
Parallel adaptive solution of 3D boundary value
problems by Hessian recovery

Konstantin Lipnikov a, Yuri Vassilevski b,*

a Department of Mathematics, University of Houston, Houston, TX 77204, USA
b Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina 8, 119991 Moscow, Russia

Received 21 February 2002; received in revised form 27 August 2002

Abstract

A parallel technique for an adaptive solution of 3D boundary value problems is described. It incorporates a parallel

mesh generation and a parallel iterative solution of the corresponding discrete problem. Both generation and solution

are problem independent and may be considered as black-boxes.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Hessian recovery; Quasi-optimal meshes; Inertial bisection; Parallel mesh generator; Parallel iterative solvers

1. Introduction

Robust parallel algorithms for adaptive solution of boundary value problems for PDEs have been of

interest to engineers and mathematicians over many years. Significant improvement of the accuracy of

approximation through the adaptive distribution of mesh elements rather than an increase of their number

enables to solve large problems arising in applications. Parallel techniques for generation of adaptive

meshes and solution of the associated discrete problems extend computational capabilities considerably.
It has been shown in a number of papers (see, for example, [1,2]) that simplexes with obtuse and acute

angles stretched along the direction of minimal second derivative of a solution may be the best elements for

minimizing the interpolation error. As the result, an optimal adaptive mesh may frequently contain an-

isotropic elements, i.e., elements with obtuse and acute angles. Until recently, the use of adaptive aniso-

tropic 3D meshes has been delayed because of the lack of robust adaptive mesh generators.

Nowadays, a lot of popular adaptation algorithms are based on a posteriori error estimators. Besides the

discrete solution, the error estimators require additional data of the problem which reduces their flexibility.

An alternative approach is based on a black-box Hessian recovery technique [3–6]. The objective of this
technique is to construct a mesh which is quasi-uniform in a metric field generated by the discrete Hessian

*Corresponding author.

E-mail addresses: lipnikov@math.uh.edu (K. Lipnikov), vasilevs@dodo.inm.ras.ru (Y. Vassilevski).

0045-7825/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0045-7825(02)00654-0

Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513

www.elsevier.com/locate/cma

mail to: lipnikov@math.uh.edu

recovered from the discrete solution. If the solution features an anisotropic behavior, the adaptive mesh
turns out to be anisotropic in order to fit very well the solution variations. Nowadays, this is the most

promising problem independent approach for adaptive mesh generation. The sequential robust version of

the technique has been studied in [3,6] and appeared to be relatively slow. In this paper we describe its

parallel version.

Any adaptive technique has to be equipped with a solution procedure. To our best knowledge, there is a

lack of efficient parallel black-box solvers. The majority of available algorithms are problem dependent, i.e.,

they have to be tuned up for the particular problem. In this paper, we propose a new parallel black-box

solver independent (as much as possible) of the underlying problem. The solver is based on the domain
decomposition (DD) technique and an efficient sequential subdomain black-box preconditioner which is

assumed to be at hand. In our work, we take advantage of the algebraic multigrid (AMG) [7] precondi-

tioner known as AMG1R5 (J. Ruge, K. Stuben, Release 1.5, 1990). For the discrete operators considered in

Section 6, the AMG is known to be a very good preconditioner [8]. In our DD framework a block-diagonal

preconditioner based on the AMG solver in subdomains is corrected by a special smoother. The smoother

enables us to formulate an iterative solver with the convergence rate independent of the number of pro-

cessors (subdomains), problem coefficients, and only slightly sensitive to the problem size. The overall

preconditioner is very simple to implement and parallelize.
The paper outline is as follows. In Section 2 we introduce the concept of a quasi-optimal mesh and

describe a sequential algorithm for its generation. In Section 3 we formulate a parallel algorithm for

generation of quasi-optimal meshes (QOMs). In Section 4 we propose the DD framework for the iterative

solution of discrete problems. A black-box parallel implementation of the solver is discussed in Section 5.

Section 6 is devoted to the detailed numerical study of the proposed algorithms. We discuss the accuracy of

approximations and scalability and efficiency of parallel algorithms for problems with anisotropic singu-

larities, boundary layers, and jumps in coefficients.

2. Quasi-optimal meshes

Let X 2 R3 be a polyhedral domain and Xh be its conformal partition into tetrahedra,

Xh ¼
[NðXhÞ

i¼1

ei;

where NðXhÞ is the number of elements in Xh. Let CkðDÞ be a space of functions with continuous in D � X
partial derivatives up to order k. Let k � k1;D and k � k2;D denote the norms on the spaces L1ðDÞ and C2ðDÞ,
respectively, and k � k1 	 k � k1;X. In addition, we shall use notation P1ðXhÞ for the space of functions

continuous in X and linear on each element of Xh. Furthermore, let Ph
Xh

: C0ðXÞ ! P1ðXhÞ be a projector on

the discrete space P1ðXhÞ and Ih
Xh

: C0ðXÞ ! P1ðXhÞ be the linear interpolation operator.
Most theoretical results formulated in this section are based on the assumption that the solution of a

continuous second order boundary value problem belongs to C2ðXÞ. However, constants in our error es-

timates are independent of the actual value of C2-norm of the solution. Since C2ðXÞ is dense in C0ðXÞ, one
can try to analyze regularized problems with smooth solutions and obtain error estimates for the original

problem by the density arguments. We shall address this challenging problem in the future papers.

Definition 1. Let u 2 C0ðXÞ and Ph
Xh

be given. The mesh XhðNT ; uÞ consisting of NT elements is called

optimal if it is a solution of the optimization problem

XhðNT ; uÞ ¼ arg min
Xh:NðXhÞ6NT

ku�Ph
Xh
uk1: ð1Þ

1496 K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513

In a general case, the optimization problem (1) may be not well posed. The existence of the optimal mesh
is analyzed elsewhere [9]. Here, we assume that the solution to problem (1) exist.

Since the exact solution is unknown, the error ku�Ph
Xh
uk1 cannot be estimated. Therefore, the opti-

mization problem (1) has to be replaced by another optimization problem whose solution at least

approaches the solution of (1). To this end, we introduce concepts of a mesh quality and a mesh quasi-

optimality.

Let QðXhÞ be an easily computed quantitative characteristic of mesh Xh such that 0 < QðXhÞ6 1. We

shall use the definition of QðXhÞ proposed in [10]. Let a fixed number of elements NT be given,

GðxÞ ¼ fGpsðxÞg3p;s¼1, x 2 R3, be a continuous metric in X, and xe 2 e be a point in tetrahedron e where
j detðGðxÞÞj attains its maximal value. We set Ge ¼ GðxeÞ and define the volume of this tetrahedron and the

length of its edge~lle 2 R3 (in metric G) by

jejG ¼ jejðdetðGeÞÞ1=2 and j~llejG ¼ ðGe
~lle;~lleÞ1=2;

respectively, where jej is the tetrahedron volume in the Cartesian coordinate system. Denote the sum of

lengths of edges of tetrahedron e measured in metric G by jooejG. Let jXhjG be the total volume of the

computational domain measured in metric G ,

jXhjG ¼
X
e2Xh

jejG:

Following [10], we define QðXhÞ as follows:

QðXhÞ ¼ min
e2Xh

QðeÞ with QðeÞ ¼ 64
ffiffiffi
2

p jejG
jooej3G

F
jooejG
6h�

� �
; ð2Þ

where function F ð�Þ and the average length of a tetrahedron edge h� (in metric G) are given by

F ðxÞ ¼ min x;
1

x

� �
2

��
�min x;

1

x

� ���3

and h� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12jXhjGffiffiffi

2
p

NT

3

s
:

Hereafter we shall use notation QðG;NT ;XhÞ instead of QðXhÞ to emphasize its dependence on the metric

G and the predefined number of elements NT . It is easy to check that 0 < QðG ;NT ;XhÞ6 1 and the maximal

value is attained when all mesh elements are equilateral (in metric G) tetrahedra with the edge length h�. We
refer to QðG ;NT ;XhÞ as the mesh quality with respect to the metric G and the number of elements NT .

Definition 2. Let G be a continuous metric and NT be a given integer. The mesh Xh is called G-quasi-op-

timal if there is a fixed positive constant Q0 such that Q0 ¼ Oð1Þ and
QðG ;NT ;XhÞ > Q0:

Let function u 2 C2ðXÞ have a nonsingular Hessian HðxÞ ¼ fHpsðxÞg3p;s¼1, i.e., detHðxÞ 6¼ 0 for 8x 2 X.

Since the Hessian is symmetric, the spectral decomposition of H is possible for any x 2 X,

H ¼ W t

k1 0 0

0 k2 0

0 0 k3

0@ 1AW ;

and the following metric may be defined:

jH j ¼ W t

jk1j 0 0

0 jk2j 0

0 0 jk3j

0@ 1AW :

K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513 1497

Definition 3. Let u 2 C2ðXÞ and jH j be a metric generated by the Hessian of u. For the given function u and

a given integer NT , the mesh XhðNT ; uÞ is called quasi-optimal if it is jH j-quasi-optimal.

We notice that it is impossible to cover 3D space by equilateral tetrahedra. Therefore a quasi-optimal

mesh satisfying QðjH j;NT ;XhÞ ¼ 1 rather does not exist. Fixing Q0 < 1 relaxes the above constraint as well

as restrictions imposed by the boundary of X. On the other hand, due to QðjH j;NT ;XhÞ < 1, the number of

mesh elements NðXhÞ in the jH j-quasi-optimal mesh may differ from NT but approaches it when Q0 ! 1.

The QOMs have been studied in [3,11]. It turns out that in certain cases the QOM is an approximate
solution of optimization problem (1).

Theorem 4 (Vassilevski, Agouzal, Lipnikov, 1999). Let NT > 0, u 2 C2ðXÞ and jH j be a metric generated by
the Hessian of u. Furthermore, let XhðNT ; uÞ and eXXhðNT ; uÞ be the quasi-optimal and optimal meshes, re-
spectively, and e� 2 Xh be the element where ku�Ih

Xh
uk1 is attained. Let for both any element ~ee 2 eXXh and the

element e� 2 Xh the following estimate holds:

kHps � He;psk1;e < qjk1ðHeÞj=2; 0 < q < 1; p; s ¼ 1; 2; 3; ð3Þ

where q is a constant, He ¼ HðxeÞ, k1ðHeÞ is the closest to zero eigenvalue of H e, and xe ¼
argmaxx2ej detðHðxÞÞj. Then

ku�Ih
Xh
uk1 6CðQ0; qÞku�Ih

~XXh
uk1; ð4Þ

where CðQ0; qÞ is a constant depending only on q and Q0 from Definition 2. Moreover,

C1ðqÞ
jXjjH j

NT

� �2=3

6 ku�Ih
~XXh
uk1 6C2ðqÞ

jXjjH j

NT

� �2=3

; ð5Þ

where C1ðqÞ;C2ðqÞ depend only on q.

We notice that for projectors Ph
Xh

satisfying

ku�Ph
Xh
uk1 6 bCCku�Ih

Xh
uk1

formulae (4) and (5) transform to

ku�Ph
Xh
uk1 6 bCCC2ðqÞCðQ0; qÞ

jXjjHj

NT

� �2=3

: ð6Þ

Obviously, the Hessian HðxÞ is an unknown function. In computations we use its approximation Hh

recovered from the discrete solution Ph
Xh
u. In the following, we briefly describe a Hessian recovery algo-

rithm [5,6] and advocate the replacement of HðxÞ by its discrete counterpart Hh.

Let uh ¼ Ph
Xh
u be a discrete function from P1ðXhÞ. The discrete Hessian Hh ¼ fHh

psg
3

p;s¼1, H
h
ps 2 P1ðXhÞ, is

defined as follows. In interior mesh node ai, the Hessian entries Hh
psðaiÞ, p; s ¼ 1; 2; 3, are defined byZ

ri

Hh
psðaiÞvh dx ¼ �

Z
ri

ouh

oxp

ovh

oxs
dx 8vh 2 P1ðriÞ; vh ¼ 0 on ori; ð7Þ

where ri is the union of tetrahedra sharing the node ai. At boundary node ai, values of Hh
psðaiÞ, p; s ¼ 1; 2; 3,

are weighted extrapolations from the neighboring interior values [12]:

Hh
psðaiÞ ¼

R
ri

uðaiÞH
� h

ps dxR
ri

uðaiÞ
P

aj 62oXh
uðajÞ

� �
dx

; ð8Þ

1498 K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513

where uðaiÞ denotes the nodal basis function from P1ðXhÞ and H
�
h
ps stands for the finite elements function

defined by (7) and vanishing on oXh.

Theorem 5 (Vassilevski, Agouzal, Lipnikov, 1999). Let NT > 0, u 2 C2ðXÞ, uh ¼ Ph
Xh
u, H be the Hessian of

u, and Hh be the discrete Hessian recovered from uh. Furthermore, let for any superelement r 2 Xh associated
with a mesh node a the following estimates hold:

kHps � Hr;psk1;r < d; ð9Þ

jHh
psðaÞ � Hr;psj < e; ð10Þ

where Hr ¼ HðxrÞ and xr ¼ arg maxx2r j detðHðxÞÞj. Then for e and d sufficiently small with respect the
minimal eigenvalue of jHrj, the jHhj-quasi-optimal mesh Xh (QðjHhj;NT ;XhÞPQ0Þ is also jH j-quasi-optimal:

QðjH j;NT ;XhÞPCQ0

with constant C independent of NT and kuk2;X.

The assumption (9) implies small variations of the Hessian on any superelement r and (10) is the re-

quirement of nodal-wise approximation for the Hessian. The latter assumption does not always hold true in

practice, since it is implicative of a small gradient error for uh. A theoretical generalization uses another
definition of the discrete Hessian and weaker norms [13]. However, in practical computations the adapted

meshes look very feasible regardless possible violation of (10).

Assumptions (9) and (10) imply that the discrete Hessian approaches the continuous one. They also

mean that the computational mesh and the discrete solution correspond in some way. In computations it is

achieved via the following iterative algorithm.

Algorithm 1 (Generation of a QOM)

Initialization step. Generate an initial triangulation Xh. Choose the final mesh quality Q0, Q0 < 1, and the

final number NT of mesh elements.

Iterative step.

(1) Compute the approximation uh ¼ Ph
Xh
u.

(2) Recover the discrete Hessian Hh from uh. If QðjHhj;NT ;XhÞ > Q0, then stop.

(3) Generate next mesh eXXh such that QðjHhj;NT ; eXXhÞ > Q0.

(4) Set Xh :¼ eXXh and go to 1.

There are several heuristic methods for generation of QOMs [4–6]. We follow the approach proposed in

[6,10] for generation triangular and simplicial meshes. The basic strategy is a modification of the mesh by

local operations which increase the mesh quality. This is achieved by changing the mesh element e with the

lowest value QðeÞ together with its neighborhood. It requires to support an ordered list of element qualities.

In our implementation, each modification of the ordered list is proportional to NðXhÞ1=2 albeit a theo-

retically optimal implementation may require OðlogNðXhÞÞ operations. The complete list of the local

operations is presented below (see [3] for more details).
Add a new node. Try to insert a new point in the middle of a mesh edge and split all tetrahedra sharing

the edge by connecting the new point and the vertices of the tetrahedra. In the case of curvilinear surfaces,

new boundary point is shifted on the boundary.

Swap face to edge. Try to remove the common face of two tetrahedra and connect opposite vertices by

the edge.

K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513 1499

Swap edge to a face. Try to remove a mesh edge and split thus appearing polyhedron into a new set of

tetrahedra.
Delete a node. Try to delete a mesh node together with all mesh edges ending in it and split the resulted

polyhedron into a new set of tetrahedra.

Move a node. Try to move a mesh node inside a superelement consisting of tetrahedra sharing the node.

Analogs of local operations for triangular meshes are shown on Fig. 1.

We notice that Step 3 of the Algorithm 1 can be used beyond the algorithm. For instance, it can be

applied for generation of meshes with given properties. Moreover, the initial grid may contain just a few

tetrahedra. We illustrate this again by the 2D example shown on Fig. 2. The initial mesh (on the left)

contains a few triangles. Let the metric field be isotropic, i.e., H ¼ diagf1; 1g and NT ¼ 600. After a few
local modifications we get an isotropic mesh shown in the middle. Let us replace the isotropic metric by the

anisotropic one given by H ¼ diagf1; 50g. The mesh generator produces the QOM shown on the right.

We recall that mesh eXXh obtained at Step 3 of Algorithm 1 may not contain exactly NT elements due to

some topological restrictions and difference between Q0 and 1.

3. Parallelization of adaptive mesh generation

The local nature of Algorithm 1 is very flexible for different conceptions to its parallelization. Hereafter,

we consider one of them which is based on the following set of assumptions.

Fig. 1. Local operations: add node (a), swap edge (b), delete node (c), and move node (d).

Fig. 2. 2D example: initial, isotropic and anisotropic meshes.

1500 K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513

First, we can afford to have the whole mesh on each processor. Simple calculations show that a mesh
containing 106 tetrahedra requires about 34 Mbytes of processor�s memory which is far below the memory

limit of modern computers.

Second, our parallel computer has a few processors and the mesh is divided evenly among them. We

believe that the generation of adaptive unstructured conforming meshes cannot be realized effectively on a

massive parallel computer due to a big data flow between processors and difficulties with load-balancing

control.

Third, we assume that the mesh can be easily distributed among processors and gathered back, i.e., the

time for necessary computations and communications is much less than the time for the mesh generation.
The arithmetical complexity of the scattering/gathering algorithm described below is proportional to the

total number of mesh elements and is negligibly small in computations.

Let P be the number of processors. There are several ways to divide mesh Xh into P approximately equal

parts, and two popular algorithms are: spectral bisection, and geometric methods such as inertial bisection.

The spectral method [14,15] uses spectral properties of the mesh graph, such as the second eigenvector of

the Laplacian matrix of the graph. Necessity to solve an eigenvalue problem for the Laplacian matrix

makes this method very expensive. In contrast, the inertial bisection algorithm [16] ignores the connectivity

information of the mesh graph. It is based on coordinate sorting and partitioning along inertial axes of the
graph. The arithmetical complexity of this algorithm is proportional to NðXhÞ.

In the inertial bisection algorithm, we first compute the principle directions (axes) of the inertia tensor

for a body consisting of unit masses centered at mesh elements. Then, we split the mesh into P approxi-

mately equal disjoint submeshes by P � 1 parallel planes orthogonal to one of the axes. We shall call these

planes as splitting planes. Similarly, the boundaries between submeshes will be called as mesh splitting

planes. The axes are obtained by computing eigenvectors of the inertia tensor

TðXhÞ ¼
XNðXhÞ

i¼1

ðjpij2I3 � piptiÞ; pi ¼ xi � �xx; ð11Þ

where xi 2 R3 is the barycenter of ith element and �xx is the mesh mass center,

�xx ¼ 1

NðXhÞ
XNðXhÞ

i¼1

xi:

Let the mesh Xh and the discrete Hessian jHhj be given on one processor with rank root. Then, the

parallel generation of a jHhj-quasi-optimal mesh eXXh such that QðjHhj;NT ; eXXhÞ > Q0 (see Step 3 of Algo-

rithm 1) includes the following steps.

Algorithm 2 (Parallel generation of a jHhj-QOM)

Initialization step. Processor with rank root computes the inertia tensor TðXhÞ and broadcasts the

discrete Hessian Hh to all processors. Set k ¼ 1.

Decomposition step (k < 4). Processor with rank root extracts the mesh elements whose quality is less

than Q0 and their neighbors having at least one common point. Then, it colors the extracted mesh elements

using the inertial bisection algorithm for the kth principle direction of TðXhÞ and broadcasts the extracted
mesh and the colors to all processors.

Decomposition step (k ¼ 4). Processor with rank root extracts the mesh elements whose vertices be-

longed to one of the mesh splitting planes during each of three previous steps. The extracted mesh elements

are colored by the root�s color.

K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513 1501

Generation step. Processor with rank p extracts the pth subgrid from the received data and tries to
construct a jHhj-quasi-optimal mesh. In order to keep conformity of the global grid, the boundary triangles

shared by any two subgrids are not modified. Note that there is only one subgrid when k ¼ 4.

Gathering step. Processor with rank root gathers the subgrids from other processors and builds a

conforming global grid eXXh. If QðjHhj;NT ; eXXhÞ > Q0, the algorithm stops. Otherwise, we set k :¼ k þ 1 (if

k ¼ 5, we set k ¼ 1), Xh :¼ eXXh and go to decomposition step.

The arithmetical complexity of the decomposition and gathering steps is proportional to NðXhÞ. The
numerical experiments show that these steps are not time consuming.

We recall that the interior boundary triangles are frozen during the generation step. This leads to a bad

quality of near-boundary mesh elements and as the result to a small value for QðjHhj;NT ; eXXhÞ. Therefore,
the alternation of decomposition directions (the principle directions of TðXhÞ) is important for convergence

of Algorithm 2. However, after three iterations of Algorithm 2 (for k ¼ 1; 2; 3), we may still have tetrahedra

whose vertices (or some of them) were all the time on one of the mesh splitting planes. The definition of the

inertial bisection algorithm implies that the number of such vertices is less or equal to ðP � 1Þ3. Indeed, they
are intersections of three sets of the mesh splitting planes. By one of the assumptions, the number of

processors is small. Therefore, the generation step for k ¼ 4 is not time consuming.
Another interesting observation is that the dynamics of grid modifications is completely different in the

parallel and sequential algorithms, because the parallel algorithm changes the global grid in P different

places simultaneously. As we shall see in Section 6, this may significantly affect the performance of the

algorithm.

4. Iterative solution with a two-stage preconditioner

In the next two sections, we focus on the iterative solution of a discrete problem. In this paper, it is the

Step 1 of Algorithm 1. More specifically, we propose and study a new two-stage black-box preconditioner

based on the DD technique: a block diagonal preconditioner is combined with a special smoother. The

blocks are the black-box AMG solvers [7]. The smoother removes dependence (of the convergence rate for

an iterative solver) on the number of subdomains and leaves minor sensitivity to the problem size. For

higher robustness of our algorithm, we minimize as much as possible its dependence on the underlying

problem. In fact, the only additional information we shall exploit is the mesh graph.

We assume that the projector Ph
Xh

results in a linear system

Au ¼ f ; ð12Þ
with a sparse nonsingular matrix A 2 Rn�n. The order of A may be very large so that only iterative methods

are applicable for the solution of (12). For simplicity of presentation, we assume that the solution entries

are associated with the mesh nodes.

Our preconditioner is based on a two-stage DD-method proposed in [17]. At the first stage, the con-

ventional additive Schwarz preconditioner is applied. We partition the entries of vector u into P disjoint
subsets using the inertia bisection algorithm for the mesh nodes. This is equivalent to an overlapping DD

with the minimal (one element) intersection of subdomains (see Fig. 3). Matrix A admits a block repre-

sentation associated with the above partitioning:

A ¼
A11 . . . A1P

..

. . .
. ..

.

AP1 . . . APP

0B@
1CA:

1502 K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513

The diagonal blocks Aii 2 Rni�ni , i ¼ 1; . . . ; P , correspond to boundary value problems in subdomains

with the Dirichlet boundary conditions on interior boundaries.

Let Bii be the AMG preconditioner for Aii, i ¼ 1; . . . ; P . The complexity of both initialization and

evaluation of the AMG preconditioner is linear with respect to ni, as well as the memory requirements. For

the discrete operators considered in the numerical part of the paper, the AMG is known to be a very good

preconditioner [8]. Define a block diagonal matrix

B1 ¼
B11

. .
.

BPP

0B@
1CA: ð13Þ

The matrix B1 is the additive Schwarz preconditioner for A with the minimal overlap of subdomains. It is

a very simple preconditioner for A and can be easily parallelized. However, its efficiency is affected by the

number of subdomains P and the relative width of the overlapping. Indeed, consider the simplest elliptic

operator, �D þ 1, and a regular shaped DD. If the subdomain diameters and the intersection areas are of

orders D and dD, d < 1, respectively, we get two independent lower estimates on the condition number of

matrix B1A [18,19]:

condðB1AÞPCD
1

d
ð14Þ

and

condðB1AÞPCd
1

D2
: ð15Þ

The constants Cd and CD depend on d and D, respectively, and do not depend on the other parameter as

well as on the mesh size. Estimate (14) implies that for the fixed number of subdomains, the convergence of

an iterative method will depend on the relative overlap. Similarly, estimate (15) implies that for the fixed

relative overlap, the condition number will be very sensitive to the number of subdomains. In order to

decrease the effect of the overlapping and eliminate dependence on the number of subdomains, we apply a

correction step. The resulting two-stage preconditioner B is implicitly described by its action on a vector

u 2 Rn. Denoting v ¼ Bu, we have

w ¼ B1u;

r ¼ ðu� AwÞ; v ¼ wþ B2r;
ð16Þ

where B2 is a preconditioner described below. Formally, B may be presented as follows:

B ¼ B1 þ B2ðI � AB1Þ: ð17Þ

Fig. 3. Mesh associated with the additive Schwarz (left) and the correction (right).

K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513 1503

Clearly, it is the nonsymmetric matrix even when A ¼ At and Bi ¼ Bt
i , i ¼ 1; 2. Therefore, for symmetric

positive definite matrices the preconditioned conjugate gradient (PCG) method with preconditioner (17)

may not be directly applied. However, if the initial vector u0 in the PCG method is corrected as follows:

u0 :¼ u0 þ B2ðf � Au0Þ;

the method will converge provided B2 has a general form (18). The reason for that is that the evaluation of

B is equivalent to a symmetric three-stage algorithm (see, for example, [20,21]).

We choose the preconditioner B2 as follows. Let the number of nontrivial rows in matrix
Ai ¼ ½Ai1; . . . ;Ai;i�1;Ai;iþ1; . . . ;Ai;P � (without the diagonal block) be ~nni. We define

~nn ¼
XP
i¼1

~nni þ P ;

and assume that rows of matrix A are ordered in such a way that in each Ai the nontrivial rows go first.

Then the local aggregation matrix Tii 2 Rni�ð~nniþ1Þ is given by

Tii ¼
Ii 0

0 ei

� �
; ei ¼ ð1; . . . ; 1Þt 2 Rni�~nni ;

where Ii is the identity matrix. We define the global block diagonal aggregation matrix T by

T ¼
T11

. .
.

TPP

0B@
1CA;

and the aggregated stiffness matrix eAA byeAA ¼ T tAT ; eAA 2 R~nn�~nn:

Let eBB be the conventional BSOR smoother [22,23] for eAA. Then, the preconditioner B2 is defined im-

plicitly by

B2 ¼ T eBBT t: ð18Þ
Note that B2 is a smoother in a subspace of aggregated vectors fv 2 Rn : v ¼ T ~vv; ~vv 2 R~nng. We motivate

its construction as follows. The drawback of the additive Schwarz preconditioner B1 is that it damps the

error locally in subdomains but it does not control the error propagation on the global scale (15) and does

not coordinate the error damping between neighboring subdomains (14). The approximate BSOR inversion

of aggregated matrix eAA coordinates the mean subdomain values and matches the local errors in overlapping

strips (see Fig. 3).

It may be shown that the preconditioner B is not worse than the additive Schwarz preconditioner B1.

Numerical experiments exhibit that the two-stage preconditioner is insensitive to the overlap regularity and
the number of subdomains (in the case of shape regular DD). However, the associated condition number is

affected by the relative width d of the overlap (reciprocally) but to a much smaller extent than B1. We

remark that an alternative aggregation-based DD [24] exhibits d�2-growth of the condition number.

5. Parallelization of the iterative solution

The above two-stage preconditioner allows us to use a very simple scheme for its parallelization. We
begin with assumptions used hereinafter.

1504 K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513

First, we cannot keep the global stiffness matrix A and build up the corresponding AMG preconditioner
on one processor. For an unstructured mesh with 106 tetrahedra, the amount of memory needed to keep A
and the AMG preconditioner is estimated by 100 and 400 Mbytes, respectively. However, we assume that

the aggregated matrix eAA may be stored on one processor. In our example, the storage for eAA does not exceed

the doubled storage for the interface block of A which is estimated by 4 Mbytes for P ¼ 2.

Second, the number of processors in our parallel computer is assumed to be not large, since the size ~nn of

the aggregated matrix may approach n as the number of processors grows. It is prohibited by the first

assumption.

Third, each iterative vector v 2 Rn is partitioned into P approximately equal disjoint subsets. The ith
subset as well as the corresponding block matrix row ½Ai1; . . . ;AiP � are treated by the only processor with

rank i. The matrix–vector multiplication

Aiivi þ
XP
j6¼i

Aijvj

requires vectors vj which are not known on the processor with rank i. These data are provided by the

conventional ‘‘ghost’’ node technique which attaches to the ith processor copies of vj-entries, i 6¼ j, needed
for computation of Aijvj. Before any matrix evaluation, the values in the ‘‘ghost’’ nodes must be updated by

the corresponding values from neighboring processors (procedure Update). In other words, Update is the

only procedure used in communications between processors. It is implemented via asynchronous send/re-

ceive MPI routines.

Fourth, the arithmetical complexity of the subdomain preconditioner Bii is assumed to be linear de-

pendent on ni. This implies the necessity of the even distribution of degrees of freedom among processors.
We consider two popular Krylov subspace methods, preconditioned GMRES and PCG. Both of them

require three parallel operations: scalar product calculation, matrix–vector and preconditioner–vector

multiplications. Since the number of ‘‘ghost’’ nodes participating in the matrix–vector multiplication is

small compared to the size of Aii, the amount of interprocessor communications is small as well.

The preconditioner incorporates three matrix–vector multiplications, with matrices B1, A and B2. The

matrix B1 is block diagonal and no communications are needed in its evaluation. The matrix B2 is a result of

a few BSOR iterations for the aggregated system. Implementation of BSOR sweeps presumes that the

aggregated matrix is generated and partitioned (after a permutation) into blocks with the diagonal blocks
being diagonal matrices. These operations are performed at the initialization step: the processor with rank i
computes the local aggregation matrix Ti and the ð~nni þ 1Þ � ~nn block row of eAA corresponding to ith submesh.

The latter is not large and may be assembled on the processor with rank root to form the global matrix eAA.
Matrix eAA is sparse except P rows which have many entries. Hence, it may be effectively partitioned into

blocks by a conventional sequential multi-coloring technique [25]. Multi-coloring virtually implies the

permutation of eAA such that a diagonal block corresponding to a color is the diagonal matrix. Therefore,

broadcasting multi-color data specifies implicitly the block partitioning of eAA on any processor. With the

optimal relaxation parameter x computed adaptively at the initialization step [23,26], the BSOR iterations
are known to be a very efficient smoother [22,23]. Moreover, the parallel BSOR sweeps use only Update

procedure for communications between processors [22].

The usage of the correction step with the aggregated system is three-fold. First, we can apply a very

simple and efficient sequential method for multi-coloring the aggregated matrix, since both its size and the

number of nonzero entries are very small compared to the size of the original matrix. Second, we essentially

reduce the complexity of BSOR sweeps due to smaller size of eAA. Third, for stiff problems, our experience

shows that the aggregated matrix eAA is much less stiff than the original matrix A and the BSOR sweep turns

out to be very efficient smoother.

K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513 1505

6. Numerical experiments

Numerical experiments have been performed on a COMPAQ Tru64 Cluster with processors cadenced at

667 MHz.

6.1. A problem with anisotropic singularities

We consider the Poisson equation in a domain X with one reentrant corner, X ¼ ð0; 1Þ3 n ½0; 0:5�3, and a
singular right hand side f ðxÞ ¼ 1=jx� x0j where x0 ¼ ð0:5; 0:5; 0:5Þ:

�Du ¼ f in X;

u ¼ 0 on oX:
ð19Þ

Properties of the solution to (19) are investigated in [27]. The solution possesses anisotropic edge sin-

gularities and a strong singularity at the reentrant corner point. The equation is discretized with the
piecewise linear FEs. In order to estimate the discretization error, we replace the exact unknown solution u
by a discrete solution �uu computed on a very fine adapted mesh. The fine mesh with approximately 1:5� 106

tetrahedra was generated after 20 iterations of Algorithm 1. We shall not discuss here the stopping criteria

for the algorithm and shall use 20 adaptive iterations in this subsection. As we shall see later, 10–14 steps is

enough to get a saturation in the error reduction. In Table 1 we illustrate asymptotic result (6) with �uu
instead of u. Proportionality of the error to NðXhÞ�2=3

(asymptotically optimal result) is clearly observed.

Therefore, the meshes obtained in Algorithm 1 are quasi-optimal. A slightly smaller value of

k�uu� uhk1 �NðXhÞ2=3 in the last column is probably attributable to a discrepancy between k�uu� uhk1 and
ku� uhk1.

In Fig. 4 we study Algorithm 1 for NT ¼ 100000. The graphs represent the behavior of k�uu� uhk1 and the

mesh quality QðjHhj;NT ; eXXhÞ in the course of adaptive iterations. It is easy to see that the L1-error is about

the same for all parallel runs (P > 1) but is slightly smaller for P ¼ 1. This is explained by the higher quality

of the final mesh. Note that the discrepancy between QðjHhj;NT ; eXXhÞ and 1 leads to the adaptive mesh with

the number of elements bigger than NT . Actually, on all adaptive iterations we have NðeXXhÞ � 160000.

Another important remark is that on all iterations the mesh generator was capable of constructing the jHhj-
quasi-optimal mesh with QðjHhj;NT ; eXXhÞJ 0:1.

In the next three tables, the arithmetical complexity of the mesh generation is studied. Since the QOM

mesh is generated by a sequence of local modifications, their number can be one of characteristics for the

arithmetical complexity. In Table 2 we exhibit the CPU time and the number of local modifications, #mod,

performed at the last (L ¼ 20) adaptive iteration. The number of local modifications is proportional to

NðXhÞ while the complexity of each modification (in terms of CPU time per modification) is roughly

proportional to NðXhÞ1=2. The latter dependence is probably attributable to our nonoptimal implemen-

tation of algorithms working with the ordered list of element qualities (see Section 2).

In Table 3, we show the number of local modifications for parallel runs and their execution time
measured on processor with rank root. It is pertinent to note that only when the mesh is settled down

(after 10th adaptive iteration), the processor time is proportional to the number of modifications. Before

that, the number of modifications may not correlate with the arithmetical complexity (CPU time). We

explain this by a different distribution of the local operations (Fig. 1).

Table 1

L1-norm of the error after 20 adaptive iterations

N 	 NðXhÞ 9735 19 359 28 151 36 134 52 079 100 075 160 944

k�uu� uhk1 0.025 0.017 0.013 0.0095 0.0066 0.0046 0.0024

k�uu� uhk1 �N2=3 11.3 12.2 11.9 10.3 9.1 9.8 7.0

1506 K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513

Another interesting observation is that the number of modifications per processor is not reciprocal to the
number of processors. On the first adaptive iterations, the total arithmetical complexity, #mod � P, grows
when P is increased. However, when the mesh is settled down, the total arithmetical complexity is decreased

which results in the super linear speed-up (see Table 4). This is attributable to different order of local

modifications. We recall that in a parallel run, we modify simultaneously P elements (and their neighbors).

It turns out that if the mesh is not well adapted, the most efficient order is one in the sequential algorithm:

repeatedly take the worst element in the global mesh. If the mesh is adapted, the more efficient order is that

where the worst elements are taken from subgrids. Being separated in space, the local modifications turn to

improve qualities of more elements in this case. Another consequence of that is the faster reduction of
#mod per processor in the course of the parallel adaptation on 6 and 8 processors. We emphasize that the

super linear speed-up of the mesh generation is an unexpected interesting feature of the parallel mesh

generator.

Fig. 4. The error k�uu� uhk1 (on the left) and the mesh quality QðHh;NT ; eXXhÞ (on the right) for NðXhÞ � 160000.

Table 2

Arithmetical complexity of the mesh generation for P ¼ 1

NðXhÞ 9735 19 359 28 151 36 134 52 079 100 075 160 944

#mod 731 1155 3747 3097 6075 11 147 18 904

CPU time 1.2 1.9 4.7 4.6 11.2 25.3 58.6
CPU time

#mod
103 1.6 1.6 1.3 1.5 1.8 2.3 3.1

Table 3

Number of mesh modifications and root�s CPU time for NðXhÞ � 160000

L P ¼ 1 P ¼ 2 P ¼ 4 P ¼ 6 P ¼ 8

#mod s #mod s #mod s #mod s #mod s

1 30 403 27.2 16 204 15.2 8752 7.9 6448 7.2 5484 6.5

2 30 850 39.6 18 273 27.1 12 340 14.5 8231 11.6 6937 10.8

4 28 027 48.7 22 585 38.4 9804 16.6 6570 12.8 5294 11.8

6 33 018 74.6 19 332 38.8 7643 15.0 4841 11.2 3061 9.4

10 32 986 87.9 13 776 30.2 4996 11.7 2602 8.7 1445 7.2

14 23 878 65.9 10 336 21.5 3741 9.8 1885 7.6 911 6.3

18 25 056 75.8 9802 20.1 2842 8.6 1536 6.3 434 5.7

20 18 904 58.6 7902 15.6 3265 9.7 1384 6.0 785 6.1

K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513 1507

In Tables 5 and 6 we show the arithmetical complexity for the sequential and parallel PCG methods,
respectively. For the sequential method, the preconditioner is the V-cycle of AMG. For the parallel

method, the preconditioner is given by (17) with four BSOR sweeps. Iterations are terminated when the

initial residual is reduced by a factor of 106. We note that in both cases the number of iterations grows as

NðXhÞ is increased. However, for the parallel solver, dependence on NðXhÞ is stronger albeit still very

moderate: 10-fold increase in NðXhÞ only doubles the number of PCG iterations (#CG). It is attributable

to the two-fold feature of method (17). From one side, the smaller order of Bii, the better condðBiiAiiÞ,
i ¼ 1; . . . ; P is. On the other hand, for uniform meshes condðBAÞ depends on the mesh size h, i.e., #CG is

proportional to h�1=2. In our experiments, the meshes are not uniform but a weak dependence of #CG on
NðXhÞ is observed as well.

Another interesting observation for the sequential method is that the arithmetical complexity per iter-

ation per element is increased as NðXhÞ grows (see Table 5). In contrast, for the parallel method it is

decreased and saturated (see Table 6) resulting in a very good parallel scalability on the fine mesh. This is

due to reduction of relative weight of interprocessor communications as NðXhÞ grows.
In Table 7 we exhibit the performance of the parallel solver in the course of adaptation for

NðXhÞ � 160000. The most important observation is that the number of iterations is insensitive to both the

structure of the mesh (on the first steps it is more uniform) and the number of processors.
In Table 8 we exhibit speed-ups per PCG iteration for several adaptive steps. It is pertinent to note that

at any adaptive iteration, NðXhÞ is not exactly the same for different number of processors. This and,

possibly, cash effects may explain the super linear speed-up for P ¼ 2. On the other hand, the speed-up for

P ¼ 8 is not very good because of small subdomain problems (ni � 4000) resulting in domination of

communications over computations.

Table 4

Speed-up of the mesh generation for NðXhÞ � 160000

P Adaptive iterations

1 2 3 4 5 6 7 8 9 10 11 12

2 1.8 1.5 1.3 1.3 1.4 1.9 2.2 2.6 2.8 2.9 3.1 3.4

3 2.4 1.9 2.0 2.1 2.9 3.4 4.4 5.3 4.9 5.4 5.1 6.1

4 3.4 2.7 2.3 2.9 3.7 5.0 5.4 6.1 6.5 7.5 7.0 7.5

6 3.8 3.4 3.3 3.8 4.6 6.7 7.5 9.3 10 10.1 9.7 10.1

8 4.2 3.7 3.5 4.1 5.4 7.9 9.4 10.5 11.8 12.2 12.5 12.8

Table 5

Number of PCG iterations and CPU time for P ¼ 1 and 20th adaptive iteration

N ¼ NðXhÞ 9735 19 359 28 151 36 134 52 079 100 075 160 944

#CG 8 11 10 13 12 12 13

CPU time 0.03 0.08 0.15 0.23 0.35 0.88 1.9
CPU time

#CG N
107 3.8 3.8 5.3 4.9 5.6 7.3 9

Table 6

Number of PCG iterations and CPU time for P ¼ 4 and 20th adaptive iteration

N ¼ NðXhÞ 9452 19 802 28 754 36 810 52 893 101 344 164 184

#CG 8 11 12 13 14 17 20

CPU time 0.05 0.10 0.12 0.15 0.22 0.53 0.88
CPU time

#CG N
107 6.6 4.6 3.5 3.1 3.0 3.1 2.7

1508 K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513

6.2. A problem with boundary layers

The second example is the singularly perturbed convection–diffusion equation in the back-step domain

X ¼ ð0; 1Þ3 n ½0; 0:5�2 � ð0; 1Þ:

�0:01Duþ ou
ox1

¼ 1 in X;

u ¼ 0 on oX:

ð20Þ

The solution to (20) possesses a severe exponential boundary layer at x1 ¼ 1 and parabolic boundary

layers at x2 ¼ 0, x2 ¼ 1, x3 ¼ 0 and x3 ¼ 1, as well as a weak interior layer at x2 ¼ 0:5 (for details we refer to

[6]). It is evident that QOMs have to be anisotropic in the boundary layers. Similarly to the previous ex-

ample, we replace the exact solution u by its piecewise linear FE approximation �uu on a very fine adapted
mesh with NðXhÞ � 0:6� 106. In Table 9 we show the dependence of error k�uu� uhk1 on NðXhÞ. As-

ymptotic result (6) is confirmed as well but with another factor due to the larger value of jXjjH j.

In Table 10 the arithmetical complexity of the sequential mesh generation at the 30th adaptive iteration

is shown. We also remark a rough proportionality of #mod to NðXhÞ and proportionality of the CPU time

per modification to NðXhÞ1=2.
In Fig. 5 we compare the performances of Algorithm 1 for different number of processors. Note that the

error is stabilized after a larger number of adaptive steps compared to the previous example. The parallel

mesh generator is capable of constructing jHhj-QOMs with QðjHhj;NT ; eXXhÞJ 0:1.
Therefore, it provides the same value of k�uu� uhk1 as the sequential algorithm. Moreover, the QOM is

generated faster in the parallel algorithm (see Table 11). The reasons for the super linear speed-up have

been discussed in the previous section.

In Tables 12 and 13 we exhibit the performance of the preconditioned GMRES method for the reduction

of the initial residual by a factor of 106. We observe two-fold increases of the number of GMRES iterations

(#GMRES) for 15-fold and 8-fold increases of NðXhÞ, for the sequential and parallel solvers, respectively.

Table 7

Number of PCG iterations and root�s CPU time for NðXhÞ � 160000

L P ¼ 1 P ¼ 2 P ¼ 4 P ¼ 6 P ¼ 8

#CG s #CG s #CG s #CG s #CG s

1 11 0.65 15 0.38 16 0.28 17 0.28 17 0.25

2 14 1.40 17 0.75 18 0.58 20 0.52 19 0.45

4 14 1.92 18 1.38 20 0.88 19 0.65 20 0.60

6 12 1.68 17 1.37 19 0.83 19 0.68 19 0.63

10 13 1.90 18 1.37 19 0.85 19 0.72 19 0.67

14 14 2.08 17 1.37 20 0.93 18 0.73 20 0.70

18 14 2.38 18 1.48 20 0.95 19 0.72 19 0.65

20 13 1.88 18 1.38 20 0.88 20 0.73 19 0.67

Table 8

Speed-up of the solver for NðXhÞ � 160000

P L ¼ 1 L ¼ 4 L ¼ 8 L ¼ 13 L ¼ 17 L ¼ 20

2 2.3 1.8 1.7 1.7 2.1 1.9

3 2.1 2.4 2.6 2.7 2.7 2.7

4 3.4 3.1 3.2 3.2 3.6 3.3

6 3.6 4.0 3.9 3.9 4.1 4.0

8 4.0 4.6 4.4 4.4 4.9 4.1

K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513 1509

Both dependencies are very weak albeit the convergence of the parallel solver is more sensitive to NðXhÞ.
On the other hand, the parallel solver demonstrates the excellent arithmetical scalability.

In Table 14 we show the solver performance for several adaptive iterations and different number of

processors. As in the previous example, the number of iterations is slightly dependent on the number of

Fig. 5. The error k�uu� uhk1 (on the left) and the mesh quality QðHh;NT ; eXXhÞ (on the right) for NðXhÞ � 140000.

Table 11

Speed-up for the mesh generation, NðXhÞ � 140000

P L ¼ 1 L ¼ 10 L ¼ 20 L ¼ 30

2 1.9 3.6 3.4 5.3

4 4.2 9.0 10.7 13.2

8 7.8 15 26.6 31.2

Table 9

L1-norm of the error after 30 adaptive iterations

N ¼ NðXhÞ 9531 18 798 36 175 70 344 140 392

k�uu� uhk1 0.057 0.031 0.022 0.016 0.010

k�uu� uhk1 �N2=3 25.5 21.8 23.9 27.1 26.8

Table 10

Arithmetical complexity of the mesh generation for P ¼ 1

NðXhÞ 9531 18 798 36 175 70 344 140 392

#mod 7784 10 346 20 147 35 731 84 931

CPU time 9.0 12.9 28.1 83.6 290
CPU time

#mod
103 1.1 1.2 1.4 2.3 3.4

Table 12

Number of GMRES iterations and CPU time for P ¼ 1 on 30th adaptive iteration

N ¼ NðXhÞ 9531 18 798 36 175 70 344 140 392

#GMRES 9 9 11 13 16

CPU time 0.03 0.07 0.23 0.8 2.3
CPU time

#GMRES N
107 3.5 4.1 5.8 8.7 9.8

1510 K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513

processors. Good speed-ups per iteration (see Table 15) are observed except for the case P ¼ 8 where the
size of subproblems becomes too small (ni � 3500).

6.3. A problem with jumping diffusion coefficients

The last example is the diffusion equation in the unit cube X ¼ ð0; 1Þ3:
�divðaðxÞruÞ ¼ 1 in X;

u ¼ 0 on oX;
ð21Þ

where aðxÞ is a positive function bounded from below. We study three choices for aðxÞ. First we take the

uniform isotropic case with aðxÞ 	 1. Second, we consider the checkerboard-like jumps in the diffusion

tensor:

aðxÞ ¼ 1 x 2 X1 [X2 [X3 [X4;
1000 otherwise;

�
where X1 ¼ ð0; 1=2Þ3, X2 ¼ ð1=2; 1Þ2 � ð0; 1=2Þ, X3 ¼ ð1=2; 1Þ � ð0; 1=2Þ � ð1=2; 1Þ and X4 ¼ ð0; 1=2Þ�
ð1=2; 1Þ2. Third, we consider the piecewise constant quasi-random diffusion tensor given by

aðxÞjei ¼
1 sinð1000xi1 þ 3000xi2 þ 5000xi3Þ > 0;
1000 otherwise;

�
where xi ¼ ðxi1; xi2; xi3Þ is the barycenter of tetrahedron ei. We notice that in the last two cases it is im-

possible to construct a conformal QOM since the Hessian has very strong jumps. Therefore, in the vicinity

Table 14

Number of GMRES iterations and root�s CPU time for NðXhÞ � 140000

L P ¼ 1 P ¼ 2 P ¼ 4 P ¼ 8

#GMRES s #GMRES s #GMRES s #GMRES s

3 9 1.0 10 0.55 11 0.43 11 0.28

10 12 1.7 12 0.82 13 0.45 14 0.35

20 14 1.8 15 0.98 16 0.65 15 0.42

30 16 2.2 16 1.12 17 0.72 16 0.47

Table 15

Speed-up for the solver for NðXhÞ � 140000

P L ¼ 3 L ¼ 10 L ¼ 20 L ¼ 30

2 2.0 2.1 1.9 1.9

4 3.0 4.1 3.2 3.2

8 4.4 5.8 4.6 4.7

Table 13

Number of GMRES iterations and root�s CPU time for P ¼ 4 on 30th adaptive iteration

N ¼ NðXhÞ 17 707 34 061 67 949 134 123

#GMRES 9 12 14 17

CPU time 0.07 0.12 0.25 0.72
CPU time

#GMRES N
107 4.4 2.9 2.6 3.1

K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513 1511

of the jumps, the QOM has to have neighboring equilateral elements with very different sizes which is

impossible due to mesh conformity. This is the reason why we study only the solver behavior and consider a

uniform cubic mesh with h ¼ 1=32 and split each cell into six tetrahedra, i.e.,NðXhÞ ¼ 196608. In addition,

we artificially split the mesh elements between processors either by plane x1 ¼ 0:5 (for P ¼ 2), or by planes

x1 ¼ 0:5 and x2 ¼ 0:5 (for P ¼ 4), or by planes x1 ¼ 0:5, x2 ¼ 0:5 and x3 ¼ 0:5 (for P ¼ 8). Therefore, the

corresponding subdomains (in the Schwarz method) overlap along interfaces where aðxÞ has jumps.

Table 16 shows that the convergence rate of the PCG method and the execution time do not depend on

the jumps in the diffusion coefficient and on the number of subdomains. Moreover, in all cases, the solver
exhibits the good parallel properties.

7. Conclusions

The parallel technique for the adaptive solution of 3D boundary value problems is considered. It in-

cludes two basic parallel algorithms, the tetrahedral mesh generation and the iterative solution. The al-

gorithms are independent of the underlying boundary value problem and have good parallel properties.
The input data for the adaptive mesh generator are a mesh and the corresponding discrete solution. The

output is a QOM provided the discrete Hessian approaches the differential one. Numerical experiments

confirm the theoretically predicted asymptotic error estimates for QOMs. The parallel mesh generation

reveals the super linear speed-up on a few last adaptive iterations.

The problem independent parallel iterative technique is based on the sequential black-box (problem

independent) AMG preconditioner. The AMG preconditioner enters the first (block Jacobi) part of the

suggested two-stage preconditioner. The second (correction) part is a few BSOR sweeps in the space of

aggregated vectors. It eliminates the convergence dependence on the number of subdomains, problem
coefficients, and dumps its sensitivity to the mesh size. The additional data required by the preconditioner

are confined to the mesh graph.

Acknowledgement

The authors are grateful to Prof. M. Sarbey for the assistance in performing numerical experiments.

References

[1] E. D�Azevedo, On optimal triangular meshes for minimizing the gradient error, Numerische Mathematik 59 (1991) 321–348.

[2] S. Rippa, Long and thin triangles can be good for linear interpolation, SIAM J. Numer. Anal. 29 (1992) 257–270.

[3] A. Agouzal, K. Lipnikov, Y. Vassilevski, Adaptive generation of quasi-optimal tetrahedral meshes, East–West J. Numer. Math. 7

(1999) 223–244.

[4] H. Borouchaki, P.-L. George, F. Hecht, P. Laug, B. Mohammadi, E. Saltel, Mailleur bidimensionnel de Delaunay gouverne par

une carte de metriques, Technical Report R2760, INRIA, 1995.

Table 16

Number of PCG iterations and root�s CPU time

P Case 1 Case 2 Case 3

#CG s #CG s #CG s

2 14 1.22 12 1.02 13 1.13

4 14 0.58 12 0.58 14 0.62

8 14 0.38 13 0.35 13 0.33

1512 K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513

[5] J. Dompierre, M.-G. Vallet, M. Fortin, W. Habashi, D. Ait-Ali-Yahia, A. Tam, Edge-based mesh adaptation for CFD, Technical

Report R95-73, CERCA, 1995.

[6] G. Buscaglia, E. Dari, Anisotropic mesh optimization and its application in adaptivity, Int. J. Numer. Meth. Engrg. 40 (1997)

4119–4136.

[7] K. St€uuben, Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput. 13 (1983) 419–452.

[8] T. Grauschopf, M. Griebel, H. Regler, Additive multilevel preconditioners based on bilinear interpolation, matrix dependent

geometric coarsening and algebraic multigrid coarsening for second order elliptic PDEs, Appl. Numer. Math. 23 (1997) 63–96.

[9] K. Lipnikov, Y. Vassilevski, Optimal triangulations: existence, approximation and double differentiation of P1 finite element

functions, in: Electronic Proceedings of the Second Workshop on Grid Generation, Moscow, June 2002. Available from <http://

www.ccas.ru/gridgen/ggta02/abstracts.html>, to appear in Comp. Math. Math. Phys. (2003).

[10] P. Zavattieri, E. Dari, G. Buscaglia, Optimization strategies in unstructured mesh generation, Int. J. Numer. Meth. Engrg. 39

(1996) 2055–2071.

[11] Y. Vassilevski, K. Lipnikov, Adaptive algorithm for generation of quasi-optimal meshes, Comp. Math. Math. Phys. 39 (1999)

1532–1551.

[12] G. Buscaglia, A. Agouzal, P. Ramirez, E. Dari, On Hessian recovery and anisotropic adaptivity, in: Proceedings of ECCOMAS 98

(the 4th European CFD Conference), Athens, Greece, 1998, pp. 403–407.

[13] A. Agouzal, Y. Vassilevski, On a discrete Hessian recovery for P1 finite elements, East–West J. Numer. Math. 10 (1) (2002) 1–12.

[14] I. Foster, Designing and building parallel programs, Addison-Wesley Publishing Company, New York, 1995.

[15] A. Pothen, H. Simon, K. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Math. Anal. Appl. 11 (1990)

430–452.

[16] R. Williams, Performance of dynamic load balancing algorithms for unstructured mesh calculations, Concurrency: Pract. Exp. 3

(1992) 457–481.

[17] Y. Vassilevski, Iterative solvers for the implicit parallel accurate reservoir simulator (IPARS). II. Parallelization issues, Technical

Report 00-33, TICAM, The University of Texas at Austin, 2000.

[18] S. Brenner, Lower bounds for two-level additive Schwarz preconditioners with small overlap, SIAM J. Sci. Comp. 21 (2000) 1657–

1669.

[19] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, Oxford, 1999.

[20] J. Mandel, Hybrid domain decomposition method with unstructured subdomains, Contemp. Math. 157 (1994) 103–112.

[21] J. Mandel, M. Bresina, Balancing domain decomposition for problems with large jumps in coefficients, Math. Comp. 65 (1996)

1387–1401.

[22] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H.V. der Vorst, Templates

for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1994.

[23] D. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

[24] E. Jenkins, C. Kees, C. Kelley, C. Miller, An aggregation-based domain decomposition preconditioner for groundwater flow,

SIAM J. Sci. Comput. 23 (2001) 430–441.

[25] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Co, Boston, 1996.

[26] D. Kincaid, J. Respess, D. Young, R. Grimes, Algorithm 586 ITPACK 2C: a fortran package for solving large sparse linear

systems by adaptive accelerated iterative methods, ACM Trans. Math. Software 8 (1982) 302–322.

[27] T. Apel, Anisotropic Finite Elements: Local Estimates and Applications, Teubner, Stutgart, 1999.

K. Lipnikov, Y. Vassilevski / Comput. Methods Appl. Mech. Engrg. 192 (2003) 1495–1513 1513

http://www.ccas.ru/gridgen/ggta02/abstracts.html
http://www.ccas.ru/gridgen/ggta02/abstracts.html

	Parallel adaptive solution of 3D boundary value problems by Hessian recovery
	Introduction
	Quasi-optimal meshes
	Parallelization of adaptive mesh generation
	Iterative solution with a two-stage preconditioner
	Parallelization of the iterative solution
	Numerical experiments
	A problem with anisotropic singularities
	A problem with boundary layers
	A problem with jumping diffusion coefficients

	Conclusions
	Acknowledgements
	References

