functions overΩ,̅ and P1(Ωh) denote the space
of continuous piecewise linear functions, and let PΩh : C(Ω)̅→P1(Ωh)
be the linear interpolation operator.

Definition 1. Let p2 ]0,+∞] and u∈Cð�ΩÞ∩W1
p ðΩÞ be given. A mesh

Ωopt
h (NT,u) consisting of at most NT elements is called optimal if it is

a solution of the optimization problem

Ωh
optðNT ;uÞ = arg min

Ωh:NðΩhÞ≤NT

∥∇ðu−PΩhuÞ∥LpðΩÞ: ð29Þ

Although the existence of the optimal mesh is not known, there
exist meshes providing error norms which are arbitrary close to the
minimum in formula (29).

Theorem 7. Let the optimal meshΩopt
h (NT, u) exist and u2C(Ω)̅∩Wp

1(Ω)
and p 2]0, +∞] are such that the relaxed saturation assumption (14)
holds ∀Δ2Ωopt

h (NT, u) with csb1. Then there exists a tensor metric Mp,
piecewise constant on Ωh, such that

csC
−1 = p
2 = p c1 = 2

1 jΩ j
1
p
+ 1

d
Mp

N
−
1
d

T ≤ ∥∇ðu−PΩh
opt
uÞ∥LpðΩÞ:

Proof. For p 2]0, +∞[ we use Hölder's inequality with s = 1 + p
d
and

r = 1 + d
p
ðs−1 + r−1 = 1Þ to derive:

jΩ jMp
= ∑

Δ∈Ωh
opt ðNT ;uÞ

jΔ jMp;Δ
≤ ∑

Δ∈Ωh
opt ðNT ;uÞ

jΔ j sMp;Δ

0
@

1
A

1
s

∑
Δ∈Ωh

opt ðNT ;uÞ
1r

0
@

1
A

1
r

= ∑
Δ∈Ωh

opt ðNT ;uÞ
jΔ j

1 +
p
d

Mp;Δ

0
@

1
A

d
d + p

NðΩh
optÞ

p
d + p:

ð30Þ

By virtue of Theorem 6 for any Δ2Ωopt
h (NT, u) there exists a tensor

metric Mp,Δ:

jΔ j
1 +

p
d

Mp;Δ
≤ c−p

s C2=pc
−p = 2
1 ∥∇ðu−PΩh

opt
uÞ∥pLpðΔÞ: ð31Þ

Since N (Ωopt
h )≤NT, we get from inequalities (30) and (31)

jΩ jMp
N

−
p

d + p
T ≤ c−p

s C2=pc
−p=2
1 ∑

Δ∈Ωh
opt ðNT ;uÞ

∥∇ðu−PΩh
opt
uÞ∥pLpðΔÞ

0
@

1
A

d
d + p

or

jΩ j
1
p

+ 1
d

Mp
N

−
1
d

T ≤ c−1
s C1 = p

2 = pc
−1 = 2
1 ∥∇ u−PΩh

opt
u

� �
∥LpðΩÞ:

For p=+∞ we use M∞=M and estimate (28):

csc
1 = 2
1 jΩ j

1
d
M ≤ csc

1 = 2
1 N

1
d
T max

Δ∈Ωh
optðNT ;uÞ

jΔ j
1
d ≤ N

1
d
T max

Δ∈Ωh
opt ðNT ;uÞ

∥∇ðu−iΔuÞ∥L∞ðΔÞ

= N
1
d
T ∥∇ u−PΩh

opt
u

� �
∥L∞ðΩÞ:

The optimal mesh is an ideal object which is not available. From
a practical standpoint, it is sufficient to deal with meshes providing
similar to optimal (albeit larger) gradient errors of interpolation. In
particular, such meshes should demonstrate the optimal asympto-
tic rate of error reduction. We define such meshes as quasi-optimal.
The next theorem shows that Mp-quasi-uniform meshes are quasi-
optimal. In what follows we assume that the tensor metric Mp is
composed of elemental metrics Mp,Δ defined on each simplex by
Theorem 6.

Definition 2. A conformal mesh Ωh is called Mp-quasi-uniform, if
there exist positive constants Csh, Cvl:

j∂Δ jdMp;Δ
≤ Csh jΔ jMp;Δ

; ∀Δ∈Ωh
; ð32Þ

N ðΩhÞmax
Δ∈Ωh

jΔ jMp;Δ
≤ Cvl jΩ jMp

; ∀Δ∈Ωh
: ð33Þ
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Theorem 8. Let u2C(Ω)̅∩Wp
1(Ω), p2 ]0,+∞] and let Ωh, N (Ωh)=NT,

be a conformal Mp-quasi-uniform mesh such that the relaxed saturation
assumption (14) holds ∀Δ2Ωh with certain constants cs, Cs. Then

‖∇ u−PΩhu
� �

‖LpðΩÞ ≤ Cs Cp=2c2
� �1=2

C
1
d
shC

1
p

+ 1
d

vl N
−
1
d

T jΩ j
1
p
+ 1

d
Mp

: ð34Þ

Proof. By virtue of Theorem 6 and Definition 2 we have

‖∇ u−PΩhu
� �

‖LpðΩÞ = ∑
Δ∈Ωh

‖∇ u−iΔuð Þ‖pLpðΔÞ
 !1

p

≤ Cs Cp=2c2
� �1=2 ∑

Δ∈Ωh
jΔ jMp;Δ

j∂Δ jpMp;Δ

 !1
p

≤ Cs Cp=2c2
� �1=2

C
1
d
sh ∑

Δ∈Ωh
jΔ j

1 +
p
d

Mp;Δ

 !1
p

≤ Cs Cp=2c2
� �1=2

C
1
d
shN

1
p
T max

Δ∈Ωh
jΔ jMp;Δ

� �1
p

+ 1
d

≤ Cs Cp=2c2
� �1=2

C
1
d
shC

1
p
+ 1

d
vl N

−
1
d

T jΩ j
1
p
+ 1

d
Mp

:

8. From theory to algorithms

Theorem 8 gives the constructive description of quasi-optimal
meshes: an optimal asymptotics of the gradient error of interpolation
is achieved on Mp-quasi-uniform meshes. The piecewise constant
metric Mp may be recovered by Theorem 3 and scaling (22) on the
basis of mid-edge interpolation data. This leads us to the adaptive
iterative algorithm: a) given a current mesh, compute the metric Mp;
b) given the metric Mp, generate an Mp-quasi-uniform mesh. After
several loops of the algorithm we shall produce a mesh which will be
quasi-uniform in the metric recovered on the same mesh. The algo-
rithm is known to be practical for continuous tensor metric fields.

The above algorithm rises three technical issues:

1. What is the measure of Mp-quasi-uniformity?
2. How to produce a continuous metric Mp?
3. How to produce an Mp-quasi-uniform mesh?

Below we discuss these issues.

8.1. Measure of mesh quasi-uniformity

Given a metric Mp,Δ on a d-simplex Δ and a desirable simplex size
h, we define the quality of Δ with respect to h as

QΔ;h =
d!ðdðd + 1ÞÞdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dðd + 1Þ
q jΔ jMp;Δ

j∂Δ jdMp;Δ

F
dðd + 1Þh
2 j∂Δ jMp;Δ

 !
;

where F:ℜ+ →]0,1] is a smooth function such that F(0)=0, F(1)=1,
F ’(x)N0, x 2]0, 1[ and F(x)=F(x−1), ∀xN0. An example of such a
function is

F =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min x; x−1

� �
2−min x; x−1

� �� �q
:

The function F defines the size factor of the simplex qualityQΔ,h since
its maximum is attained on simplexes whose perimeter is equal to ndh.
The remaining factors of QΔ,h define the shape factor attaining its
maximum (equal to one) on Mp-equilateral simplexes. Therefore, the
maximal quality QΔ,h=1 is achieved on Mp-equilateral simplexes Δ
withMp-length of edges h.

Now we define the mesh quality. Given a conformal mesh Ωh, a
metric Mp on Ω̅ and a desirable number of mesh elements NT, we
define the mesh quality Q(Ωh, NT) as

QðΩh
;NT Þ = min

Δ∈Ωh
QΔ;h; h =

2
d
2d! jΩ jMp

NT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d + 1

p

0
BB@

1
CCA

1
d

:

The parameter h is chosen to be the Mp-length of edge of an Mp-
equilateral d-simplex whose Mp-volume is jΩ jMp /NT.

Since the shape factor and the size factor of QΔ,h do not exceed 1,
we conclude

0 ≤ Q Ωh
;NT

� �
≤ 1:

Now we show that if Q(Ωh, NT)≥QN0 then inequalities (32) and
(33) hold with constants Csh, Cvl dependent on F, Q and d only. Indeed,
since F(x)≤1, for any Δ2Ωh we have

�Q ≤ d!ðdðd + 1ÞÞdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd + 1Þ

q jΔ jMp;Δ

j∂Δ jdMp;Δ

;

j∂Δ jdMp;Δ
≤ d!ðdðd + 1ÞÞd

�Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd + 1Þ

q jΔ jMp;Δ
;

i.e., Csh = d!ðdðd + 1ÞÞd

�Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd + 1Þ

q . On the other hand, since the shape factor does

not exceed 1, for any Δ2Ωh we have

�Q ≤ F
dðd + 1Þh
2 j∂Δ jMp;Δ

 !

which implies

z ≤ dðd + 1Þh
2 j∂Δ jMp;Δ

≤ z−1
; z = F−1ð�Q Þ ≤ 1:

From this and the boundedness of the shape factor we derive

jΔ jMp;Δ
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd + 1Þ

q
d!ðdðd + 1ÞÞd j∂Δ jdMp;Δ

≤
jΩ jMp

zdNT

;

i.e., Cvl=(z(F, Q))−d.
Therefore, the mesh quality Q(Ωh, NT) is a good measure of Mp-

quasi-uniformity.

8.2. Generation of Mp-quasi-uniform meshes

As it was mentioned earlier, numerical evidence suggests the use
of a continuousmetric within the adaptation loop. Continuousmetrics
provide faster convergence and the resultedmeshes aremore smooth.
However, in Section 2 we considered the metric recovery element-
by-elementwhich implies a discontinuous tensormetric field. The sim-
plestway to define a continuousmetric is to assume thatmetric entries
are continuous piecewise linear functions specified at mesh nodes.
However, the nodalmetric entriesmay not be defined via independent
recovery of respective piecewise constant functions: such an approach
may produce degenerate or non-definite matrices. We suggest a sim-
ple method of nodal metric recovery. For each node ai of Ωh we define
the superelement σi as the union of all d-simplices sharing ai and
assign the metric with the largest determinant from all metrics
available in superelement σi. The method takes always the worst
metric in the vicinity of the node.
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We generateMp-quasi-uniformmeshes as follows. Assume that an
initial mesh and a continuous piecewise linear tensor metric Mp are
given and that the quality of that mesh is small. The basic strategy for
the generation of a Mp-quasi-uniform mesh with a desirable number
of elements is to modify the mesh using local operations which
increase themesh quality. The list of local operations includesmoving,
adding and deleting mesh nodes, and swapping of mesh edges and
faces [1,2,8]. Since themesh quality is equal to the quality of the worst
simplex, the local mesh modifications are applied to this simplex. The
local nature of topological operations makes the algorithm robust at
least for d=2,3 [1,2]. Two- and three-dimensional implementations
of this method are available in packages Ani2D and Ani3D [20,21],
respectively, developed by K. Lipnikov and Yu. Vassilevski.

9. Numerical experiments

In this section, we examine numerically asymptotic properties of
quasi-optimal meshes. We study the interpolation problem for two
two-dimensional functions: weakly anisotropic and strongly aniso-
tropic. Twenty steps of the adaptation loop were performed for each
run. The minimal computed error was chosen to be the numerical
result. The mesh quality was maintained at 0.5 within the adaptation
cycle.

In the first example, we consider the problem of minimizing the
gradient error of interpolation for the function [22]

u x1; x2ð Þ =
x1−0:5ð Þ2−

ffiffiffiffiffiffi
10

p
x2 + 0:2

� �2
x1−0:5ð Þ2 +

ffiffiffiffiffiffi
10

p
x2 + 0:2

� �2� �2

defined over the unit square [0, 1]2. The function has a weak aniso-
tropic singularity at the point 0:5;−0:2=

ffiffiffiffiffiffi
10

p� �
which is outside the

computational domain but close to its boundary. Isolines of u are
shown in Fig. 1, (left). Fig. 1 also shows the quasi-optimal meshes
for NT=2500 for two values of p: the middle picture corresponds
to the case p=1, the right picture corresponds to the case p=+∞.
Table 1 presents the Lp norms of the gradient error of interpolation
||∇(u−PΩhu)||Lp(Ω) for p=1, 2, 4, +∞. Large values of the error are
attributable to the large gradient of u, ||∇u||L∞(Ω)=790.6.

We observe the correct asymptotics of the error reduction:

∥∇ðu−PΩhuÞ∥LpðΩÞ∼N
−1 = 2
T ð35Þ

for p=1, 2, 4, +∞.
In the second experiment, we build the quasi-optimal meshes for

the function proposed in [23]:

u x1; x2ð Þ = x2x
2
1 + x32 + tanh 6 sin 5x2ð Þ−2x1ð Þð Þ:

The computational domain is the square [−1, 1]2. The solution is
anisotropic along the zigzag curve (see left picture in Fig. 2) and
changes sharply in the direction normal to this curve. Table 2 shows
the Lp-norms of the gradient error of interpolation. The dependence
(35) is clearly observed.

In the middle picture in Fig. 2 we present the quasi-optimal mesh
minimizing ||∇(u−PΩhu)||L∞(Ω) with NT=2500. For the sake of com-
parison, in the right picture in Fig. 2 we show a quasi-optimal mesh
minimizing ||u−PΩhu||L∞(Ω).

10. Conclusion

We analyzed the optimal meshes minimizing Lp(Ω)-norms of the
gradient interpolation error over all simplicial meshes with a fixed
number of cells NT. The analysis is given for functions satisfying the
relaxed saturation assumption and is performed for arbitrary p2]0,+∞]
in spaces of arbitrary dimension d. The error norms are estimated by the
product of factors depending on p, d, Ω, NT. The explicit forms of the
factors are derived.

We also presented and analyzed the new method of recovery
of the tensor metric field Mp used in the adaptation procedure. We
proved thatMp-quasi-uniformmeshes are quasi-optimal. This implies
that they give slightly higher errors but the same asymptotic rate
of error reduction as the optimal mesh. The error norms on quasi-
optimal meshes are estimated with an explicit dependence on p, d, Ω,
NT, and the quality of the mesh Q(Ωh,NT). Our metric recovery is based
on the new edge-based estimator of the interpolation error. This esti-
mator is shown to be reliable and efficient for general functions pro-
vided that the relaxed saturation assumption holds true. The latter
may be derived from the classical saturation assumption. Neverthe-
less we prove the relaxed saturation assumption up to the oscillation
term which is small on a wide class of fine meshes.

We discussed practical implications of the developed theory. In
particular, we presented the method of construction of a continuous
tensor metric field from piecewise constant metric recovered ele-
mentwise. Also we explained our approach to the generation of Mp-
quasi-uniform meshes with a prescribed number of elements.

Two-dimensional numerical experiments confirmed the predicted
asymptotic rates of the error reduction for different p. Quasi-optimal

Fig. 1. Isolines of function u from Experiment 1 (left), quasi-optimal mesh for p=1 (center), quasi-optimal mesh for p=+∞ (right); NT=2500.

Table 1
Experiment 1: Lp-norms of the gradient error of interpolation for different p.

NT∖p +∞ 4 2 1

600 79 10.1 3.9 1.29
2500 40 4.9 1.9 0.65
10,000 23 2.5 1.0 0.34
40,000 14 1.23 0.51 0.17

2202 A. Agouzal, Y.V. Vassilevski / Computer Methods in Applied Mechanics and Engineering 199 (2010) 2195–2203



Author's personal copy

meshes were generated for both weakly and strongly anisotropic
functions.

Ourmethod of quasi-optimal mesh generationmay be extended to
the solution of boundary value problems [15].
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Table 2
Experiment 2: Lp-norms of the gradient error of interpolation.

NT∖p +∞ 4 2 1

600 8.9 2.5 2.0 2.1
2500 4.4 1.1 0.88 0.95
10,000 2.4 0.54 0.44 0.47
40,000 1.3 0.27 0.22 0.23

Fig. 2. Isolines of function u from Experiment 2 (left), quasi-optimal meshes minimizing ∥∇ u−PΩh uð Þ∥L∞ ðΩÞ (center) and ∥u−PΩh u∥L∞ðΩÞ (right); NT=2500.
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