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a b s t r a c t

This short note is devoted to the proof of the Lq-saturation property for functions from
the Sobolev space W 2,p(Ω), p > d/2, on sequences of conformal, possibly anisotropic,
simplicial meshes for spaces of arbitrary dimension d. The proof completes the theory of
optimal meshes minimizing the Lq-error (0 < q ≤ p) of P1-interpolation and the theory
of quasi-optimal meshes which are achievable approximations of the optimal meshes
(Agouzal et al., 2009, 2010 [2,3], Agouzal et al., 2010 [4]).

© 2012 Elsevier Ltd. All rights reserved.

1. Prerequisites

Let Ω ⊂ Rd be a bounded polyhedral domain and TN be a conformal simplicial mesh with N d-simplexes. The volume
of a d-simplex ∆ and its diameter are denoted by |∆| and diam(∆), respectively. The vertices of ∆ are denoted by vi,
i = 1, . . . , d + 1. We define hN = sup∆∈TN

diam(∆) and consider a sequence of meshes TN such that N → ∞.
Let I1

Nu (I2
Nu) be the continuous piecewise linear (quadratic) interpolant of a continuous function u on a mesh TN , and

I1
∆u (I2

∆u) be its restriction to ∆. In particular,

(I1
∆u)(x) =

d+1
i=1

u(vi)λi(x), x ∈ ∆,

where λi(x), i = 1, . . . , d + 1 are linear functions on ∆ such that λi(vj) = δij, δij is the Kronecker symbol.
In this note we shall deal with functions u from the Sobolev spaceW 2,p(Ω) for p > d/2. Due to the embedding theorem,

they are continuous functions and therefore the conventional Lagrange interpolation can be defined for them. Each entry
Hij(x) of the Hessian matrix H(x) of u is a function from Lp(Ω). The spaceW 2,p(Ω), p > d/2, is feasible for applications. For
instance, the solution u of the Poisson equation in a 2D domain with piecewise smooth boundary (d = 2) has the singular
part φ(r, θ)rα , α ∈ [

1
2 ; 1[, in a local polar coordinate system [1]. Therefore, u ∈ W 1+α,2(Ω) and u ∈ W 2,p(Ω) for any

1 ≤ p < 2/(2 − α), i.e. u ∈ W 2, 43 −ϵ(Ω) for a small ϵ > 0.
The Lq-saturation property, in its simple form, asserts that a smooth function can be approximated asymptotically better

with its piecewise quadratic interpolant than with its piecewise linear interpolant. More precisely, there exists α ∈]0, 1[
such that, for any function u ∈ W 2,p(Ω) and sequences of meshes TN , N → ∞, one has for 0 < q ≤ p:

∥u − I2
Nu∥Lq(Ω)

∥u − I1
Nu∥Lq(Ω)

≤ α. (1)
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The Lq-saturation property is used in the theory of optimal meshes minimizing the Lq-error (0 < q ≤ p) of P1-
interpolation and the theory of quasi-optimal meshes which are achievable approximations of the optimal meshes [2–4].

A more popular assumption is the W 1,q-saturation property [5–8] where the Lq-norm in (1) is replaced by the
W 1,q-seminorm. It is widely used in the classical proof of equivalence of some a posteriori error estimators with the
energy error although this property was shown to be superfluous in the case of isotropic meshes [6]. The analysis of the
W 1,q-saturationproperty on sequences of conformal, possibly anisotropic, simplicialmeshes is the subject of future research.
The analysis will complete the theory of optimal meshes minimizing the W 1,q-error of P1-interpolation and the theory of
corresponding quasi-optimal meshes [2–4,9].

In the sequel, we develop the proof of (1) and present the conditions for mesh sequences under which (1) holds.

2. Functions of two arguments and their properties

For a function of two arguments v(x, y) we introduce a broken norm in Ω

[v]
p
p,Ω =


∆∈TN

[v]
p
p,∆, [v]

p
p,∆ = |∆|

−1


∆


∆

|v(x, y)|pdxdy. (2)

For functions with one argument, the broken p-norm coincides with the Lp-norm. If v is continuous in Ω with respect to the
first argument, we can define the P1 Lagrange interpolation I1

Nv via its restriction I1
∆v on ∆

I1
∆v(x, y) =

d+1
i=1

v(vi, y)λi(x). (3)

We shall consider two functions of two arguments,

π(x, y) = u(y) + ∇u · (x − y) +
1
2
(H(y)(x − y), x − y), (4)

ω(x, y) = ∥H(x) − H(y)∥, (5)
where the difference of the Hessians is evaluated in the spectral norm.

Lemma 1. For any conformal triangulation TN and any u ∈ W 2,q(Ω), q > 0, it holds:

C(d, q)
1
q ∥ detH∥

1
d

L
q

2q+d (Ω)

≤ N
2
d [π − I1

Nπ ]q,Ω (6)

where C(d, q) is a positive constant depending on d and q only.
Proof. Let

t =
q

2q + d
, r = 1 +

2q
d

, s = 1 +
d
2q

, β =
2q

2q + d
for which it holds:

tr =
q
d
, βr =

2q
d

, βs = 1.

Using the Hölder inequality, | detH|
t
= (| detH|

t
|∆|

β)|∆|
−β and the fact that

∆∈TN


∆

|∆|
−1dx = N

we obtain
Ω

| detH(y)|tdy ≤


∆∈TN


∆

| detH(y)|
q
d |∆|

2q
d dy

 1
r

N
1
s . (7)

Let us show that there exists such a positive constant C(d, q) that

C(d, q)


∆

| detH(y)|
q
d |∆|

2q
d dy ≤ [π − I1

∆π ]
q
q,∆. (8)

Indeed,π is a quadratic function in x and due to (3) it is sufficient to analyze functionsπM =
1
2 (Mx, x) for any symmetric

nonsingular matrix M of order d on any d-simplex. We consider the matrix M = | detM|
−

1
d M , such that | detM| = 1, and

the d-simplex ∆ = {x̂ | x̂ = |∆|
−

1
d x, x ∈ ∆}, such that |∆| = 1. Then

∥πM − I1
∆πM∥

q
Lq(∆) = |∆|

2q
d +1

| detM|
q
d ∥πM − I1∆πM∥

q
Lq(∆)

≥ C(q, d)|∆|
2q
d +1

| detM|
q
d ,
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where

C(q, d) := inf
| detM|=1

inf
|∆|=1

∥πM − I1∆πM∥
q
Lq(∆)

.

Averaging the last estimate over ∆, we get (8). Plugging (8) into (7) and using r =
q
td ,

r
s =

2q
d we get (6). �

We denote ϵN = [ω(x, y)]p,Ω which is the Lp modulus of continuity of ω(x, y). It is well known that:

lim
hN→0

ϵN = 0. (9)

Lemma 2. Let u ∈ W 2,p(Ω), p > d/2, 0 < q ≤ p. Then

[u − π − I1
N(u − π)]q,Ω ≤

6p
2p − d

h2
N |Ω|

1
q −

1
p ϵN . (10)

Proof. Consider the function v = u − π as a function of x argument. We have v ∈ W 2,p(∆) and the Hessian of v is
H(x) − H(y). According to [10] (p. 413, Theorems 2–1) it holds:

∥v − I1
∆v∥

p
p,∆ ≤


6p

2p − d

p

(diam∆)2p


∆

∥H(x) − H(y)∥pdx, a.e. y ∈ ∆. (11)

The definition of the broken norm implies that

[v − I1
∆v]p,∆ ≤

6p
2p − d

h2
N [ω(x, y)]p,∆

and

[v − I1
Nv]q,Ω ≤ |Ω|

1
q −

1
p [v − I1

Nv]p,Ω ≤ |Ω|
1
q −

1
p

6p
2p − d

h2
N [ω(x, y)]p,Ω =

6p
2p − d

|Ω|
1
q −

1
p h2

NϵN . �

The simple consequence of Lemmas 1 and 2 is the corollary.

Corollary 3. Under conditions of Lemma 2 it holds:

C(d, q)
1
q ∥ detH∥

1
d

L
q

2q+d (Ω)

≤ N
2
d ∥u − I1

Nu∥Lq(Ω) +
6p

2p − d
N

2
d h2

N |Ω|
1
q −

1
p ϵN . (12)

Proof. Since π − I1
Nπ = π − u − I1

N(π − u) + u − I1
Nu, we apply the triangular inequality to get from (6) and (10):

C(d, q)
1
q ∥ detH∥

1
d

L
q

2q+d (Ω)

≤ N
2
d

[u − I1

Nu]q,Ω + [π − u − I1
N(π − u)]q,Ω


≤ N

2
d


[u − I1

Nu]q,Ω +
6p

2p − d
h2
N |Ω|

1
q −

1
p ϵN


= N

2
d


∥u − I1

Nu∥Lq(Ω) +
6p

2p − d
h2
N |Ω|

1
q −

1
p ϵN


. �

3. Upper and lower bounds of interpolation errors

An upper bound for the P2-interpolation error can be established as follows.

Lemma 4. Let u ∈ W 2,p(Ω), p > d/2 and a conformal triangulation TN of Ω be given. Then for 0 < q ≤ p it holds:

∥u − I2
Nu∥Lq(Ω) ≤

12p
2p − d

|Ω|
1
q −

1
p h2

NϵN . (13)

Proof. The proof is based on the local estimate [10], (p. 413, Theorems 2–1) valid for any d-simplex ∆ ∈ TN :

∥u − I2
∆u∥

p
Lp(∆) ≤


12p

2p − d

p

(diam∆)2p


∆

∥H(x)∥pdx. (14)

Since π(x, y) is the quadratic function of argument x and its Hessian with respect to x is H(y), we have

∥u − I2
∆u∥

p
Lp(∆) = ∥u − π − I2

∆(u − π)∥
p
Lp(∆) ≤


12p

2p − d

p

(diam∆)2p


∆

∥H(x) − H(y)∥pdx, a.e. y ∈ ∆.



Author's personal copy

2126 A. Agouzal, Y.V. Vassilevski / Applied Mathematics Letters 25 (2012) 2123–2127

Averaging over ∆ we obtain

∥u − I2
∆u∥

p
Lp(∆) ≤


12p

2p − d

p

(diam∆)2p
1

|∆|


∆


∆

∥H(x) − H(y)∥pdxdy,

and summing over all ∆ ∈ TN we get

∥u − I2
∆u∥Lq(Ω) = [u − I2

∆u]q,Ω ≤ |Ω|
1
q −

1
p [u − I2

∆u]p,Ω

= |Ω|
1
q −

1
p ∥u − I2

∆u∥Lp(Ω) ≤
12p

2p − d
|Ω|

1
q −

1
p h2

N [ω(x, y)]p,Ω . �

The properties of functions of two arguments, the estimate (12) for the interpolation error and the upper bound for
the P2-interpolation (14) do not impose any restrictions on triangulation TN but conformity. The lower bound for the
P1-interpolation imposes a restriction on the sequence of meshes TN , N → ∞, which we shall refer to as condition A.

Definition 1. The mesh sequence TN , N → ∞, satisfies condition A if there exist constants σ > 0 and 0 < γ < 1/2 such
that

hNϵ
γ

N ≤ σN−
1
d . (15)

We recall that limhN→0 ϵN = 0 for any u ∈ W 2,p(Ω). For a sequence of meshes satisfying condition A, limN→∞ ϵN = 0
although hN does not necessarily tend to 0 as N → ∞. Indeed, assume that there exists a subsequence denoted by
{(ϵN , hN)}N such that for N ≥ N0 one has ϵN ≥ a > 0. Then from (15) hN ≤ σN−

1
d a−γ and limN→∞ hN = 0. Therefore, for

this subsequence limN→∞ ϵN = 0 which is a contradiction.
We note that the class of meshes satisfying condition A is wide enough. It includes all quasiuniform meshes and

M-quasiuniform meshes where M is a given tensor metric field. In particular, the meshes may be adaptive and possibly
anisotropic [3,4,9,11].

The lower bound for the P1-interpolation error is derived for mesh sequences satisfying condition A.

Lemma 5. Let u ∈ W 2,p(Ω), p > d/2 and a sequence of conformal triangulations TN satisfying condition A be given. Then for
0 < q ≤ p it holds:

C(d, q)
1
q ∥ detH∥

1
d

L
q

2q+d (Ω)

≤ lim
N→∞

N
2
d ∥u − I1

Nu∥Lq(Ω). (16)

Proof. From Corollary 3 and (15) one has

C(d, q)
1
q ∥ detH∥

1
d

L
q

2q+d (Ω)

≤ N
2
d ∥u − I1

Nu∥Lq(Ω) +
6pσ 2

2p − d
|Ω|

1
q −

1
p ϵ

1−2γ
N .

Since γ < 1/2 and limN→∞ ϵN = 0, we obtain (16). �

4. The Lq-saturation property

Theorem 6. Let u ∈ W 2,p(Ω), p > d/2 and a sequence of conformal triangulations TN satisfying condition A be given. Then for
0 < q ≤ p it holds:

lim
N→∞

∥u − I2
Nu∥Lq(Ω)

∥u − I1
Nu∥Lq(Ω)

= 0. (17)

Proof. Due to Lemma 4 and (15) there exists a positive constant C2 depending on p, q, Ω, d only such that

∥u − I2
Nu∥Lq(Ω) ≤ C2(p, q, Ω, d)N−

2
d ϵ

1−2γ
N .

Due to Lemma 5 there exist a positive constant C1 depending on u, q, Ω, d only and an integer N0 such that for N ≥ N0 it
holds:

C1(u, q, Ω, d)N−
2
d ≤ ∥u − I1

Nu∥Lq(Ω).

Therefore,

∥u − I2
Nu∥Lq(Ω) ≤ C2(p, q, Ω, d)C1(u, q, Ω, d)−1ϵ

1−2γ
N ∥u − I1

Nu∥Lq(Ω).

Since limN→∞ ϵ
1−2γ
N = 0, we prove (17). �
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For mesh sequences satisfying condition A, Theorem 6 states the Lq-saturation property (17) even in the stronger form
than (1): as N → ∞, the parameter α can be taken arbitrarily small. For other mesh sequences the Lq-saturation property
(1) remains the assumption.
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