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a b s t r a c t

The paper introduces a finite difference solver for the unsteady incompressible Navier–Stokes equations
based on adaptive cartesian octree grids. The method extends a stable staggered grid finite difference
scheme to the graded octree meshes. It is found that a straightforward extension is prone to produce spu-
rious oscillatory velocity modes on the fine-to-coarse grids interfaces. A local linear low-pass filter is
shown to reduce much of the bad influence of the interface modes on the accuracy of numerical solution.
We introduce an implicit upwind finite difference approximation of advective terms as a low dissipative
and stable alternative to semi-Lagrangian methods to treat the transport part of the equations. The per-
formance of method is verified for a set of benchmark tests: a Beltrami type flow, the 3D lid-driven cavity
and channel flows over a 3D square cylinder.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Octree grids are gaining popularity in computational mechanics
and physics due to the their simple cartesian structure and embed-
ded hierarchy, which makes mesh adaptation, reconstruction and
data access fast and easy. As an example, such grids were used
for adaptive discontinuous Galerkin and finite volume methods
with application to hyperbolic conservation laws, see, e.g., [1–4].
Fast dynamic remeshing with octree grids makes them a natural
choice for the simulation of moving interfaces and free surface
flows, see, e.g., [5–11], octree grids became a standard tool in im-
age processing [12].

In this paper, we study the application of octree grids to numer-
ical solution of the incompressible Navier–Stokes equations, which
in non-dimension form read

@u
@t
þ u � ru� mDuþrp ¼ 0 in X� ð0; TÞ;

divu ¼ 0 in X� ½0; TÞ;
ujt¼0 ¼ u0 in X;

ujC1
¼ g; m

@u
@n
� pn

� �����
C2

¼ 0;

ð1Þ

where u, p are unknown fluid velocity and kinematic pressure, m is
the viscosity parameter, C2 is the outflow part of the boundary, n is
the normal vector to C2, and C1 is the rest of @X. Discretizations on
octree (quadtree) cartesian grids already enjoyed an employment in
incompressible viscous and inviscid fluid flow computations. Thus,
Popinet in [13] developed a finite volume Godunov type scheme,
which uses a collocated arrangement of velocity unknowns in cells
vertices. Min and Gibou [14,15] introduced a finite difference meth-
od on non-graded octree grids, where all unknowns were collocated
to cell vertices and semi-Lagrangian techniques were applied to
treat advection. A special stabilization was applied in those papers
to avoid spurious pressure modes typical for the collocated arrange-
ment of unknowns. In [6,7,11] the finite difference MAC scheme
[16–18], with staggered location of unknowns, was extended to oc-
tree meshes.

The advantages of using staggered location of unknowns are the
cell-wise enforcement of the incompressibility condition and
the well-known pressure stability of such schemes: odd–even
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oscillatory pressure modes do not emerge. However, such arrange-
ment of unknowns makes building higher order accurate methods
on octree grids technically more difficult or computationally
expensive. In particular, in papers [6,7,11] a first order semi-
Lagrangian method was applied to treat advection terms. In this
paper, we develop a second order accurate finite difference scheme
with the staggered location of unknowns on graded octree carte-
sian meshes. To reduce numerical dissipation, we build higher or-
der upwind finite difference approximations of advective terms.
The discretization invokes simple linear interpolation or quadratic
interpolation built upon second degree polynomials of only two
variables. This leads to compact nodal stencils and makes implicit
treatment of diffusion and advection terms feasible by solving
algebraic systems of equations, with sparse matrices, by precondi-
tioned Krylov subspace iterative methods. The implicit advection
step removes the Courant stability condition for the time step,
which can be otherwise rather restrictive for locally refined
meshes. Applying low dissipative approximations reveals, how-
ever, a (seemingly) previously unknown issue: For octree staggered
grids, the discrete Helmholtz decomposition is unstable due to
oscillatory spurious velocity modes tailored to course-to-fine grid
interfaces. If a fluid viscosity or numerical diffusion is sufficiently
large, then such modes are suppressed, otherwise they propagate
and destroy the accuracy of numerical solution. In the paper, we
introduce a linear low-pass filter which eliminates the spurious
modes and improves the accuracy of numerical solution significantly.

The remainder of the paper is organized as follows. In Sec-
tion 2, we consider the discrete Helmholtz decomposition on oc-
tree meshes with the staggered location of unknowns. It turns out
that the decomposition is specifically unstable. However, it can be
stabilized by a local enrichment of discrete pressure space or by
introducing a local low-pass filter. The discretizations of advective
and diffusion operators are described in Section 3. We note right
away that only the case of cubic cells is treated in the paper. For
curvilinear boundaries, this means a first order staircase approx-
imation. An extension of the discretization for cut cells will be re-
ported elsewhere. Further, in Section 4 we collect a few
competing time-stepping splitting schemes that are used further
in numerical experiments. Finally, in Section 5 we present the re-
sults of numerical experiments for several benchmark problems:
a 3D Beltrami type flow, the 3D lid-driven cavity problem and
channel flows around a 3D square cylinder. Conclusions are given
in Section 6.

2. Staggered grid discretization and the Helmholtz
decomposition

For the staggered location of velocity and pressure unknowns
on cubic meshes, the pressure degrees of freedom are assigned to
cells centers and velocity variables are located at cells faces in such
a way that every face stores normal velocity flux. If a face is shared
by cells from different grid levels, then velocity degrees of freedom

are assigned to the faces centers of fine grid cells (in the case of
graded octree mesh, the corresponding face of the coarse grid cell
holds 4 velocity unknowns), cf. Fig. 1 (left). The staggered FD dis-
cretization is well-known, cf. [19], to be stable on a uniform mesh.
Although we do not have a rigorous proof, which is a non-trivial
exercise even for the uniform grid, results of numerical experi-
ments strongly suggest that the scheme remains pressure-stable
for octree meshes as well.

The approximation of divu in the center xV of a grid cell V
makes use of the Gauss formulaZ

V
divu dx ¼

Z
@V

u � n ds; ð2Þ

where n is the outward unit normal to the cells boundary. Let FðVÞ
be the set of all faces F of V, i.e. @V ¼ [F2FðVÞF, and xF denotes the
center of F 2 FðVÞ. We define the grid divergence operator by

ðdivh uhÞðxV Þ ¼ jV j�1
X

F2FðVÞ
jFjðuh � nÞðxFÞ: ð3Þ

Thanks to the staggered location of velocity nodes, the fluxes
(uh � n)(xF) are well-defined.

One way to introduce the discrete gradient is to define it as the
adjoint of the discrete divergence. We define rh differently based
on the formal Taylor expansions. For every internal face we assign
the corresponding component of rhp as follows. Since the octree
mesh is graded, there can be only two geometric cases. If a face
is shared by two equal-size cells, then the central difference
approximation is used. Otherwise, the approximation of px at the
face center node y is illustrated in Fig. 1 (right): Consider the cen-
ters of five surrounding cells x1, . . . , x5 and expand the pressure va-
lue p(xi) with respect to p(y):

pðxiÞ ¼ pðyÞ þ rpðyÞ � ðxi � yÞ þ Oðjxi � yj2Þ:

Neglecting the second-order terms, we obtain the following over-
determined system:

1 �D=2 D=4 D=4
1 D=4 0 0
1 D=4 D=2 0
1 D=4 0 D=2
1 D=4 D=2 D=2

0BBBBBB@

1CCCCCCA
pðyÞ
pxðyÞ
pyðyÞ
pzðyÞ

0BBB@
1CCCA ¼

pðx1Þ
pðx2Þ
pðx3Þ
pðx4Þ
pðx5Þ

0BBBBBB@

1CCCCCCA; ð4Þ

where D � Dx. The least squares solution of (4) gives the stencil for
the x-component of the gradient [11]:

pxðyÞ �
1

3D
ðp2 þ p3 þ p4 þ p5 � 4p1Þ: ð5Þ

The finite difference gradient and divergence defined above are sim-
ilar to what can be found in [7]. Yet the gradient stencil is slightly
different: For the cells arrangement given in Fig. 1 (right) the refer-
ence [7] uses

Fig. 1. Left: Each shared face holds a node for velocity x-component. The nodes are located at faces barycenters. Right: Discretization stencil for @p/@x.
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pxðyÞ �
1

2D
ðp2 þ p3 þ p4 þ p5 � 4p1Þ: ð6Þ

We found that using (5) shows slightly better results for smooth
solutions compared to (6), although the convergence order and
the accuracy were comparable. The super-position of the discrete
gradient and divergence operators generally leads to the non-sym-
metric matrix for the pressure problem. However, the correspond-
ing linear algebraic systems are solved efficiently by a Krylov
subspace method with a multigrid preconditioner, see details in
Section 5.

The key ingredient of many splitting algorithms for the time-
integration of the incompressible Navier–Stokes equations is the
(discrete) Helmholtz decomposition of a given (grid) vector func-
tion f such that

R
@X f � n ¼ 0:

f ¼ uþrp;

divu ¼ 0;
u � nj@X ¼ f � nj@X:

8><>: ()
divrp ¼ div f;
@p
@n

��
@X
¼ 0;

u ¼ f �rp:

8><>: ð7Þ

It occurs that for the finite difference discretization as described
above, the decomposition is not stable in the following sense. For
a given smooth function f, the error for u in the discrete decompo-
sition may significantly increase with every level of local refine-
ment. This is illustrated below by a simple 2D example and one
refinement level (another example of a 3D problem and more levels
of refinement can be found in the next section). We consider two
meshes in X = (0,1)2: The first is uniform with the mesh size h,
the second mesh results from the first one by applying one refine-

ment step for cells in the right half of the square, x > 1
2 (Fig. 2,

bottom). The function f is such that the exact solution to (7) reads

u ¼ sin
2pðex � 1Þ

e� 1

� �
1� cos

2pðeay � 1Þ
ea � 1

� �� �
1

2p
ex

ðe� 1Þ ;

v ¼ 1� cos
2pðex � 1Þ

e� 1

� �� �
sin

2pðeay � 1Þ
ea � 1

� �
a

2p
eay

ðea � 1Þ ;

p ¼ a cos
2pðex � 1Þ

e� 1

� �
cos

2pðeay � 1Þ
ea � 1

� �
eaþ1

ðe� 1Þðea � 1Þ ;

with a = 0.1, u = (u,v)T. The discrete decomposition (7) on two grids
was computed and the L1-norm and the (discrete) L2-norm of the
errors for u and p are shown in Table 1 (for the locally refined grid,
h denotes the size of the coarse grid cells). The results in Table 1
show that introducing more degrees of freedom in a local way
may lead to the significant loss of accuracy in velocity. The first
explanation of this error growth could be the formal decrease of
the discretization consistency order from the second to the first
one at the nodes on the interface between the coarse and fine grids.
However, a closer look at the velocity error reveals the appearance
of specific interface modes, which dominate the entire error func-
tion, see Fig. 2 (left). These are local discretely div-free modes,
which occur on the coarse-to-fine grids interface and are subgrid
modes for the coarse grid, see Fig. 3 (left).

A straightforward way to filter out the specific modes is to en-
force a stronger divergence free condition such that these modes
are no longer discretely divergence free. To demonstrate this, we
introduce extra pressure degrees of freedom in the coarse grid cell
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Fig. 2. The velocity error is dominated by the div-free modes occurring on the coarse-to-fine grids interface. The left figure shows the u-component of the error, the right
figure shows the v-component, and the bottom figure shows the grid for h = 1/8.
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near the coarse-to-fine grid interface, see Fig. 3 (right). For this
coarse cell, the div-free condition is now enforced separately for
two sub-cells, by interpolating the v-component into the center
point xc. The discrete gradient operator is altered in the obvious
way. We call this method the ‘‘pressure enrichment’’ and show re-
sults for the discrete Helmholtz decomposition (7) in the left part
of Table 2: The error in velocity is substantially reduced. However,
for general 3D octree meshes the pressure enrichment may not be
the best method for filtering the subgrid modes for the following
reasons: When a coarse-grid cell is neighboring fine-grid cells from
different sides, introducing up to 7 extra pressure d.o.f. may be re-
quired. This complicates the scheme and can lead to the pressure
instability.

The oscillatory behavior of the interface velocity error also
suggests the application of a low-pass filter as an alternative
way to enhance the stability of the discrete Helmholtz
decomposition. To test the idea, we introduce the interface
diffusion in (7) as

f ¼ ðI � ah2DCÞuþrp;
divu ¼ 0;
u � nj@X ¼ f � nj@X:

8><>: ð8Þ

Here DC is the vector Laplace–Beltrami operator for the coarse-to-
fine grids interface Ccf (DCv :¼ vyyjCcf

for our test example), h is the
size of coarse cells and a P 0 is a parameter. Thus, (8) is closely re-
lated to the idea of low-pass differential filters, see, e.g., [20]. The re-
sults for the discrete decomposition (8) with a = 4 are shown in the

right part of Table 2. The error in velocity is reduced versus the
non-stabilized case and the accuracy is comparable to the pressure
enrichment stabilization (as usual for stabilized method, the param-
etera has to be tuned). Note that introducing interface diffusion in (8)
makes the corresponding pressure operator, div (I � ah2DC)�1r,
non-local and the corresponding matrix is not sparse. Hence, the
repeated solution of the pressure problem becomes expensive.
To avoid this, in the splitting scheme for the Navier–Stokes equations
we shall introduce explicit filter, rather than implicit as in (8).

We conclude that the error of the discrete Helmholtz decompo-
sition on octree-refined meshes may be dominated by specific
divergence-free coarse-to-fine grid interface velocity modes. How-
ever, using simple low-pass local filters may reduce the error sig-
nificantly. In the next section, we define the remaining discrete
operators and introduce a low-pass filter for unsteady flow
computations.

3. Advection, diffusion and filtering

First, we describe how the advection terms are treated. Consider
the advection term for the velocity x-component: a � ru. We
distinct between derivatives in the normal and the tangential direc-
tions to a face, where the velocity degree of freedom is located. Con-

sider the discretization of the tangential derivative, ay
@u
@y

, in the face

center x. Depending on the sign of ay(x), (ay is computed in x with
the help of an interpolation procedure described in Remark 3.2),
four ‘reference’ points (x�1,x1,x2,x0 :¼ x) are taken as shown in

Table 1
Errors for the discrete Helmholtz decomposition on uniform and one-level refined grids.

Quantity Mesh size h

1/8 1/16 1/32 1/64 1/8 1/16 1/32 1/64

Uniform mesh Locally refined mesh
ku� uhkL1 1.1e�1 2.9e�2 1.1e�2 3.8e�3 1.4e�1 7.0e�1 3.5e�1 1.8e�1
ku� uhkL2 6.7e�2 1.7e�2 4.2e�3 1.1e�3 3.5e�1 1.2e�1 4.2e�2 1.5e�2
kp� phkL2 2.5–2 6.4e�3 1.6e�3 4.0e�4 1.4e�2 3.3e�3 8.1e�4 2.0e�4

Fig. 3. Left: A single local div-free mode, which is subgrid for the coarse grid cell. Right: Introducing additional pressure d.o.f. for the coarse cell next to fine cells. This yields a
stronger discrete div-free condition and precludes the occurrence of subgrid div-free modes such as shown in the left figure.

Table 2
Errors for the discrete Helmholtz decomposition, with one-level refined grids, using pressure enrichment and differential filter stabilizations.

Quantity Mesh size h

1/8 1/16 1/32 1/64 1/8 1/16 1/32 1/64

Pressure enrichment Differential filter
ku� uhkL1 1.4e�1 8.1e�2 4.3e�2 2.2e�2 1.2e�1 4.9e�1 2.2e�2 1.0e�2
ku� uhkL2 5.1e�2 1.5e�2 4.5e�3 1.5e�3 3.8e�2 1.0e�2 3.1e�3 1.0e�3
kp� phkL2 1.1e�2 2.8e�3 6.9e�4 1.7e�4 1.1e�2 2.6e�3 6.3e�4 1.6e�4
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Fig. 4 (left). Note that x�1, x1, and x2 are not necessarily grid nodes.
Values u�1, u1, and u2 in these nodes are then defined based on the
following interpolation procedure. If the reference point belongs to
a cell smaller than the cell of x0 (points x1 and x2 in the figure), then
the linear interpolation between the two nodes of adjunct faces is
used. If the node belongs to a cell larger than the cell of x0 (point
x�1 in the figure), then one considers a plane P such that x�1 2 P
and P\Oy. Further, consider the cross sections of P with the cell pos-
sessing x�1 (denote this cell by V) and all cells sharing a face or an
edge with V. Any such cross-section can be either a square or the
empty set. All center points of square cross-sections form the set
P, cf. Fig. 4 (right). Now we assign u-values to all points from P.
Due to the octree mesh structure, any p 2 P can be either a u-node
(thus the value is assigned trivially) or it lies on the x-midline of a
cell (denote this cell by V0). In the latter case, we first assign u-values
to the centers of two x-faces of V0: if the center is not a u-node, we
take the average of velocity values from four u-nodes on this face.
Further, we take the linear interpolation of these values from the
face centers and assign a u-value to p. When all p 2 P receive their
u-values, the least-square second order interpolant Q2 is computed
for the set of p 2 P (Q2 is the second order polynomial of y and z
variables) and u�1 :¼ Q2(x�1). Once the values {ui},i = �1, . . . , 2,

are defined, we compute ay
@u
@y

at x using the third order upwind dis-

cretization stencil:

c1 ¼ �
hH

rðhþ rÞðr þ HÞ ; c3 ¼
rh

Hðr þ HÞðH � hÞ ;

c2 ¼ �
r

hðr þ hÞ �
1
H
þ h
ðr þ hÞðr þ HÞ

uL :¼ c1u1 þ c2u0 þ c3u�1; uR :¼ c1u2 þ c2u1 þ c3u0;

ay
@u
@y
ðxÞ � ayðxÞðuR � uLÞ;

where notations r, h, H are illustrated in Fig. 4 (left). A special care is
taken near boundaries, since the reference point x2 may be not
available. In this case, we use the second order difference:

ay
@u
@y
ðxÞ � ayðxÞ

r
hðr þ hÞu1 �

r2 � h2

hrðhþ rÞu0 �
h

rðhþ rÞu�1

 !
:

The finite difference approximation of the derivative in the normal

direction, ax
@u
@x

, is constructed in the similar manner. The altera-

tions to the algorithm described above are the following: ax is de-
fined in x (no interpolation required), and the reference points
x�1, x1, x2 are always lying on cells x-faces (although not necessarily
in the centers and the interpolation is done as above).

Remark 3.1. Note that the interpolation procedure invokes com-
puting the second order polynomial of only 2 variables. Moreover,
only a limited number of different auxiliary matrices should be

inverted to find the interpolation polynomials for a given grid. It
may look inconsistent that some reference nodes from {x�1,x1,x2}
receive velocity values by the simplest linear interpolation, while
others by more elaborated interpolation procedure. From numer-
ical experiments we observed that using simple linear interpola-
tion for fictitious nodes located in cells larger than the current cell,
where x0 is located, leads to perceptibly less accurate results,
especially if a larger cell lies from the upwind side of the current
cell. Applying the quadratic interpolation for larger cells, as
described above, was found to produce stable and accurate
disretization.

Now we explain how the finite difference approximation of vis-
cous terms is computed. Consider a velocity u-component node x
lying on a face F and define a cubic control volume V0, such that
x is the center of V0 and F is a middle cross section of V0. We set

ðDhuÞðxÞ ¼ jV 0j�1
X

F02FðV 0Þ
jF 0jðrhu � nÞðyF 0 Þ: ð9Þ

In order to approximate the diffusion flux in the center yF0 of
F 0 2 FðV 0Þ, we take four reference points (x�1,x0,x1,x2) as shown
in Fig. 5 (left). Velocity values u�1, u0, u1, and u2 are assigned to ref-
erence points in the same way as for the advective terms described
above. Using the notation from Fig. 5, the formal third order approx-
imation of the diffusion flux (ru � n) can be written out as

ðru � nÞ � D�1½ðh2H3 þ h3R2 � H3R2 þ h2R3 � H2R3 � h3H2Þu0

þ ðH3R2 þ r3R2 þ H2R3 � r2R3 � H3r2 � H2r3Þu1 þ ðh3r2

þ h2r3 � h3R2 � r3R2 � h2R3 þ r2R3Þu�1 þ ðh3H2 � h2H3

� h3r2 þ H3r2 � h2r3 þ H2r3Þu2�;

with D = (H � h)(h + r)(H + r)(h + R)(H + R)(R � r). If the reference
point x2 is not available, we use the point x�2.

Finally, following the discussion of the previous section, we de-
fine the low-pass filter G acting on the coarse-to-fine grid interface
Ccf:

G � uðxÞ ¼
1
4

X4

i¼1

uðxiÞ if x 2 Ccf ;

uðxÞ otherwise;

8><>:
for every internal velocity component node x:

Here Ccf denotes the union of all octree cells faces, which are shared
by cells of different sizes; xi are four velocity nodes lying on the
same large cells face as x (obviously x 2 {x1,x2,x3,x4}).

Remark 3.2. We recall that for computing finite difference advec-
tion derivative a � ru, we need the approximation of every
component of the grid vector function a in all velocity nodes. For
a given point y in computational domain, we evaluate a(y) as
follows. Assume y belongs to a cell V and we are interested in

Fig. 4. Left: Reference points for the third-order upwind approximation of advection. This illustration is for the derivative tangential to a face, where velocity degree of
freedom is located. Right: An example of the set P, if the velocity value (u�1) is sought in the reference point x�1. All points p0, pi, i P 2, appear to be velocity nodes in this
example. To assign a velocity value to p1, one uses the linear interpolation.
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interpolating the x-component of velocity to y, i.e. ax(y). Consider a
plane P such that y 2 P and P is orthogonal to the Ox axis. Let
xV 2 P be the orthogonal projection of the center of V on P and xk,
k = 1, . . . , m, m 6 12, are the projections of centers of all cells
sharing a face with V. The values ax(xV) and ax(xk) can be defined by
a linear interpolation of the velocity values at u-nodes. Once ax(xV)
and ax(xk),k = 1, . . . , m, are computed, we consider the triangle fan
based on xV and xk, k = 1, . . . , m, as shown in Fig. 5 (right). Now
ax(y) is defined by a linear interpolation between the values of ax in
the vertices of the triangle, which contains y.

Note that the discretization of momentum and continuity equa-
tions is based on control volumes. The method is, however, not
consistent with a classical finite volume approach, since for the
momentum equation the control volumes may fail to cover the en-
tire computational domain.

4. Numerical time-integration

Our method of choice for numerical time-integration is the
semi-implicit splitting scheme (also known as projection scheme
[21]): Given un, pn approximating u(t), p(t), find approximations
un+1, pn+1 to u(t + Dtn), p(t + Dtn) in several steps. First, solve for
auxiliary velocity gunþ1 the advection–diffusion problem with the
filter applied to the advection terms:

a gunþ1 þbunþcun�1

Mtn þG�ðunþnðun�un�1ÞÞ �rgunþ1Þ�mD gunþ1 ¼�rpn;

gunþ1 jC1
¼ g;

@ gunþ1

@n

�����
C2

¼0:

8>>><>>>:
ð10Þ

Here n = Mtn/Mtn�1, a = 1 + n/(n + 1), b = �(n + 1), c = n2/(n + 1). Next,
project gunþ1 on the divergence-free space to recover un+1:

aðunþ1 � gunþ1Þ=Mtn �rq ¼ 0;
divunþ1 ¼ 0;
n � unþ1jC1

¼ n � g; qjC2
¼ 0:

8><>: ð11Þ

The problem (11) is reduced to the Poisson problem for q:

�Dq ¼ a div gunþ1=Mtn;

qjC2
¼ 0; @q

@n

��
C1
¼ 0:

(
ð12Þ

Finally, update the pressure:

pnþ1 ¼ pn � qþ m div gunþ1 : ð13Þ

The ‘extra’ divergence term in the pressure correction step (13) is
known, see, e.g., [22,23], to reduce numerical boundary layers in
the pressure.

Further, we refer to the scheme (10)–(13) as the linearized BDF2
projection scheme, since it relies on BDF2 time discretization of the
momentum equation at time tn+1 and the linearization of the
advective terms. Note that the step (10) is implicit. The matrix of
the corresponding linear algebraic system is non-symmetric, but
it is well conditioned thanks to the scaled identity matrix resulting

from the term
a gunþ1

Mtn . A preconditioned Krylov subspace iterative

method turns out to be efficient solver, see Section 5. The implicit
advection–diffusion step largely relaxes the Courant condition for
the time step, which is now restricted by accuracy, rather than
by stability requirements.

For a uniform time step, Mtn = Mt, n = 1, 2, . . ., the splitting
scheme (10)–(13) is found, for example, in [22] Section 3.3. In that
paper, the method was shown to be second order accurate in time,
if C2 = ;. We shall demonstrate in the series of numerical experi-
ments that the scheme retains second order accuracy if Mt varies
smoothly. In the case of outflow boundary conditions, building a
second order accurate stable pressure projection method is a
well-known problem, see, e.g., [24,25]. It is not our intention to ad-

dress this problem in the present paper. If one sets m
@ gunþ1

@n

�����
C2

¼ pnn

in (10), then Guermond et al. [24] proved that the splitting method
is up to 3

2 order the accurate (the actual order depends on a certain
regularity index). However, for such explicit treatment of pressure
on outflow boundary, our experiments show instability if m is not
sufficiently large. Therefore, we modified the splitting of boundary
conditions to ensure the numerical stability for higher Reynolds
numbers. We are not aware of a convergence analysis for such
modified splitting. In numerical experiments, no significant up-
stream influence was observed for outflow conditions we use:
Developed vortex structures leave the computational domain
through outflow boundary smoothly and retaining their shapes.

Remark 4.1. Instead of the implicit filter in the projection step, as
in (8), we use the explicit filter G acting on advection terms. The
rationality behind such choice is that computing projection, with
implicit differential filter, on every time step is computationally
‘expensive’. Let us briefly explain why the explicit filter still is
efficient. Noting that G�r =r, we combine (10) and (11) to get

aunþ1 þ bun þ cun�1

Mtn þ G � ½ðun þ nðun � un�1ÞÞ � rgunþ1Þ

þrðpn � qÞ� ¼ mD gunþ1 : ð14Þ

Hence, for inviscid fluid, if un and un�1 are free of spurious modes,
then the same is true for un+1. For m > 0, the viscous term can be the
source of spurious modes. However for small m, we observe that the
production of such modes is not significant and the scheme remains

Fig. 5. Left: Reference points for the diffusion flux approximation; Right: uh(y) is defined by a linear interpolation based on the fan triangulation with the center in xV, i.e.
interpolation of uh(xV), uh(x1), uh(x10) in this example.
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stable, while for large m, there is enough physical viscosity to damp
the spurious modes.

For the purpose of comparison, we consider few alternative
splitting schemes that have been shown to be efficient in other set-
tings. Thus, consider the second order projection scheme, with the
semi-Lagrangian method for treating the advection terms, as intro-
duced in [26,27]. The differences from the scheme (10)–(13) are
the following. The first predictor step (10) now reads

a gunþ1 þ bun
d þ cun�1

d

Mt
� mD gunþ1 ¼ �rpn;

gunþ1 jC1
¼ g;

@ gunþ1

@n

�����
C2

¼ 0;

8>>>><>>>>: ð15Þ

where un
d and un�1

d are given by the semi-Lagrangian method:
un

dðxnþ1Þ ¼ uðtn;xn
dÞ, where xn+1 is the grid node and xn

d is found as
a departing point at time tn of a characteristic that passes through
xn+1 at time tn+1. The equation for characteristics is integrated using
the second order method:

y ¼ xnþ1 � Mtn

2
unðxnþ1Þ;

xn
d ¼ xnþ1 � Mtn 1þ n

2

� �
unðyÞ � n

2
un�1ðyÞ

� �
:

ð16Þ

Similarly, one sets un�1
d ðxnþ1Þ ¼ u tn�1;xn�1

d

� �
, where the departure

point xn�1
d is found from:

y ¼ xnþ1 � Mtn þ Mtn�1

2
unðxnþ1Þ;

xn�1
d ¼ xnþ1 � Mtn þ Mtn�1

2
ðð1þ nÞunðyÞ þ ð1� nÞun�1ðyÞÞ:

ð17Þ

Of course, xn
d and xn�1

d are not necessarily grid nodes and an interpo-
lation should be done to define uðtn;xn

dÞ and uðtn�1; xn�1
d Þ. In [27] the

quadratic Hermite interpolation was used to interpolate between un-
knowns located in the vertices of cubic cells. To interpolate between
face-centered unknowns on octree grids, in [6,7] the piecewise linear
interpolation was applied. To the best of our knowledge, an extension
of higher order semi-Lagrangian methods to staggered octree grids is
not available in the literature. For the purpose of comparison, we
shall use both linear and quadratic interpolation. We point that build-
ing more accurate and stable semi-Lagrangian methods, for example,
based on non-linear oscillatory-free interpolation procedures [28],
may be another way of developing staggered octree grid schemes.
However, such developments are not within the scope of the present
paper. In what follows, the scheme (15), (12), (13) is referred to as the
BDF2 with semi-Lagrangian step.

A popular alternative, e.g., [29], to BDF2 scheme is the second
order projection method often attributed to van Kan [30]. This
method approximates the equations at time tn+1/2. On the first step
of the method, one finds gunþ1 fromgunþ1�un

Mtn þ G � un þ n
2 ðun � un�1Þ

� �
� rgunþ1þun

2 Þ � mDgunþ1þun

2 ¼ �rpn;gunþ1 jC1
¼ g; @gunþ1

@n

����
C2

¼ 0:

8>><>>:
ð18Þ

We shall refer to this method as the linearized van Kan (VK) projec-
tion scheme.

5. Numerical experiments

In this section, the performance of the method is verified for a
set of benchmark tests. We compare several options for spacial
and temporal discretizations. First, a smooth 3D Beltrami type flow
with known analytical solution is considered. Next we compute

the 3D lid-driven cavity flow for Re = {100,400,1000} and channel
flows around a 3D square cylinder for Re = {20,100,103,104} and a
variable Reynolds number.

5.1. Example with an analytical solution

To assess the accuracy of the scheme on smooth solutions, we
consider the well known Ethier-Steinman exact NSE solution from
[31]. This problem was developed as a 3D analogue to the Taylor
vortex problem, for the purpose of benchmarking. Although unli-
kely to be physically realized, it is a good test problem because it
is an exact NSE solution and has non-trivial vortical structure.
For chosen parameters a,d and viscosity m, the exact NSE solution
is given on [�1,1]3 by

u ¼ �aðeax sinðayþ dzÞ þ eaz cosðaxþ dyÞÞe�md2t

v ¼ �aðeay sinðazþ dxÞ þ eax cosðayþ dzÞÞe�md2t

w ¼ �aðeaz sinðaxþ dyÞ þ eay cosðazþ dxÞÞe�md2t

p ¼ � a2

2
ðe2ax þ e2ay þ e2az þ 2 sinðaxþ dyÞ cosðazþ dxÞeaðyþzÞ

þ 2 sinðayþ dzÞ cosðaxþ dyÞeaðzþxÞ

þ 2 sinðazþ dxÞ cosðayþ dzÞeaðxþyÞÞe�2md2t :

In our experiment we set a = p/4, d = p/2 and vary m.
First we compare the performance of different temporal discret-

izations if the spacial grid is uniformly refined. The errors in veloc-
ity and pressure are measured at time t = 0.1 and the results are
shown in Table 3. The time steps for ‘BDF2 with semi-Lagrangian
(quadratic interpolation)’ was set two times smaller than for other
methods, otherwise we observed no convergence with this meth-
od. All schemes except ‘BDF2 with semi-Lagrangian (linear interpo-
lation)’ demonstrated the expected second order of convergence.
The semi-Lagrangian method with quadratic interpolation demon-
strates the second order of convergence in L2, but the convergence
deteriorates in L1 norm. This may indicate the loss of the monoto-
nicity by the scheme and non-physical oscillations in numerical
solutions. Further, we will see that this is indeed the case for the
example of the flow around a square cylinder. ‘BDF2 with FD
advective terms’ and VK show very similar accuracy. Thus, our
method of choice for further experiments is the ’BDF2 with FD
advective fluxes’ as potentially more robust than the van Kan
scheme, while demonstrating similar accuracy (we note that the
van Kan scheme is based on the trapezoidal rule, which is well
known to require certain care, when applied to flow equations
[32]).

In Section 3 we built an upwind discretization of the advection
terms. We shall refer to it as the third order upwind (TOU) discret-
ization (the ‘order’ is related to uniformly refined grids). Since the
entire scheme is of the second order, one may be interested in
using the second order upwind stencil for advective derivatives,
next referred to as SOU. Table 4 compares the accuracy of two dis-
cretizations. From this experiment we conclude that the higher or-
der approximation of the advection terms leads to more accurate
solutions. Further we will see that for the benchmark problem with
non-smooth solutions and adaptively refined grids TOU is still
advantageous compared to SOU. Thus, the third order upwind
scheme for advective terms is our preferred approach.

In the next two sets of experiments, we demonstrate the role of
the low-pass filter on the coarse-to-fine cells interface and the con-
vergence of the method on a sequence of refined non-uniform
grids. To compute the results in Tables 5 and 6, we refined the
mesh inside the sphere of the radius 0.5 with the center in
(0,0,0). The sizes of the largest and the smallest cells are hmax

and hmin, respectively. Obviously, hmax = hmin corresponds to the
uniform grid. Table 5 shows the results of computations for two
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values of viscosity, m = 0 (the Euler limit) and m = 1 (diffusion dom-
inated case). Similar to what was observed for the discrete Helm-
holtz decomposition, for small values of the viscosity parameters
the local mesh refinement leads to the growth of the error. Since
the spurious modes are oscillatory and tailored to the coarse-to-
fine grid interface, the L1-norm of the velocity error is more sensi-
tive indicator of the instability than the L2 norm. The error in pres-
sure is not much influenced by the local refinement. For m = 1 the
spurious oscillatory modes are damped by the dominating physical
diffusion, so the error growth is very modest in this case. Other-
wise, the course-to-fine grid interface filter provides the auxiliary
damping of the modes and stabilizes the problem. In further exper-
iments of this paper, we always use the filter with TOU discretiza-
tion of advection terms (unless otherwise noted). Table 6
demonstrates the second order convergence for velocity and al-
most the second order convergence for pressure on the sequence
of refined octree grids.

5.2. The 3D driven cavity

The next numerical example is the standard lid driven cavity
benchmark problem. The problem setup is illustrated in Fig. 6.
One looks for the steady solution of the flow Eqs. (1) in
X = (0,1)3, with u = (1,0,0)T for z = 1 and no-slip/no-penetration
conditions on other parts of the boundary. In spite of the simplest
of geometrical settings, the cavity flows display many important
fluid mechanical phenomena [34]. Note that due to the discontin-
ues boundary conditions, the solution to the problem is singular in
the neighborhood of upper edges.

We are interested in steady solutions for Re = 100, 400, 1000.
The projection method (10)–(13) was used to integrate in time un-
til the equilibrium steady state is recovered. For this benchmark
problem, the coarsest mesh of hmax = 1/32 was used; further the
grid was refined towards the boundary (five grid layers with

Table 3
Errors for different temporal discretizations on uniform meshes.

Viscosity m = 10�5 m = 10� 2

Mesh size h 1/16 1/32 1/64 1/16 1/32 1/64
Time step Mt 1/200 1/400 1/800 1/200 1/400 1/800

BDF2 with FD advective terms
ku� uhkL1 1.7e�3 4.2e�4 1.1e�4 1.7e�3 3.5e�4 7.6e�5
ku� uhkL2 4.0e�4 9.7e�5 2.4e�5 4.0e�4 9.5e�5 2.3e�5
kp� phkL2 8.4e�3 2.2e�3 5.7e�4 8.0e�3 2.0e�3 4.7e�4

BDF2 with semi-Lagrangian (linear interpolation)
ku� uhkL1 3.3e�2 1.8e�2 9.7e�3 3.2e�2 1.7e�2 9.0e�3
ku� uhkL2 8.6e�3 4.4e�3 2.2e�3 8.5e�3 4.3e�3 2.1e�3
kp� phkL2 2.9e�1 1.3e�1 6.4e�2 2.8e�1 1.3e�1 6.4e�2

BDF2 with semi-Lagrangian (quadratic interpolation)a

ku� uhkL1 3.0e�4 8.3e�4 5.2e�4 2.5e�3 8.4e�4 1.0e�3
ku� uhkL2 5.6e�4 1.4e�4 3.8e�5 5.7e�4 1.4e�4 3.4e�5
kp� phkL2 1.4e�2 6.3e�3 5.0e�3 2.2e�2 5.4e�3 1.3e�3

VK
ku� uhkL1 1.7e�3 4.2e�4 1.2e�4 1.6e�3 3.4e�4 7.5e�5
ku� uhkL2 4.0e�4 9.7e�5 2.4e�5 3.9e�4 9.4e�5 2.3e�5
kp� phkL2 8.0e�3 2.1e�3 5.6e�4 7.0e�3 1.6e�3 2.8e�4

a Here the time step was equal Dt=2.

Table 4
Errors for two FD discretizations of the advective operator on uniform meshes,
m = 10�2.

Upwind order SOU TOU

Mesh size h 1/16 1/32 1/64 1/16 1/32 1/64
Time step Mt 1/100 1/200 1/400 1/100 1/200 1/400

ku� uhkL1 4.3e�3 8.4e�4 1.6e�4 1.6e�3 3.4e�4 7.5e�5
ku� uhkL2 8.3e�4 1.6e�4 3.2e�5 3.9e�4 9.4e�5 2.3e�5
kp� phkL2 1.5e�2 4.1e�3 1.1e�3 8.0e�3 2.1e�3 5.5e�4

Table 5
Dependence of errors on the number of tree levels for locally refined meshes. The effect of the filter.

Viscosity m = 0 m = 1

Mesh size hmax 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16
Mesh size hmin 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

BDF2 with FD advective terms, no filter
ku� uhkL1 1.7e�3 1.6e�2 2.2e�2 2.9e�2 1.2e�3 1.3e�3 1.6e�3 1.8e�3
ku� uhkL2 4.0e�4 1.1e�3 1.4e�3 1.4e�3 3.1e�4 3.9e�4 5.3e�4 6.5e�4
kp� phkL2 8.0e�3 6.9e�3 6.2e�3 5.4e�3 4.0e�3 9.5e�3 1.4e�2 1.7e�2

BDF2 with FD advective terms, with filter
ku� uhkL1 1.7e�3 2.6e�3 3.3e�3 3.2e�3 1.2e�3 1.4e�3 1.6e�3 1.8e�3
ku� uhkL2 4.0e�4 5.7e�4 7.8e�4 9.1e�4 3.1e�4 3.9e�4 5.3e�4 6.5e�4
kp� phkL2 8.0e�3 6.9e�3 5.8e�3 5.2e�3 4.0e�3 9.5e�3 1.4e�2 1.7e�2

Table 6
Convergence of the method on a sequence of refined non-uniform octree grids,
m = 0.01; Results are shown for the BDF2 with FD advective terms, with filter.

Mesh size hmax 1/8 1/16 1/32 1/64
Mesh size hmin 1/32 1/64 1/128 1/256
Time step Dt 1/50 1/100 1/200 1/400

ku� uhkL1 1.1e�2 3.1e�3 7.9e�4 1.6e�4
ku� uhkL2 3.6e�3 7.6e�4 1.8e�4 4.3e�5
kp� phkL1 6.3e�2 9.8e�3 2.5e�3 7.0e�4
kp� phkL2 1.5e�2 5.8e�3 1.7e�3 4.9e�4
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h = 1/64 and two grid layers with hmin = 1/256). This resulted in the
983256 pressure degrees of freedom and 2936724 velocity degrees
of freedom. Fig. 6 (right) shows the computed centerline
((0.5,0.5,z), 0 6 z 6 1) u-velocities of the steady state solution.
They are in a very good agreement with the reference results of
Wong and Baker [33], who used a solution-adapted tetrahedral
mesh and a conforming finite element method to compute the
solution in velocity–vorticity variables.

Fig. 7 shows the contours of spanwise vorticity for the midplane
y = 0.5. The plots of the midplane velocity fields are shown in Fig. 8.
Both vorticity contours and velocity fields agree well with those of
[33,35] and fairly well illustrate the recovered cavity flow dynam-
ics. Besides the primary eddy (here we use the terminology of
[34]), the method is able to capture upstream secondary eddy for
Re = 1000 and Re = 400, bottom end-wall vortices for all values of
Re and upper end-wall vortices for Re = 1000 and Re = 400; down-
stream swirls are visible for Re = 1000 and Re = 400. All this flow
structures transit smoothly over coarse-to-fine meshes interfaces.
The ability of the method to correctly predict secondary flow struc-
tures indicates the low numerical diffusion of the scheme.

5.3. Flow around cylinder

The final numerical example is the laminar 3D channel flow
around a cylinder of square cross-section. The problem was de-
fined within the DFG priority research program ‘‘Flow simulation
on high performance computers’’ by Schäfer and Turek in [36]
and further studied in, e.g., [37,38].

The flow domain is shown in Fig. 9. The no-slip and no-penetra-
tion boundary condition u = 0 is prescribed on the channel walls
and the cylinder surface. The parabolic velocity profile is set on
the inflow boundary:

u ¼ ð0;0;16eUxyðH � xÞðH � yÞ=H4Þ
T

on Cinflow;

with H = 0.41 and a peak velocity eU . The Reynolds number,
Re ¼ m�1DeU , is defined based on the cylinder width D = 0.1. The vis-
cosity coefficient m is set to 10�3. In [36] three benchmark problems
were suggested:

	 Problem Q1: Steady flow with Re ¼ 20 ðeU ¼ 0:45Þ.
	 Problem Q2: Unsteady periodic flow with Re = 100 ðeU ¼ 2:25Þ.

	 Problem Q3: Unsteady flow with varying Reynolds number foreU ¼ 2:25 sinðpt=8Þ.

The initial condition is u = 0 for t = 0.
To realize possible stability limitations of the proposed tech-

niques, we additionally compute the flow around cylinder for
Re = 103 and Re = 104.

The statistics of interest are the following:

	 The difference Dp = p(x2) � p(x1) between the pressure values
in points x1 = {0.2,0.205,0.55} and x2 = {0.2,0.205,0.45}.
	 The drag coefficient given by an integral over the surface of the

cylinder S:

Cdrag ¼
2

DHeU2

Z
S

m
@ðu � tÞ
@n

nx � pnz

� �
ds: ð19Þ

Here n = (nx,ny,nz)T is the normal vector to the cylinder surface
pointing to X and t = (�nz,0,nx)T is a tangent vector.
	 The lift coefficient given by an integral over the surface of the

cylinder:

Clift ¼ �
2

DHeU2

Z
S

m
@ðu � tÞ
@n

nz þ pnx

� �
ds: ð20Þ

	 If a periodic regime is attained by the solution to problem Q2,
then one is interested in the Strouhal number Df eU�1, where f
is the frequency of vortices separation.

For problem Q3, the reference velocity in Cdrag and Clift is taken
for t = 4.

The feature of the problem is the singularity of geometry: the
edges of a square cylinder are likely to destroy the regularity of
the solution to (1). This makes the accurate numerical prediction
of the lift and drag coefficients difficult and a local grid refinement
in the neighborhood of the cylinder is necessary.

To compute the drag and lift coefficient, one may replace the
surface integrals in (19) and (20) by integration over the whole do-
main. This evaluation technique is known in the finite element
community and has been used in [39,37].

Assume u = (u,v,w)T and p solve (1), then applying the integra-
tion by part one checks (cf. [37]) the following identities:

Fig. 6. Left: The 3D driven cavity problem setup; Right: The centerline ((0.5,0.5,z), 0 6 z 6 1) u-velocities compared to reference data from [33].
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Cdrag ¼ eC Z
X

@w
@t
þ u � rð Þw

� �
uþ mrw � ru� p@zu

� �
dx

Clift ¼ eC Z
X

@u
@t
þ ðu � rÞu

� �
uþ mru � ru� p@xu

� �
dx;

ð21Þ

eC ¼ 2

DHeU 2
, for any u 2 H1(X) such that ujS = 1 and uj@X/S = 0.

If the Navier–Stokes solution is sufficiently smooth and one
computes drag and lift coefficients of a finite element numerical
solution, then it is proved in [37] that using the volume based for-
mulas (21) gives more accurate values of drag and lift coefficients
compared to (19) and (20). Although for this test problem the solu-
tion is not smooth, it turned out that using (21) still leads to more
accurate results.

Now we discuss few technical details of evaluating (21). The
identities (21) hold for any u satisfying ujS = 1 and uj@X/S = 0.
However, if integrals in (21) are evaluated for a numerical solution,
then the analysis of [37] suggests that accuracy may depend on the
regularity of u. For the finite difference method we define u in
pressure nodes and consider the discretely harmonic function
(divhrhu = 0). All derivatives in (21) were approximated with the
second order of accuracy.

The numerical solutions to problems Q1–Q3 were computed on
a sequence of locally refined meshes, see Table 7 for the account of
corresponding discrete space dimensions. The cutaway of a grid
with hmin = 1/32 and hmax = 1/1024 is shown in Fig. 10. The linear
algebraic systems were solved iteratively. Thus, the discrete
advection–diffusion-reaction problem arising on the predictor step
(10) of the method was solved by the BiCGstab method with ILU(0)

preconditioner and the pressure Poisson problem was solved with
the GMRES method preconditioned by one V-cycle of the algebraic
multigrid method from [40]. Average numbers of iterations
required to ensure the Euclidian norm of residual is less than 1e-
13 are shown in Table 7. These values correspond to the experi-
ments with the problem Q1 and time step Dt = 0.1. For problems
Q2 and Q3 we set Dtn = max{0.1,10hmin(maxjunj)�1}. While
iteration numbers in pressure solve were nearly the same for
problems Q2 and Q3, the iteration numbers in advection–
diffusion–reaction solve were smaller and almost independent of

the refinement level due to the dominant zero order term agunþ1

Mtn .
For all three problems, the reference [36] collects several DNS

results based on various finite element, finite volume discretiza-
tions of the Navier–Stokes equations and the Lattice Boltzmann
method. In [36], the authors provide reference intervals where
the statistics should converge. Using a higher order finite element
method and locally refined adaptive meshes, more accurate refer-
ence values of Cdrag, Clift and Dp were found in [37] for problem Q1.
Thus, we first present in Table 8 the results for problem Q1 com-
puted with second and third order approximations of advective
terms. We note that the differences in CPU times for both cases
were negligibly small. Similar to the case of uniform grids and ana-
lytical solution, the TOU discretization shows somewhat more
accurate results. For a sequence of locally refined octree meshes,
Table 8 demonstrates the convergence of computed drag, lift, and
pressure drop to reference values. Here and in Table 9 we addition-
ally include the results for the 5-refinement levels mesh (hmax = 1/
32,hmin = 1/1024), which appear to be very close to those for

Fig. 7. Spanwise vorticity for the midplane y = 0.5 and Re = 100 (left), Re = 400 (right), Re = 1000 (bottom).

240 M.A. Olshanskii et al. / Computers & Fluids 84 (2013) 231–246



Author's personal copy

2-refinement levels (hmax = 1/256,hmin = 1/1024), indicating that
the refinement around cylinder rather than in the bulk domain is
crucial for accurate computation of the statistics.

Less accurate reference data is available for problems Q2 and
Q3. Table 9 summarizes the results computed by the present meth-
od and those available in the literature. For problem Q2, Cdrag and

Clift are the maximum lift and drag coefficients after the flow at-
tains a periodic regime. For problem Q3, Cdrag and Clift are the max-
imum lift and drag coefficients over the whole time interval
t 2 [0,8], the pressure drop is computed at t = 8. Note that [36] does
not give reference intervals for problem Q2, and we simply show
the maximum and minimum values of lift, drag, and the Strouhal
numbers for the DNS results included in [36]. However, these
intervals can be not very accurate. It is expected that Re = 100 is
close to the critical Reynolds number (when transition from the
steady state to unsteady periodic flow occurs). Therefore, the

Fig. 8. The 2D planar projections of steady state velocity fields at the midplanes for the 3D driven cavity problem with Re = 100, 400, 1000.

Fig. 9. Computational domain for flow around a cylinder with square cross-section.

Table 7
Number of velocity and pressure d.o.f. for different meshes. NADR and NPP are the
average numbers of iterations in advection–diffusion–reaction and pressure solvers
for problem Q1, respectively.

hmin hmax u d.o.f. p d.o.f. NADR NPP

1/256 1/256 1246359 416150 23 30
1/512 1/256 1402593 467110 27 37
1/1024 1/256 2707497 897330 47 41
1/2048 1/256 12828221 4245010 112 66
1/1024 1/32 1969827 645393 45 44
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simplest reasonable criteria of the success of a numerical method
for this problem: Is a stable periodic flow (including vortex separa-
tion and von Karman vortex street) captured by a method for
Re = 100? If no, then the method is likely to be excessively diffusive
or unstable.

For the present methods a stable periodic flow is recovered
starting with hmin = 1/512. Fig. 11 plots the evolution of the drag
and lift coefficients for time interval t 2 [0,16]. It is clear that the
periodic regime is attained. In Fig. 12 we show the snapshot of

the spanwise vorticity contours at time t = 16 for the midplane
y = 0.205. The figure illustrates the developed von Karman vortex
street behind the cylinder. We note that the periodic unsteady
solution is recovered with BDF2 with FD advective terms scheme,
while the semi-Lagrangian method with linear interpolation pro-
duces steady solutions. The semi-Lagrangian method with qua-
dratic interpolation was found unstable for this problem.

From the regularity theory of the linearized Navier–Stokes
problem [41], we may expect that pressure and velocity become

Fig. 10. The cutaway of the grid at y = 0.205 for hmax = 1/32 and hmin = 1/1024.

Table 8
Problem Q1: Convergence of drag, lift, and pressure drop to reference values for locally refined grid.

hmin hmax Cdrag Clift Dp Cdrag Clift Dp

SOU TOU
1/256 1/256 7.766 0.05951 0.1720 7.726 0.07122 0.1717
1/512 1/256 7.589 0.06671 0.1727 7.683 0.06814 0.1724
1/1024 1/256 7.609 0.06796 0.1732 7.706 0.06829 0.1745
1/2048 1/256 7.631 0.06868 0.1737 7.727 0.06864 0.1750

Braack & Richter 7.767 0.06893 0.1757 7.767 0.06893 0.1757
Schäfer & Turek 7.5–7.7 0.06–0.08 0.172–0.18 7.5–7.7 0.06–0.08 0.172–0.18

1/1024 1/32 7.631 0.06821 0.1727 7.716 0.0678 0.1749

Table 9
Lift, drag, and the Strouhal number for problem Q2; Lift, drag, and pressure drop for problem Q3.

hmin hmax Problem Q2 Problem Q3

Cdrag Clift St Cdrag Clift Dp

1/256 1/256 6.204 0.07631 a 6.038 0.3497 �0.1461
1/512 1/256 5.222 0.04407 0.326 5.178 0.0381 �0.1284
1/1024 1/256 4.679 0.02697 0.297 4.655 0.0168 �0.1367
1/2048 1/256 4.484 0.03166 0.307 4.475 0.0300 �0.1407
Schafer & Turek 4.32–4.67b 0.015–0.05b 0.27–0.35b 4.3–4.5 0.01–0.05 �0.14 – �0.12
1/1024 1/32 4.671 0.02666 0.306 4.658 0.0172 �0.1374

a Solution has not attained a periodic regime for t 2 [0,16].
b Reference intervals for problem Q2 may be not very accurate.

Fig. 11. The evolution of drag (left) and lift (right) coefficients for the flow around a square cylinder with Re = 100 (problem Q2) computed with hmax = 1/32, hmin = 1/1024.
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less regular in the neighborhoods of cylinder edges: The theory
predicts p R H1(X) and u R H2(X)3. This, in particular, implies that
the pressure gradient and the second velocity derivatives are un-

bounded in the vicinity of the edges. Indeed, Fig. 12 shows sharp
internal layers in vorticity originating from upstream edges of
the cylinder and Fig. 13 presents the midplane pressure contours

Fig. 12. Problem Q2 (Re = 100): Spanwise vorticity at time t = 16 for the midplane y = 0.205. The top plot shows the development of vortex street for solution by BDF2 with FD
advective terms; the bottom plot shows an over-diffusive solution computed by BDF2 with semi-Lagrangian method (linear interpolation). Both solutions were computed
with hmax = 1/256 and hmin = 1/1024 at t = 16.

Fig. 13. Problem Q2 (Re = 100): The midplane pressure contours around a square cylinder. The solution shown was computed with hmax = 1/256 and hmin = 1/1024 at t = 16.

Fig. 14. Problem Q2: Streamlines of the developed flow around a square cylinder for Re = 100. The streamlines are selected for two fluid layers entering the domain slightly
above and below x = 0.21.
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around the cylinder. The pressure has large gradients near the up-
stream edges. This lack of solution smoothness explains why local

grid refinement is necessary and why accurate evaluation of drag
and lift coefficients for the flow around a square cylinder is hard.

Fig. 15. Problem Q2 (Re = 100): Pressure isosurfaces and vorticity isosurface jwj = 20 colored by the absolute velocity. The plots illustrate solution computed with hmax = 1/
256 and hmin = 1/1024 at t = 16. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Channel flow around a square cylinder at Re = 1000: Spanwise vorticity for the midplane y = 0.205. Pressure isosurfaces and vorticity isosurface jwj = 100 colored by
the absolute velocity. The plots illustrate solution computed with hmax = 1/256 and hmin = 1/1024 at t = 8. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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The 3D structure of the flow with Re = 100 is seen from Figs. 14
and 15, where we show the streamlines of the developed flow,
pressure isosurfaces and the isosurfaces jwj = 20 of vorticity col-
ored by the absolute values of velocity, juj.

Finally, we run the same test with higher Reynolds numbers,
Re = 103 and Re = 104. We have not found other data in the litera-
ture for this problem with higher Re numbers to make a compari-
son. The goal of performing the tests is to verify if the method
remains stable when Re is increasing and to quantify stability lim-
itations (if any). Note that for smooth solutions we got stable re-
sults for arbitrary small values of the viscosity coefficient, see
Table 5. For the flow around a square cylinder problem, the situa-
tion is more complicated: A solution has sharp boundary and inter-
nal layers and the flow becomes turbulent for sufficiently large
Reynolds number. This was eventually the case for Re = 104.

For flow around a square cylinder at Re = 103, we observe a sta-
ble numerical solution, which demonstrates a quasi-periodic
behaviour. Now large vortices periodically form in the internal lay-
ers originating from two upstream edges of the cylinder rather
than shed behind the cylinder. These vortices are convected down-
stream and interact in a complicated way with each other and
smaller eddies created near upper and bottom walls. A flow in
the recirculation region behind the cylinder is close to chaotic.
All these make an intricate picture of the (still laminar) flow over
a square cylinder in a channel at Re = 103. The computed solution
is illustrated in Fig. 16, where we show spanwise vorticity isolines
and isosurfaces for pressure and vorticity. For the vorticity, we
choose to show the isosurface jwj = 100 as a good illustration of
vorticity generation around the cylinder.

For Re = 104 we observe no regular flow pattern: An unstable
boundary layer develops near channel walls close to the inlet

(approximately at z = 0.2), traveling vortices appear on many scales
and interact with each other in a stochastic way. We may conclude
that the flow is turbulent. Nevertheless, for this type of flow the
method produces a numerically stable solution up to the time
t = 8, which was the final time of computations. A multiscale struc-
ture of the flow is illustrated in Fig. 17.

We conclude that for turbulent flows the numerical dissipation
produced by the present method can be sufficient to diffuse the en-
ergy of resolved structures, although an additional modeling is
likely required to simulate the effect of unresolved scales in a prop-
er way and recover meaningful averaged statistics.

6. Conclusions

Octree cartesian grids are super-convenient for fast mesh adap-
tation, reconstruction and data access. Finite difference and finite
volume methods on octree grids provide a cost effective alternative
to discontinuous Galerkin methods. This efficiency, however,
comes at a price: local refinement does not lead automatically to
better accuracy and higher order discretizations require large no-
dal stencils and higher order interpolation. In this paper, we intro-
duced an extension of staggered grid MAC scheme such that
specific instabilities stemming from local grid refinement are sup-
pressed. The discretization is second order accurate and stable. It
involves the construction of only planar second order polynomials
and linear interpolation. The performance of the scheme was stud-
ied for a set of smooth and non-smooth benchmark solutions. The
method produces stable low dissipative second order accurate
solutions and compares favorably to a scheme built on semi-
Lagrangian treatment of advection. The scheme was found to be
numerically stable also for certain high Reynolds number flows.

Fig. 17. Channel flow around a square cylinder at Re = 10000: Spanwise vorticity for the midplane y = 0.205. Pressure isosurfaces and vorticity isosurface jwj = 100 colored by
the absolute velocity. The plots illustrate solution computed with hmax = 1/256 and hmin = 1/1024 at t = 8. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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