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SUMMARY

A combination of several contemporary techniques is used for the efficient parallel solution of the mixed
finite element systems on locally refined Grids. Implementation experience and numerical results are
reported. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade, the mixed finite element method (MFEM) [1] has become a very popular technique
for conservative approximations. It has the advantages of a solid mathematical foundation, simplicity
of implementation, applicability to unstructured meshes and full dispersion tensors. The appealing
features of the method led to extensive use in computational practice. This poses new challenges, such
as the efficient solution of the sparse linear systems generated by MFEM. Of particular interest is the
demand of the robust efficient solvers of MFEM systems associated with unstructured locally refined
meshes. The conservative approximations on unstructured meshes is a very powerful tool for tackling
many engineering applications.

The efficient solution of unstructured systems has been a subject of research in different fields of
numerical analysis. Recent developments in LU-factorizations [2,3] for sparse matrices extend their
applicability (on modern PCs) to systems with up to 100 000 unknowns. Of course, in the limit case
the factorization time is very large and the direct methods are not competitive to iterative solvers.
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Another class of black box solvers are Krylov subspace iterations (PCG, GMRES, BiCGstab)
with incomplete LU preconditioners [4]. Being very fast in implementation, they suffer from slow
convergence which deteriorates with subsequent refinement of the mesh. This is particularly important
for locally refined meshes where the refinement may be very deep. The fictitious space technique
provides an elegant method for efficient preconditioning of the unstructured systems by interpolating
data onto a hierarchical locally refined Grid [5,6]. The drawback of this approach is the strong
assumptions on the problem data (coefficients). An alternative approach to black box preconditioning
unstructured systems is the algebraic multigrid (AMG) technology [7,8]. Being more expensive at
the initialization stage, AMG methods provide (upon successful initialization) a better convergence
rate which is often independent of the mesh size. The key issues for any AMG method are separation
into ‘fine’ and ‘coarse’ degrees of freedom and the choice of the prolongation operator. Typically,
the ‘coarse’ level matrix is the Galerkin projection of the matrix associated with the ‘fine’ level.
The separation of degrees of freedom is based on the graph technologies applied to the matrix graph,
which exploit [9] or do not exploit [10] matrix entries. The choice of the prolongation operator in AMG
methods is the crucial issue involving the basic assumptions for the method, its type and its features.
Being true black box solvers, the first AMG methods (e.g. [9]) have used the matrix entries only for
the choice of prolongation operator. The price to be paid for the limited input information is a strong
assumption on the input matrices (e.g. M-matrices). The modern trend in the development of AMG
technologies is to relax assumptions on the input matrices requiring more input data. For instance,
the input matrix may be given in a disassembled form that is very typical for the finite element
applications. The methods (AMGe) [11,12] exploiting element matrices are more robust and less
independent of problem data. Parallel implementations of the considered methods are also presented in
the literature. We mention [2,13] for parallel LU factorization and [4,14] for parallel ILU factorization.
The parallelization of AMG methods is not technically simple. However, successful implementations
are known [15].

In this paper we report our experience in using MFEM for the approximate solution of scalar
elliptic equations on unstructured locally refined meshes. Our implementation consists of several
modern technologies used in applied numerical mathematics. The discretization is based on conformal
triangular or tetrahedral hierarchical meshes. Although the meshes may be refined locally, their shape
regularity is guaranteed. The hierarchy and local refinement are provided by the marked edge bisection
algorithm [16,17]. The MFEM problem is reformulated in the equivalent hybrid counterpart [18,19].
The only data required by this cost-effective procedure are the global matrix in the disassembled form
(local MFEM matrices) and Grid node coordinates together with the connectivity table. These data are
available in all finite element method (FEM) applications.

The associated saddle-point system is reduced by a sequence of local modifications to a smaller
system with a sparse symmetric positive definite matrix with at most seven (five in two dimensions)
non-zero entries per row. Therefore, the reduction of MFEM saddle-point systems to more compact
systems with symmetric positive definite matrices may be performed element-wise with a simple
inexpensive technology. The reduced system is solved by the preconditioned conjugate gradient (PCG)
method with a multilevel preconditioner suggested in [20].

The method has a solid theoretical background and its V-cycle formulation with one smoothing
per level is shown to be robust with respect to the problem data. The latter property implies
efficient (with optimal order of arithmetical complexity) preconditioning on locally refined meshes.
We mention another work [21], where the V-cycle is analyzed in the case of an interface operator

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:501–518



PARALLEL ITERATIVE MULTILEVEL SOLUTION 503

arising in the domain decomposition method applied to MFEM systems on uniformly refined meshes.
The preconditioner [20] is based on the equivalence [18,19,22] between the reduced system and the
P1 non-conforming finite element approximation. Therefore, a multigrid preconditioner for the non-
conforming FE matrices may be used in the solution of the reduced MFEM system. Similarly to the
AMG methods, the Grid-level matrices are built recursively as Galerkin projections of the fine Grid
matrix at the initialization stage. The simple prolongation operator is constructed on the basis of Grid
hierarchy data and is natural for the considered non-conforming finite element spaces. No assumptions
on smooth error characterization and no matrix-entries analysis are needed for the prolongation
operator derivation, in contrast to the AMG techniques. Thus the multigrid method may be considered
as a gray box using the MFEM reduced system and Grid data on input (logical hierarchy for defining the
prolongation operators). In comparison with the LU and ILU factorization techniques, the presented
method features a very good convergence rate and small initialization time; in comparison with the
AMG methods, it avoids the basic issues of AMG initialization, the separation of unknowns and the
construction of the prolongation, due to the input of logical hierarchy of the Grid. Similarly to AMGe
methods, it inputs the element matrices in the disassembled form; however, it uses them for the reduc-
tion to the system with smaller matrix and simpler structure. An important feature of the method is that
the sparsity patterns of level matrices differ: the matrix on a coarser Grid level is more dense than that
on a finer one. This may result in higher than linear (with respect to the number of unknowns) storage
requirements and the arithmetical complexity. We consider both the original preconditioner [20] and its
economical modification filtering-off some non-zero entries of the level matrices. The latter technique
has much in common with the ILU factorization methods. Our approach to method parallelization is
based on a simple partition strategy [23,24] and a particular data structure [25]. These choices provide a
very simple parallel implementation on computers with moderate number of processors. The approach
enables us to obtain feasible speed-ups on computers with distributed memory even on highly irregular
Grids despite the deterioration of sparsity of the level matrices. We note that the presence of deep local
refinements aggravates the arithmetical load balance on coarse levels and the sparsity deterioration
increases the weight of interprocessor communications. Both factors complicate an efficient parallel
realization. The novelty of our approach is its gray box character: it adopts the MFEM systems in the
disassembled form and uses the Grid data (node coordinates for the reduction to symmetric positive
definite (SPD) systems and logical hierarchy for defining the prolongation operators). This distin-
guishes it from the black box technologies (AMG, LU, ILU) and the integrated systems [26–28].

We note that deterioration of the sparsity patterns of level matrices is the new observation in
MFEM multilevel technologies, and filtering-off some non-zero entries of the level matrices is
the important modification of the original method [20]. Previous numerical examinations of the
multigrid method [20] on unstructured meshes are not known to the authors. Regarding our parallel
implementation, our simple (slice-wise) partition strategy and data structure allowed us a simple
realization and feasible efficiency for moderate numbers of processors. It is pertinent to remark that
clusters with a moderate (up to 20) number of processors are very popular in the computational
community and our technology may be useful in many cases.

This paper is outlined as follows. After a brief formulation of the model problem and its mixed
finite element discretization in Section 2, we give a formal description of the multilevel method and its
possible modification in Section 3. In Section 4, we discuss issues of parallelization: our principles of
parallelization, partitioning strategy and basic data structures. Numerical experiments are presented in
Section 5.
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2. MODEL PROBLEM AND MIXED FINITE ELEMENT APPROXIMATION

We consider the elliptic problem

−∇ · (A∇u)+ u = g in �

u = 0 on �0 (1)

∂u

∂ν�1

= 0 on �1

where � is a bounded polygonal (polyhedral) domain in R
d , d = 2, 3, with the boundary ∂�, �0 is a

closed subset of ∂�, �1 = ∂�\�0, g(x) ∈ L2(�) and A(x) is a uniformly positive definite symmetric
tensor:

ξT A(x)ξ ≥ a0ξ
T ξ, x ∈ �, ξ ∈ R

d , a0 > 0

Problem (1) may be reformulated in the dual mixed form as follows. Find the pair (σ, u) ∈ V ×W :

(A−1σ, v) − (u,∇ · v) = 0 ∀v ∈ V

−(∇ · σ,w)− (u,w) = −(g,w) ∀w ∈ W
(2)

where
V = {v ∈ (L2(�))d : ∇ · v ∈ L2(�), (v, ν�1) = 0 on �1}, W = L2(�)

Formulation (2) is the basis for the mixed finite element approximation of (1). Given a conformal
simplicial mesh E of �, we approximate (1) by the mixed finite method [1] as follows. Find (σh, uh) ∈
V h ×Wh:

(Bhσh, v)− (uh,∇ · v) = 0 ∀v ∈ V h (3)

−(∇ · σh,w)− (uh,w) = −(g,w) ∀w ∈ Wh (4)

where Bh = PhA−1 (component by component) and Ph is the L2-projection onto Wh. The spaces
V h,Wh are the lowest order Raviart–Thomas space defined via restrictions of V h,Wh on a simplex
E:

V h(E) = J
Ê→E

(V h(Ê))

Wh(E) = P0(E) (5)

V h(Ê) = (P0(Ê))d ⊕ ((x, y, z)P0(Ê))

Here, J
Ê→E

(V h(Ê)) is a linear mapping of the Raviart–Thomas space V h(Ê) defined on a reference

simplex Ê.
The problem (3)–(4) is reformulated in a hybrid form. To this end, we define the spaces

Ṽ h = {v ∈ (L2(�))d : v|E ∈ V h(E), for each E ∈ E}

Lh =
{
µ ∈ L2

( ⋃
f∈∂E

f

)
: µ|f ∈ V h · ν|f , for each f ∈ ∂E

}
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Here ∂E denotes the set of all interior faces and ν|f denotes a unit normal to f .
The hybrid form of the mixed method is as follows. Find the triple (σh, uh, λh) ∈ Ṽ h ×Wh × Lh:

(Bhσh, v)−
∑
E∈E
[(uh,∇ · v)E − (λh, v · νE)∂E\∂�] = 0 ∀v ∈ Ṽ h (6)

−
∑
E∈E

(∇ · σh,w)E − (uh,w) = −(g,w) ∀w ∈ Wh (7)

∑
E∈E

(σh · νE,µ)∂E\∂� = 0 ∀µ ∈ Lh (8)

where ν|E denotes the outer unit normal to the faces of E.
The matrix form of (6)–(8) is a system

 A B C

BT −D O

CT O O





σ

u

λ


 =


O

G

O


 (9)

The block structure of matrices A and BTA−1B + D allows us to eliminate u and σ from (9) and
reduce (9) to a smaller system [18,19,22]

[−CTA−1B(BTA−1B +D)−1BTA−1C + CTA−1C]λ = CTA−1B(BTA−1B +D)−1G

or
Mλ = G′ (10)

The matrix M is sparse (there are at most seven (five in two dimensions) non-zero entries per row),
symmetric and positive definite. Its order is equal to the number of faces in ∂E .

3. MULTILEVEL PRECONDITIONER

As already mentioned, simplicial meshes (conformal triangular or tetrahedral partitionings) are used in
the MFEM approximation of differential equations. The presence of solution peculiarities may require
local mesh refinement. MFEM theory is based on the shape regularity of the mesh. Therefore, regular
meshes providing local refinement should be used. On the other hand, the resulting algebraic systems
have to be solved very efficiently. Multilevel techniques seem to be the best methods for solving
many boundary value problems. They are based on a hierarchy of the Grids and regular hierarchical
unstructured meshes are the best candidates for the announced objectives.

Such meshes may be obtained, for example, by the marked edge bisection algorithm [16,17,29].
The algorithm possesses several features that make it very attractive in practical applications.
It provides a moderate growth of the number of elements due to one-level refinement: the number of
elements is at most doubled. It is adimensional: both two- and three-dimensional meshes are produced
by the same topological splitting, bisection of a coarse simplex into two finer ones. It preserves the
shape regularity: if the coarsest mesh consists of shape regular simplexes, all of the fine Grids will
be shape regular as well. It provides coarsening opportunities: the refined Grids may be coarsened
back [29].
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In addition to standard simplicial mesh data, the marked edge bisection algorithm requires a
specification how to partition the mesh in the subsequent d−1 refinements. The consistent partitioning
makes the initial mesh subject to certain restrictions. A possible class of appropriate meshes is
determined by a consistency condition. A mesh satisfies the consistency condition if the set of its
simplexes L can be split into non-intersecting subsets Li such that: (a) all simplexes from Li share
a common edge ri that belongs to simplexes from Li only; (b) in any subset Li whose associated
edge ri is not a boundary edge, the number of simplexes is even‡. We remark that the meshes
resulting from logically rectangular Grids by partitioning their cells into two (two dimensions) or six
(three dimensions) simplexes, do satisfy the consistency condition.

Let a sequence of nested simplicial meshes be generated by the marked edge bisection algorithm:

E0, E1, . . . , EK ≡ E (11)

We associate with each mesh El , l = 0, 1, . . . ,K , the discrete space

Nl = {v ⊂ L2(�), v|E ∈ P1(E),∀E ∈ El , v is continuous at the baricenters of interior faces

and vanishes at the baricenters of faces on �0}
Note that the spaces Nl are non-nested, i.e. Nl−1 �⊂ Nl , l = 1, . . . ,K . We define a coarse-to-fine inter-
Grid transfer operator Il : Nl−1 → Nl , l = 1, . . . ,K as follows. Let v ∈ Nl−1 and q be the baricenters
of a face of a simplex in El , then Ilv ∈ Nl is defined by

(Ilv)(q) =




0, if q ∈ �0

v(q), if q ∈ �1

v(q), if q �∈ ∂E for any E ∈ El−1
1
2 {v|E1(q)+ v|E2(q)}, if q ∈ ∂E1 ∩ ∂E2 for some E1, E2 ∈ El−1

(12)

The fine-to-coarse inter-Grid transfer operator Pl : Nl → Nl−1, l = 1, . . . ,K , is defined by Il :

(Plv,w)l−1 = (v, Ilw)l ∀w ∈ Nl−1, v ∈ Nl, l = 1, . . . ,K (13)

where
(v,w)l :=

∑
q

v(q)w(q) v,w ∈ Nl, l = 0, . . . ,K

Next, we define discrete operators on Nl , l = 0, . . . ,K , by use of induction:

MK :=M; Ml = Pl+1Ml+1Il+1, l = K − 1, . . . , 0 (14)

Finally, we denote the halved diagonal reciprocal part of Ml by Rl :

Rl = 1
2 (diag Ml)

−1, l = 0, . . . ,K

which corresponds to the Jacobi smoother in the multilevel preconditioner to be used.
The simplest version of the algorithm [20] is presented in the form of a pseudo-code. Let v ∈ NK

be given as the action on v of the preconditioner BK whose action on v is as follows:

‡We note that in the two-dimensional case this requirement is satisfied for any mesh since only two triangles can share a common
interior edge.
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Pseudo-code 1.

1. Set uK = v.
2. For l = K,K − 1, . . . , 1: xl = Rlul , ul−1 = Pl(ul −Mlxl).
3. w0 = M−1

0 u0.
4. For l = 1, 2, . . . ,K: yl = xl + Ilwl−1, wl = yl + Rl(ul −Mlyl).
5. Set BKv = wK .

This is a V-cycle with one pre- and one post-smoothing Jacobi iteration. We use the preconditioner
BK in the preconditioned conjugate gradient method applied to (10).

The general framework of the convergence analysis [20] of the multilevel method is done in terms
of the inequality

ah((I − BKMK)v, v) ≤ δKah(v, v) ∀v ∈ NK

where ah(·, ·) denotes the bilinear form associated with (1). The estimate of δK yields the convergence
rate of the multilevel method. Although only two-dimensional applications have been considered
in [20], the analysis may be extended to the three-dimensional case as well. In the two-dimensional
case of the full elliptic regularity [30] of problem (1), δK is proven to be bounded from above by a
constant δ < 1. The convergence result without any regularity assumption is weaker: δK is proven to
be bounded by 1− 1/CK where C is independent of K .

From a practical standpoint, the recurrency (14) results in an undesirable effect: the sparsity of
matrices Ml deteriorates as l reduces. The number of non-zero entries in a row may be as large as
several hundreds in the three-dimensional case, while MK has at most seven non-zero entries in a row.
This results in large memory requests for the storage of matrices Ml . We have found that some non-zero
entries may be neglected for the storage in many (not all) cases. Actually, they contribute important
information to the recurrent generation of the matrix at the coarser level. However, every so often
their influence is negligible after the initialization step. Taking into account the above considerations,
it is natural to introduce the threshold parameter τ into the algorithm. The non-zero value of the
threshold shows some off-diagonal entries of the level matrices (except MK and M0) to be filtered
off. The thresholding essentially reduces memory requirements but can affect the convergence of the
iterative solver. The optimal value of the threshold seems to be a compromise between the memory
requests and the iteration convergence rate. The choice τ = 0 preserves all non-zero off-diagonal
entries and provides fast convergence, albeit requiring quite a large area to store all of the level matrices.
The non-zero value of τ filters off those off-diagonal entries Ml

ij of the intermediate level matrices Ml :
(a) whose associated faces belong to the same coarsest simplex; and (b) |Ml

ij | < τ |Ml
ii |. Any filtered

entry is added to the diagonal entry from the same row, in order to preserve the row sum. This is
very important in the absence of a mass term in M . The condition (a) makes the filtering technology
robust in the case of jumping coefficients. We note that due to the recurrent definition (14) of the level
matrices, the filtering should be applied to Ml+1 after Ml has been generated.

4. PARALLELIZATION OF THE MULTILEVEL METHOD

The parallel algorithm we want to discuss complies with the following principles. The parallel algo-
rithm is identical mathematically to its sequential counterpart (Pseudo-code 1). On parallel computers
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with a moderate number of processors (less than 20), it provides an essential speed-up for both uniform
and locally refined meshes. It is implemented identically for two- and three-dimensional meshes.
The time of separation of mesh subdomains associated with processors is proportional to the number
of faces in the finest mesh. The number of interior faces is far more than the number of interfaces.
The number of unknowns (faces) is uniformly balanced over the processors. A work memory of the
algorithm is proportional to the number of unknowns.

The fine Grid E is partitioned in a set of non-intersecting subdomains that are topological strips
(slices in three dimensions):

E1, E2, . . . , Enp

where np stands for the number of processors. Each subdomain is associated with a processor. To this
end, we take advantage of the inertial bisection algorithm [23,24], which may be described as follows.
Given a mesh with ns simplexes, we associate to each simplex a unit mass located at its baricenter xk

and define the inertia tensor by

Tij =
ns∑

k=1

δij |yk|2 − yk
i yk

j , i, j = 1, 2, yk = xk −
ns∑
l=1

xl/ns

The partitioning axis is computed as the eigenvector v associated to the smallest eigenvalue of T , i.e. the
principle direction with the smallest inertia moment. Then the simplexes are colored for partitioning
as follows: sort the points in ascending order of (yk, v); define the mass stride 
m = ns/np; color
the point by the integer part of k/
m. The resulted subdomains are topological strips since the above
partitioning may be thought of as cutting E by np − 1 planes orthogonal to the partitioning axis.

Such a decomposition complies with our requirements but, more importantly, allows us to easily
define local interpolation and restriction operators associated with the Grid subdomains (the importance
of the strip-wise partitioning for the implementation stage is discussed at the end of this section).
The role of the intergrid transfer operators (interpolation and restriction) is two-fold. On the one hand,
at the initialization stage, they are used in the computation of the Galerkin projections (14) onto coarse
Grids. On the other hand, they are used in the evaluation of the preconditioner. In order to provide the
mathematical equivalence between the parallel and sequential algorithms, the parallel intergrid transfer
operators must be identical to their sequential counterparts. Their evaluation on a processor should be
as independent of data in the other processors as possible, for the sake of high parallel efficiency. To this
end, we first arbitrarily enumerate the faces of the coarse mesh E0. When the fine mesh El is generated
by the bisection refinement of some simplexes from El−1, l = 1, . . . ,K , each newly appearing face
is assigned an incremented index. For any face r of mesh Ei we define a set Kr as a minimum subset
of faces {1, . . . , r − 1} yielding a completely defined right-hand side of (12) for computing Ilv at the
face r . Secondly, for any subgrid E i , i = 1, . . . , np, we associate such a sequence of coarsening Grids
E i

l , l = K − 1, . . . , 0, so that E i
l contains the sets Kr for any face r ∈ E i

l+1 \ E i
l , l = K − 1, . . . , 0.

The subgrids E i
l may be constructed as follows. The subgrid E i

K coincides with E i , and the subgrid E i
l ,

l = K − 1, . . . , 0, is obtained from E i
l+1 by the elimination of faces belonging to El+1 \ El and the

addition of the sets Kr associated with the eliminated faces. Subgrids of a coarse level l < K may
overlap due to a dilation of coarser subgrids.

The sequence E i
l , l = 1, . . . ,K , available at processor i, i = 1, . . . , np provides data for local

evaluation of the interpolation operator I i
l , according to (12), and almost local evaluation of the

restriction operator P i
l . Indeed, for any face r ∈ E i

l , the interpolation operator depends on values
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associated with Kr , whose elements belong to processor i by definition of E i
l−1. It allows us to

evaluate the interpolation operator I i
l on processor i without communications with other processors.

The evaluation of the restriction operator P i
l implies the accumulation of contributions of values at

faces r into the elements of Kr . It results in communications between processors whose sets Kr

overlap [25].
The level matrices Ml occupy the largest part of data storage. Therefore, they are distributed among

processors according to the partition into the subgrids. The fine Grid matrix MK is represented as the
sum of subdomain matrices Mi

l , i = 1, . . . , np. They are assembled from the local matrices computed
on simplexes from the respective subgrid E i

K .
The matrices of other levels Ml , l = K − 1, . . . , 1, are computed as the Galerkin projections (14)

onto the finite element spaces for the associated Grid El . The restrictions Mi
l of matrices Ml onto

subgrids E i
l are computed via the restrictions Mi

l+1 of Ml+1 and the local inter-Grid transfer operators
P i

l+1, I i
l+1: Mi

l = P i
l+1M

i
l+1I

i
l+1, l = K − 1, . . . , 1. Of course, the multiplication is performed on

each processor independently of others, due to the local definition of Mi
l . We note that the set of faces

contributing to the matrix Mi
l−1 deviates from the same set for Mi

l no more than the mesh size in El−1.

In order to describe the multiplication of matrix Mi
l with a vector, we introduce types of mesh faces.

A face of level l is interior if it belongs to a single subgrid E i
l ; it is a local interface if it is shared by

two subgrids E i
l , Ej

l , with |i − j | = 1; otherwise, it is global. A global face associated with a pair of
subgrids is considered to be global for all subgrids of the current level. The Mi

l matrix–vector product
is computed differently for different types of faces. For the interior faces, no communications are
needed since only local data contribute to the matrix–vector product. For the local interface degrees of
freedom, communications of the host processor with the physical neighbors i − 1 ← i → i + 1
occur. The length of the messages is bounded by the number of local interface faces. In order to
compute the matrix–vector product in the global faces, the global (all-to-all) communications are
required. The parallel efficiency depends on the number of the global faces: the smaller it is, the more
scalable matrix–vector multiplication becomes. The consistent classification of the face types may be
performed on the basis of the sequence E i

l , l = K, . . . , 1 and a minimal number of local interface
and global communications. The detailed presentation of the algorithm is rather tedious [25] and is
omitted here. It is pertinent to note, however, that the strip-wise partitioning of the fine Grid provides
the consistent and efficient parallel classification of face types. We do not know how to extend the
parallel classification algorithm to general partitions [31].

5. NUMERICAL RESULTS

The numerical experiments have been performed on a Beowulf system consisting of 16 dual
AMD Athlon (1.6 GHz) processors. Interprocessor communications are based on MPI library calls.
First, we examine two-dimensional cases. We consider problem (1) with �1 = ∅ (homogeneous
Dirichlet boundary condition), identity matrix A, f = 1, and domain � = (0, 1)2. The coarsest mesh
E0 consists of two triangles separated by the diagonal containing the point (1; 0). The abbreviations
#it and cnd stand for the number of iterations and the condition number of the preconditioned matrix,
respectively, nK stands for the number of faces (the order of the matrix MK ) and t denotes the time
(in seconds) of PCG iterations.
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Table I. Two-dimensional case: performance of PCG iterations for meshes with different types of local refinement.

K

13 15 17

Mesh nK #it cnd t nK #it cnd t nK #it cnd t

Uniform 24 704 12 2.9 0.7 98 560 14 3.4 3.6 393 728 16 3.9 18.3
Ref. in a sbdm 6585 12 2.5 0.2 25 440 13 3.0 0.9 100 007 15 3.5 4.0
Ref. to a curve 1460 9 1.8 0.1 2986 9 1.8 0.1 6048 10 1.9 0.2
Ref. to a point 608 8 1.7 <0.01 1172 8 1.7 <0.01 2432 9 1.9 0.1

We begin with single processor experiments. In Table I we present the performance features§ on
various meshes, see Figure 1. The number of iterations increases slowly as the number of unknowns
grows. However, the condition number saturates for locally refined meshes. For uniform refinements in
(sub)domain we observe proportionality of the condition number to the number of levels. However, the
condition numbers are very small (less than four) and four-fold increase of nK causes the increment of
the condition number by 0.5. However, it is not clear whether the saturation of the condition number
will occur on meshes with further uniform refinement. The time per iteration is almost linear, which is
indicative of the suboptimal order of arithmetical complexity.

The case of jumping scalar permeability coefficients is considered in Table II: A(x, y) = a(x, y)I,
where

a(x, y) =
{

a 1− x > y

1 1− x < y

The jumps slightly affect the condition number and the convergence rate: halving the mesh size
increases the condition number by approximately 30%. On the other hand, on a fixed mesh, the
condition number stabilizes as the jump value tends to infinity. Remarkably, the number of iterations
decreases for very large jumps, which may be explained by a clusterization of eigenvalues and the
properties of the conjugate gradient method.

In Table III we allow the anisotropic tensor to jump and change the principal direction

A =
{

diag(a, 1) 1− x > y

diag(1, a) 1− x < y

In addition, we repeat the experiment on the same Grid which is rotated by about 20◦. The center of the
rotation coincides with the baricenter of the Grid. This simulates the full diffusion tensor. The presence
of anisotropy in the permeability tensor deteriorates the convergence rate to a greater extent: an increase
of the anisotropy ratio by a factor of four causes in three-fold increase of the condition number and a
50% jump of the iteration count. The Grid rotation does not affect the performance.

§In all of the experiments, the initial residual was reduced by a factor of 106.
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Figure 1. Two-dimensional case: the meshes with different refinements.
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Table II. Two-dimensional case: performance of PCG iterations for the
scalar jump in diagonal tensor, uniform Grid.

K

13, nK = 24 704 15, nK = 98 560 17, nK = 393 728

a #it cnd t #it cnd t #it cnd t

1 12 2.9 0.7 14 3.4 3.6 16 3.9 18.3
104 31 34.3 1.8 39 44.9 9.9 46 57.0 50.4
106 28 36.3 1.6 34 47.5 8.5 41 60.0 45.2

Table III. Two-dimensional case: performance of PCG iterations for the jumps in
anisotropic tensor, uniform and rotated Grids.

K

Uniform Grid Rotated (20◦) Grid

13, nK = 24 704 17, nK = 393 728 13, nK = 24 704 17, nK = 393 728

a #it cnd t #it cnd t #it cnd t #it cnd t

1 12 2.9 0.7 16 3.9 18.3 12 2.9 0.7 16 3.9 18.3
4 17 5.0 1.0 23 7.1 26.3 16 4.3 1.0 22 6.2 25.6

16 28 12.2 1.6 38 18.8 42.7 24 9.5 1.4 33 14.9 37.2
64 42 35.3 2.5 62 57.5 69.0 36 25.5 2.1 51 42.6 57.2

Table IV. Two-dimensional case: thresholding and performance of PCG iterations (uniform Grids).

K

13 15 17

τ #it cnd t SK #it cnd t SK #it cnd t SK

0 12 2.9 0.7 623 085 14 3.4 3.6 2 601 133 16 3.9 18.3 10 636 013
0.01 12 2.9 0.6 467 013 14 3.5 3.2 1 881 361 17 4.0 17.0 7 538 759
0.05 13 2.9 0.6 297 915 15 3.4 3.0 1 167 929 17 4.0 14.6 4 605 607
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Table V. Two-dimensional case: parallel performance of PCG iterations, initialization versus iterations.

np

2 4 8 16

Mesh nK t0 t t0 t t0 t tnp=4/2tnp=8 t0 t tnp=4/4tnp=16

Uniform 131 581 1.1 3.4 0.6 2.3 0.3 1.2 0.96 0.2 1.0 0.57
525 309 4.9 16.3 2.9 11.4 1.7 6.8 0.84 1.0 3.8 0.75

Ref. in a sbdm 133 431 1.1 3.8 0.6 2.4 0.4 1.3 0.92 0.2 1.0 0.60
528 961 4.7 17.1 2.7 11.5 1.6 6.4 0.90 1.0 4.2 0.68

Ref. to a curve 229 197 2.8 6.9 1.7 5.4 1.0 2.8 0.96 0.6 2.1 0.64
458 561 6.0 14.7 3.5 11.5 2.0 6.1 0.94 1.2 4.3 0.67

In Table IV, the economical modification is considered for the case described at the start of the
section. The threshold parameter τ influences the aggregated size of all level matrices SK . In certain
cases, the size may be reduced by a factor of 2.5. However, the iteration time is not reduced essentially.

In Table V we present the parallel features of the two-dimensional algorithm: how the initialization
(t0) and iterative solution (t) time depend on the number of processors np. Two conclusions may be
drawn from these data. First, independently of the number of processors, the initialization time does
not exceed a quarter of the iteration time, and the speed-up of the initialization matches the speed-up
of the iterations. Second, the speed-up of iterations is quite satisfactory: the two-fold and four-fold
increases of the processor numbers, compared with the performance on 4 processors, yield at least 84
and 67% of the parallel efficiency on fine Grids. It is pertinent to note that the deterioration of the
parallel efficiency for 16 processor runs is less severe on uniform Grids. The poor parallel efficiency
with respect to the two-processor runs is conditioned by the parallel computer architecture: the MPI
communications for dual processors have very small overheads because of shared memory. The actual
interprocessor exchanges occur for the case of more than two processors. This is the reason why we
present the parallel efficiency with respect to four-processor runs. The two-processor run measurements
are shown in order to estimate the overhead of actual interprocessor communications.

We now examine the performance of the thee-dimensional algorithms. We consider problem (1)
with �1 = ∅, identity matrix A, f = 1. The coarsest mesh E0 consists of two tetrahedra T1 and
T2 with vertices {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} and {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0,−1)}.
The single processor performance of the algorithm on different meshes is shown in Table VI. The types
of meshes are shown in Figure 2. The results are similar to those shown in Table I: the condition
numbers are small (less than 6.2) and in the worst case (uniform refinements) an eight-fold increase
of nK increments the iteration count by three. We expect that the saturation of cnd and #it may occur
on finer Grids that are beyond the computer memory capacitance. However, the time per iteration is
almost proportional to the number of unknowns: an eight-fold increase of the matrix order produces
nine or ten-fold slow downs of one iteration. The arithmetical complexity of the evaluation of the
preconditioner does not seem to be sensitive to the type of Grid refinement.
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Figure 2. Three-dimensional case: the meshes with different refinements.

The case of jumping scalar coefficients is considered in Table VII: A(x, y, z) = a(x, y, z)I, where
a(x, y, z) = a, if z > 0, else a(x, y, z) = 1. In Table VIII we allow the anisotropic tensor to jump and
change the principal direction

A =
{

diag(a2, a, 1) z > 0

diag(a, a2, 1) z < 0

The permeability tensor A thus has a jump on the plane {z = 0}. In addition, we repeat the experiment
on the same Grid which is then rotated by about 20◦ in planes xz and xy. The center of the rotation
coincides with the baricenter of the Grid.
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Table VI. Three-dimensional case: performance of PCG iterations for meshes with different types
of local refinement.

K

10 13 16

Mesh nK #it cnd t nK #it cnd t nK #it cnd t

Uniform 4416 13 3.5 0.2 34 048 15 4.1 2.0 267 264 19 5.6 26.3
Ref. in a sbdm 2739 13 3.4 0.1 19 360 15 4.0 1.2 143 694 18 5.3 13.3
Ref. to a plane 1974 17 5.9 0.1 9106 18 5.9 0.7 39 534 18 5.9 3.9
Ref. to a point 960 17 6.2 <0.01 2770 17 6.2 0.2 7080 18 6.2 0.6

Table VII. Three-dimensional case: performance of PCG iterations for
the scalar jump in diagonal tensor, uniform Grid.

K

10, nK = 4416 13, nK = 34 048 16, nK = 267 264

a #it cnd t #it cnd t #it cnd t

1 13 3.5 0.2 15 4.1 2.0 19 5.6 26.3
104 20 11.8 0.2 28 20.1 3.8 39 33.8 53.8
106 18 12.5 0.2 26 23.3 3.5 39 43.3 53.9

Table VIII. Three-dimensional case: performance of PCG iterations for the jumps in
anisotropic tensor, uniform and rotated Grids.

K

Uniform Grid Rotated (20◦) Grid

10, nK = 4416 16,nK = 267 264 10, nK = 4416 16, nK = 267 264

a #it cnd t #it cnd t #it cnd t #it cnd t

1 13 3.5 0.2 19 5.6 26.3 13 3.5 0.2 19 5.6 26.3
4 24 11.1 0.3 30 13.7 41.4 32 21.6 0.4 38 21.2 52.5
8 37 33.0 0.4 49 36.0 67.7 48 59.3 0.6 60 58.5 82.5
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Table IX. Three-dimensional case: thresholding and performance of PCG iterations.

K

10 13 16

τ #it cnd t Sk #it cnd t Sk #it cnd t Sk

0 13 3.5 0.2 156 156 15 4.1 2.0 1 864 932 19 5.6 26.3 18 948 525
0.01 13 3.5 0.1 96 081 16 4.5 1.6 904 339 19 6.3 16.8 7 528 827
0.05 14 4.0 0.1 69 868 19 6.2 1.6 600 337 25 10.4 18.6 4 612 142

Similarly to the two-dimensional cases, on a fixed Grid, the iteration count saturates as the value of
the jump in the scalar permeability tensor tends to infinity, whereas halving the mesh size increases
the iteration count by approximately 30%. The four-fold increase of the anisotropy in the permeability
tensor roughly triples the condition number and augments the iteration count by 50%. The Grid rotation
(simulating the full permeability tensor) has a greater impact on the performance of the method than in
the two-dimensional case.

The economical modification is considered in Table IX. The threshold parameter τ influences the
aggregated size of all level matrices SK . In certain cases, the size may be reduced by a factor of 4.0.
As a consequence, the iteration time may drop by 30–50%, depending on the extent of the iteration
count increase.

In Table X, we exhibit the parallel features of our three-dimensional algorithm. The table is the
complete analog of Table V. The data presented in Table X differ from those in the two-dimensional
case. First, on two and four processors, the initialization cost approaches the iteration expenses.
With a larger number of processors, the time of initialization is as little as one-half of the iteration
time (or less). The parallel efficiency on fine Grids is almost as good as in the two-dimensional case:
for four-processor runs, two-fold and four-fold increases of np = 4 yield at least 87 and 59% of parallel
efficiency, respectively. The worse parallel efficiency in the 16 processor runs is explained by a larger
weight of global communications due to a larger number of global degrees of freedom. That is why our
parallel implementation loses its efficiency on a larger number of processors. The reason for presenting
the parallel efficiency with respect to the four-processor run was explained earlier.

6. CONCLUSIONS

The efficient parallel solution of conservative approximations of elliptic equations was discussed.
The method is the combination of several contemporary technologies: the two- and three-dimensional
marked edge bisection algorithms for the generation of locally refined meshes; the inertial bisection
algorithm for efficient and topologically simple data partitioning; the MFEM for locally conservative
approximations and the algebraic condensation for its compact storage; the modern multilevel method
(with the modification) applied to the algebraically condensed system; the parallelization technologies
providing the load balance and the mathematical equivalence of the parallel versions.
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Table X. Three-dimensional case: parallel performance of PCG iterations, initialization versus iterations.

K

2 4 8 16

Mesh nK t0 t t0 t t0 t tnp=4/2tnp=8 t0 t tnp=4/4tnp=16

Uniform 51 707 1.4 1.9 0.6 1.0 0.3 0.7 0.71 0.2 1.0 0.25
403 451 20.0 22.1 9.3 12.9 4.2 7.3 0.88 1.9 5.5 0.59

Ref. to a plane 95 907 4.1 4.7 1.7 2.8 0.8 1.8 0.78 0.4 1.5 0.47
394 975 22.6 23.8 10.8 14.6 4.8 7.6 0.96 2.3 5.5 0.66

Ref. to a line 138 347 4.1 5.9 2.1 3.7 1.1 2.3 0.80 0.7 1.5 0.62
283 443 9.2 12.4 4.8 8.0 2.5 4.6 0.87 1.4 3.1 0.64

The numerical experiments confirm that the implemented algorithm possesses the following
properties. It has almost linear arithmetical complexity and data size, is robust to jumps in the
permeability tensor, and shows satisfactory speed-ups even on highly non-uniform meshes.
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