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Abstract

A method for the acceleration of a fully implicit solution of nonlinear unsteady boundary value problem is presented. The principle of
acceleration is for provide to the inexact Newton backtracking method a better initial guess, for the current time step, than the conven-
tional choice from the previous time step. This initial guess is built on the reduced model obtained by a proper orthogonal decomposition
of solutions at the previous time steps. This approach is appealing to GRID computing: spare processors may help to improve the
numerical efficiency and to manage the computing in a reliable way.
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1. Introduction

In the field of high performance computing architecture
characteristics always impact on the development of com-
putational methods. Novel numerical methodology may
be attributed to the computer architecture and the associ-
ated software constraints/capabilities. The development
of communication network performances and infrastruc-
tures such as the cost of computing resources, allows us
to define computing architectures that gather several remo-
tely located distributed computers to solve one application.
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Metacomputing and GRID computing refer to these com-
puting architectures. Metacomputing, as defined by Smarr
[20], uses a few stable high performance computers with a
secured environment through dedicated or nondedicated
communication network. GRID computing uses comput-
ing resources that are shared by several users, perhaps
subject to hardware failures, through a nondedicated
communication network.

Metacomputing has been implemented by many projects
of which GLOBUS is the most widely known [9]. Experi-
ments with large configurations and real applications have
shown that the latency of wide area networks is prohibi-
tively high and that substantial bandwidth is rarely
achievable [17]. As a result some have concluded that meta-
computing does not make sense. However, with the intro-
duction of clusters of fast nodes, varying latencies and
bandwidth have become typical features of most modern
hardware architectures. Metacomputing can, therefore,
serve as a test bed for the development of algorithms for
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such new systems. The development of such algorithms
is difficult but the behaviour of the solution and the pro-
perties of operator can help to design latency-aware
algorithms.

For example, the C(p,q, j) time integration algorithms
[10] performed at 80% efficiency on two distant computers
linked with a 10 Mb/s communication bandwidth network.
The target application solved Navier–Stokes equations
coupled with reaction–diffusion equations. Aitken–Sch-
warz Domain Decomposition [11] is an another example
of an algorithm design for metacomputer. It addresses
the more significant challenge to build a fast solver for
the Helmholtz operator and the reaction–convection–diffu-
sion operator. This numerically efficient method delivers
competitive performance on metacomputers with a stan-
dard Internet network. Successful experiments with more
than 1280 processors split between 3 CrayT3E 450/
375 MHz connected across the Atlantic with a 5 Mb/s
bandwidth communication network are reported in [2].

From the engineering point of view, coupling huge high
performance computers seems not to be realistic in terms of
day-to-day practice and infrastructure costs. Nevertheless,
due to material replacement staggering, industrial compa-
nies often have several medium computing resources with
different performance characteristics. These computing
resources can constitute a GRID architecture with high
latencies and slow communication networks with fluctuat-
ing bandwidth shared by several users. The main drawback
of this kind of computing architecture is that processor per-
sistent availability is not guaranteed during computing.

The main objective of this paper is to propose and exam-
ine a method suitable for the GRID architecture. The
method essentially accelerates the fully implicit solution
of unsteady boundary value problems. The core of the
methodology is the generation of a reduced model of lower
dimension compared to the original problem. The implicit
solution of the reduced model provides a much better ini-
tial guess for the inexact Newton backtracking (INB) algo-
rithm. This results in a lesser number of nonlinear
functions and preconditioner evaluations. The reduced
model is generated on the basis of proper orthogonal
decomposition (POD) [18,19] for the series of solutions
already obtained.

Fully implicit approximations of the unsteady boundary
value problems have become very popular in the computa-
tional community in the last decades. Their main appealing
feature is the unconditional stability which is very impor-
tant for long term simulations. The basic difficulty of fully
implicit applications is the high arithmetical complexity of
each time step caused by the solution of large systems of
equations. In the case of nonlinear problems, the solution
procedure is even more complicated. However, a set of
robust (globally convergent) efficient nonlinear solvers
was suggested in 90’s [5,13,6,7]. Being a combination of
the inexact Newton method and Krylov subspace itera-
tions, the methods provide globally convergent algorithms
(allowing large time steps) and efficient and simple imple-
mentations. In this paper we consider the application of
the inexact Newton backtracking (INB) [6,7] algorithm
for solving the unsteady driven cavity problem. For the
implementation of the INB algorithm we refer to [16].

The outline of this paper is as follows. After a general
description of a fully implicit discretisation in Section 2,
we discuss shortly the inexact Newton backtracking
algorithm in Section 3. Section 4 considers a convergence
acceleration based on the choices of better initial guesses
for Newton outer iterations. In Sections 4.1–4.3 we recall
the POD, show how to generate the reduced model,
and formulate our INB–POD algorithm. In Section 5 the
implementation in GRID computations is discussed.
Numerical experiments are reported in Section 6 where
we formulate and advocate our unsteady model problems,
present the performance of the standard algorithm INB
and the proposed INB–POD, show the basic properties
of its asynchronous parallelisation, and exhibit some grid-
ding computation based on this algorithm.

2. Fully implicit discretisations of unsteady nonlinear

problems

Let L(u) be a nonlinear discrete operator representing a
spatial approximation of a parabolic boundary value prob-
lem. The simplest robust technique for time approximation
of unsteady problems is backward Euler time stepping:

ui � ui�1

Dt
þ LðuiÞ ¼ gi: ð1Þ

The main advantage of the method is its unconditional sta-
bility. Being a first order scheme (in time), it may be gener-
alised to higher order approximations (e.g., backward
differences formulae). In general, the ith time step of a fully
implicit scheme may be represented by the nonlinear
system

F iðuiÞ ¼ 0; ð2Þ

where F i contains all the problem data and previous solu-
tions. For instance, in the case of scheme (1),

F i ¼ ui þ LðuiÞDt � ui�1 � giDt:

The price to be paid for the robustness of the method is
its arithmetical complexity: at each time step, a nonlinear
system has to be solved. In the last decade, several robust
nonlinear solvers have been proposed, analysed, and imple-
mented [5,13,16]. However, the efficient solution for large
nonlinear systems remains a challenge.

3. The inexact Newton backtracking (INB) method

Consider a nonlinear system

F ðuÞ ¼ 0:

The inexact Newton backtracking [6,7,16] method offers
global convergence properties combined with potentially
fast local convergence.
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ALGORITHM INB.

LET u0, gmax 2 [0.5,1), t 2 (0,1) AND 0 < hmin < hmax < 1
BE GIVEN.
FOR k = 0,1, . . . (UNTIL CONVERGENCE) DO:
SET INITIAL gk 2 [0,gmax] BY
n o(

gk ¼

min gmax;
jkF ðukÞk�kF ðuk�1ÞþF 0ðuk�1Þsk�1kj

kF ðuk�1Þk
; k > 0;

0:5; k ¼ 0:

ð3Þ
FIND INITIAL sk SUCH THAT
kF ðukÞ þ F 0ðukÞskk 6 gkkF ðukÞk; ð4Þ
WHILE kF(uk + sk)k > [1 � t(1 � gk)]kF(uk)k DO:

CHOOSE h 2 [hmin,hmax].
UPDATE sk hsk AND gk 1 � h(1 � gk).

SET

ukþ1 ¼ uk þ sk: ð5Þ
Typical values of the parameters are as follows [16]:

gmax = 0.9, hmin = 0.1, hmax = 0.5, t = 10�4. Eq. (3) gives
one of the possible definitions of the ‘‘forcing term’’ which
prescribes the accuracy of solving the system F(uk)sk =
�F 0(uk). The parameter t is used to judge sufficient reduc-
tion of kF(uk)k. The judgement is based on the comparison
of the actual function reduction kF(uk) � F(uk + sk)k and
the reduction predicted by a local quadratic model
kF(uk)k � kF(uk) + F 0(uk)skk:
kF ðukÞ � F ðuk þ skÞkP tðkF ðukÞk � kF ðukÞ þ F 0ðukÞskkÞ:
Condition (4) holds for each sk, gk determined by the while-
loop. Parameter h 2 [hmin,hmax] is chosen to minimalise a
quadratic that interpolates kFk in the direction of the inex-
act Newton step. The algorithm has a solid theoretical
background [6,7]:

Theorem. Let F be continuously differentiable. If {uk}
produced by the Algorithm INB has a limit point u such
that F 0(u) is invertible, then F(u) = 0 and uk! u. Further-

more, if F 0 is Lipschitz continuous at u, then

kukþ1 � uk 6 bkuk � ukkuk�1 � uk; k ¼ 1; 2; . . .

for a constant b independent of k.

Inequality (4) implies the approximate iterative solution
of the Newton step system

F 0ðukÞsk ¼ �F ðukÞ ð6Þ
with relative reduction of the residual (for a trivial initial
guess) gk. The forcing term gk (3) is chosen dynamically
to avoid over-solving the systems (6). Backtracking is used
to globalise the convergence, and updated sk and gk always
satisfy (4). The iterative solution of (6) requires only eval-
uation of F 0(uk) on a vector. This allows us to replace the
F 0(uk)v by its finite difference approximation, e.g.,

F 0ðukÞv ¼
1

d
½F ðuk þ dvÞ � F ðukÞ�: ð7Þ
Hereinafter, the GMRES(30) method is used to obtain the
solution iteratively.

The algorithm INB presumes the choice of an initial
guess uk for nonlinear iterations. We recall that the arith-
metical complexity of the method is expressed in the total
number of function evaluations nevF and the total number
of preconditioner evaluations nevP (if any); the remaining
overheads are negligible.
4. INB acceleration via model reduction

4.1. Proper orthogonal decomposition

Proper orthogonal decomposition (POD) provides a
way to find optimal lower dimensional approximations of
a given series of data. More precisely, it produces an ortho-
normal basis for representing the data series in a certain
least squares optimal sense [18,19]. Combined with the
Galerkin projection, POD is a tool for the generation of
reduced models of lower dimension. The reduced models
may give a better initial guess for the Newton solution at
the next time step.

POD provides a definite answer to the question: Which
of the m-dimensional subspaces S � RN is the most close
(in the terms of the least squares) to the given set of vectors
fuign

i¼1,

S ¼ arg min
S2RN�m

Xn

i¼1

kui � P Suik2
?

Here PS is the orthogonal projection onto S. Define the cor-
relation matrix R = XXT, X = {u1 � � � un}, and find m eigen-
vectors of the problem

Rwj ¼ kjwj; k1 P � � �P kN P 0

corresponding to m largest eigenvalues k1 P � � �P km.
Then

S ¼ spanfwjgm
j¼1 ð8Þ

andXn

i¼1

kui � P Suik2 ¼
XN

j¼mþ1

kj: ð9Þ

The computational cost of finding m-largest eigenvalues
of symmetric matrix R is not high. Indeed, our experience
shows that for m = O(10) the application of the Arnoldi
process requires a few tens of R-matrix–vector multiplica-
tions in order to retrieve the desirable vectors with very
high accuracy [14]. In spite of the large dimensions of N

and the density of R, the matrix–vector multiplication is
easy to evaluate, due to the factored representation
R = XXT. Let X 2 RN·n, a 2 Rn and b 2 RN then the
arithmetical cost of the evaluation Xa (and XTb) is Nn

multiplications and not more than Nn additions, therefore,
R-matrix–vector multiplication costs at most 4Nn flops.

Since the method of finding fwjgm
j¼1 is based solely on

matrix–vector multiplication, it may be easily parallelised
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[15]. Taking into account the factored form of the matrix,
we parallelise the method as follows. Let rows of X be split
into p groups according to the value mod(i � 1,k), where i

is the row index and k = N/p. Each group is allocated on a
processor with the same index. Let a vector b 2 RN be allo-
cated among the processors according to the same rule.
Then Rn 3 a = XTb is obtained by the global summation
of all local contributions (MPI_ALLREDUCE), whereas Xa

is evaluated by each processor independently of the others.
Other details of numerical implementation and paralleli-

sations will be given below.

4.2. Generation and solution of the reduced model

Each time step of the scheme (1) generates Eq. (2) which
we call the original model. A reduced model is generated
on the basis of POD for a sequence of solutions at time
steps fuigie

i¼ib
, ie � ib + 1 = n. The eigenvectors fwjgm

j¼1

may be considered as the basis of m-dimensional subspace
whose projection is Vm = {w1 � � � wm} 2 RN·m. The reduced
model is the Galerkin projection onto this subspace:

V T
mF iðV mûiÞ ¼ 0; ð10Þ

or, equivalently,

bF iðûiÞ ¼ 0; ð11Þ

where the unknown vector ûi 2 Rm and bF i : Rm ! Rm.
The reduced model is the very low dimension m nonlin-

ear equation. For its solution, we adopt the same INB
algorithm with the finite difference approximation of the
Jacobian–vector multiplication. Being the formal Galerkin
projection, each evaluation of function bF iðûi

kÞ is the
sequence of the following operations: ui

k ¼ V mûi
k, f i

k ¼
F iðui

kÞ, f̂ i
k ¼ V T

mf i
k . Therefore, the overhead is matrix–vector

multiplications for Vm and V T
m, i.e., 4 N m flops. We notice

that usually m = O(10) and the evaluation of function F(u)
is much more expensive than 40 N m which implies a neg-
ligible weight of overheads.

Another important consequence of low dimensionality
of (11) is that the INB algorithm may be applied without
any preconditioner. Indeed, were the function F( ) linear
in the vicinity of uk (rf. (6)), the GMRES iterations would
converge within at most m iterations (provided m is larger
than the Krylov subspace dimension). Since d� 1 in (7),
F( ) is very close to linear operator and m GMRES itera-
tions must provide at most O(d) accuracy. For d� �, the
stopping tolerance for the INB algorithm, convergence is
implied within m iterations for each system (6).

4.3. A fully implicit solver with POD-reduced model

acceleration

Coupling POD and Galerkin projection for the genera-
tion of the reduced model gives a powerful tool for acceler-
ation of the fully implicit schemes. Let n, the length of data
series, be defined, as well as the desirable accuracy � for F i:
kF i(ui)k 6 �. For any time step i = 1, . . ., perform:

ALGORITHM INB–POD

IF i 6 n, THEN
SOLVE F i(ui) = 0 BY PRECONDITIONED INB
WITH THE INITIAL GUESS ui

0 ¼ ui�1
AND ACCURACY �

ELSE

1. IF(mod(i,n) = 1): !(SEARCH FOR THE REDUCED BASIS)

(A) FORM X = {ui�n � � � ui�1};
(B) FIND SO MANY LARGEST EIGENVECTORS wj of

R = XXT
THAT
XN

j¼mþ1

kj 6 �;
(C) FORM Vm = {w1 � � � wm}

2. !(COMPUTE THE BETTER INITIAL GUESS BY POD)
(A) SET ûi
0 ¼ V T

mui�1

(B) SOLVE bF iðûiÞ ¼ 0 BY NONPRECONDITIONED INB
WITH THE INITIAL GUESS ûi

0 AND ACCURACY �/10

3. !(SOLVE THE FULL PROBLEM WITH THE BETTER INITIAL

GUESS)

(A) SET ui

0 ¼ V mûi

(B) SOLVE F i(ui) = 0 BY PRECONDITIONED INB WITH

THE INITIAL GUESS ui
0 AND ACCURACY �
Several remarks can be made as follows. The absence of
the preconditioner for the reduced model is dictated by two
things: (a) it is not clear how to construct a preconditioner
for the reduced model, (b) it is not required if m is small.
The reduced model is slightly over-solved: this provides
the better initial guess ui

0. The number of eigenvectors is
chosen adaptively in the above algorithm: it allows us to
form a reduced model that approximates the original
model with the desirable accuracy �. Actually, this condi-
tion may be replaced by a rougher Nkm+1 < � or even a
fixed number m, m = 10–40. The solution of the eigenvalue
problem may be performed asynchronously with the impli-
cit solution: as soon as Vm is formed, the reduced model
becomes the active substep. The latter observation creates
a lot of possibilities for organising the computations. See
the next section.
5. The POD-reduced model acceleration and its GRID

applications

The present acceleration is well designed for GRID
computing. The target architecture is represented by a large
amount of low cost computational resources (clusters) con-
nected via a standard Ethernet communication network.
We consider the basic features of the GRID architecture
and appropriate modes of POD usage in this context:

• A slow communication network with high latency time
between clusters of resources. It is usual to have a one
or two orders of magnitude gap between the communi-



D. Tromeur-Dervout, Y. Vassilevski / Advances in Engineering Software 38 (2007) 301–311 305
cation speeds inside and outside a cluster. The POD
acceleration can be used wherever POD data are avail-
able. The asynchronous nonblocking communications
between the POD generator and the solver resource pro-
vide computation of the time step without idling. There-
fore, a slow network with high latency time is affordable
for the proposed technology.

• A high probability of failure of an element of the com-
puting resources. This is typical for GRIDs where the
resources are not dedicated to a single application and
a single user. The conventional way to cope with a hard-
ware failure is on-fly backup of the solution which dete-
riorates the performance. Being activated on a separate
computational resource, the POD generator provides a
natural way to restart the computation on the solver
resource. The MPI-2 process model allows us to spawn
a new set of MPI processes. The POD can be the exter-
nal resource control that can start the spawn processes
of the application, in case the solver resources fail. Upon
an interruption of the data supply, the POD generator
can restart the solver processes and deliver them the
appropriate last solution recovered from the reduced
model representation.

• The POD generator task is waiting for data from the sol-
ver resource and will compute the POD basis when suf-
ficient data are gathered. For the sake of more efficient
use of the POD generation resource, it may work with
other tasks as well. For instance, the POD generator
can be used by several solvers and perform the POD
on different sets of solutions tagged by the generating
solver. In addition, the reduced basis may be used for
other postprocessing tasks such as data visualisation
or a posteriori error estimation.
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Fig. 1. Different types of boundary velocity v(t).
6. Numerical experiments

6.1. Formulation of model problems

In order to illustrate the basic features of the proposed
methodology, we choose the backward Euler approxima-
tion of the unsteady 2D Navier–Stokes equations. We
consider the classical driven cavity problem in the stream-
function-vorticity formulation [8]:

ox
ot
� 1

Re
Dxþ ðwyxx � wxxyÞ ¼ 0 in X; ð12Þ

�Dw ¼ x in X;

wjt¼0 ¼ 0 in X;

w ¼ 0 on oX;

ow
on

����
oX

¼
vðtÞ if y ¼ 1;

0 if 0 6 y < 1:

� ð13Þ

Here, X = (0,1)2, Re = 1000, and v(t) is the unsteady
boundary condition leading the flow. After elimination of
vorticity, we obtain the streamfunction formulation:
o

ot
ðDwÞ � 1

Re
D2wþ ðwyðDwÞx �wxðDwÞyÞ ¼ 0 in X;

wjt¼0 ¼ 0 in X;

w ¼ 0 on oX;

ow
on

����
oX

¼
vðtÞ if y ¼ 1;

0 if 06 y < 1:

( ð14Þ
Three different types of flows are simulated: saturating
(to the steady solution), quasi-periodic in time, and
quasi-periodic in time with variable periods (arrhythmic).
These three cases are defined by the unsteady boundary
velocity v(t). We set v(t) = 1 + (t + 10)�1 for the saturat-
ing flow, v(t) = 1 + 0.2sin(t/10) for the quasi-periodic flow,
and v(t) = 1 + 0.2sin([1 + 0.2 * sin(t/5)] * t/10) (see Fig. 1).
We motivate the chosen parameters as follows. In the case
of v(t) = 1, the unsteady solution saturates within ts � 150.
Therefore, to get a quasi-periodic solution, we need the
periodic forcing term with the period T < ts but compara-
ble with ts, T � ts. Indeed, if T� ts, the inertia of the
dynamic system will smear out the amplitude of the oscilla-
tions; if T > ts, the dynamic system will have enough time
to adapt to the periodic forcing term and demonstrate peri-
odic behavior. The function sin(t/10) has the period
T = 20p which perfectly fits the above restrictions for the
quasi-periodicity. The arrhythmic flow is a simple modifi-
cation of the quasi-periodic flow by arrhythmic scaling of
the time t! [1 + 0.2 * sin(t/5)] * t. It is well known that
the feasible time step Dt for approximation of periodic
solutions satisfies 12Dt = T, i.e., Dt � 5. Therefore, in the
case of v(t) = 1, the saturation will occur within 30 time
steps. This is not enough for the demonstration of the
POD-acceleration. Therefore, we artificially extend the sat-
uration time by choosing the unsteady saturating boundary
condition v(t) = 1 + (t + 10)�1.

For the discretisation in time, we chose the backward
Euler scheme (1). For the discretisation in space (developed
by P. Brown), we adopt the P1 finite element spaces appli-
cable to the biharmonic problems as it was shown in [12].



Fig. 2. Streamfunction isolines w = �0.1, �0.08, �0.06, �0.04, �0.02, 0,
0.00005, 0.0001, 0.0005, 0.001, 0.0025 for quasi-periodic solution at time
t = 500, h = 2�7.

Table 1
Performance of the algorithm INB (NITSOL) for the three types of
unsteady solution at several time steps (i) and on two meshes (h), ui

0 ¼ ui�1

h = 2�7 h = 2�8

i = 10 i = 20 i = 30 i = 10 i = 20 i = 30

Saturating solution

kF iðui
0Þk 0.005 0.0014 0.0006 0.015 0.004 0.0018

nevF 127 107 96 118 93 83
nevP 122 102 91 113 88 78
CPU time 2 1.73 1.54 9.7 7.3 7

Quasi-periodic solution

kF iðui
0Þk 0.13 0.28 0.03 0.36 0.79 0.09

nevF 150 191 172 166 186 189
nevP 144 185 167 160 180 183
CPU time 2.4 3.1 2.9 13.4 15.3 16.1

Arrhythmic solution

kF iðui
0Þk 0.005 0.77 0.46 0.01 2.2 1.3

nevF 122 215 201 115 205 227
nevP 117 208 195 110 198 221
CPU time 2.0 3.5 3.3 9.2 16.7 19.5
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This discretisation is also equivalent to that obtained using
standard finite differences. We consider two uniform grids
with mesh steps h = 2�7, 2�8 providing 16,129 and 65,025
unknowns, respectively. Typical quasi-periodic solution
isolines are shown in Fig. 2. The nonlinear problems (2)
are solved by the NITSOL package [16] with the precondi-
tioned GMRES(30) iterations. The stopping criterion for
the INB algorithm is kF iðui

kÞk < 10�7kF 0ð0Þk. For the pre-
conditioner, we use the discretised version of P ¼ 1

Re D2. For
a uniform mesh, systems of the form Pw = u can be solved
very efficiently using a fast solver [4]. For small and mod-
erate Reynolds numbers, this preconditioner provides inde-
pendence of the convergence rate of the mesh size.
Evaluations of the Jacobian are replaced by the finite differ-
ence approximations of the first order. Therefore, the dom-
inant contribution to the arithmetical work is given by the
number of function evaluations nevF and number of pre-
conditioner evaluations nevP for each time step.

The sequential and parallel numerical experiments
presented in Sections 6.2–6.4 have been performed on
alpha ev67 processors with 8Mo L2-Cache, cadenced
to 667 MHz, with 800 Mb/s communication bandwidth
network.
6.2. Computational performance of the standard implicit
solver

In Table 1 we present the performance of the standard
NITSOL solver with the initial guess equal to the solution
at the previous time step. The number of function and pre-
conditioner evaluations does not depend on the mesh size.
Consequently, the CPU time (for a time step) increases by
factor 5 when the number of unknowns is multiplied by
factor 4. Slight nonproportionality is attributable to the
arithmetical complexity of the preconditioner evaluation.
However, both nevF and nevP may depend on the time step:
for saturating solution, they decrease monotonically,
whereas for the other cases they may oscillate within cer-
tain ranges. The reason is evident: in the first case, the
choice ui

0 ¼ ui�1 provides better initial guess ðkF iðui
0ÞkÞ as

t!1, while in the other cases the quality of the initial
guess ui

0 ¼ ui�1 depends on the time moment t (see Fig. 1).

6.3. Sequential runs: speed-up of computation by POD and

its basic features

We consider the performance of the algorithm INB–
POD with the following parameters: the data (solutions)
series are {u20k�10 � � � u20k+9}, k = 1,2, . . . , so n = 20,
and the dimension of the reduced model is fixed to
m = 10. In Tables 2 and 3 we present the arithmetical com-
plexity of certain time steps, in terms of nevF, nevP and the
CPU time, as well as the quality of the initial guess kF iðui

0Þk
due to the reduced model. The first observation is that the
acceleration is significant, �2–5-fold in comparison with
the standard algorithm INB. This is due to a much better
initial guess for the original model solver (cf. kF iðui

0Þk).
Due to the super-linear convergence of the INB algorithm,
this results in smaller values of nevF, nevP. The price to be
paid for this reduction is the cost of the reduced problem
solution. As mentioned before, the complexity of the func-
tion bF evaluation only slightly exceeds that for F, whereas
the number of preconditioner evaluations is zero for the
reduced model. Since in the considered application (as in
the majority of applications), the complexity of the precon-
ditioner evaluation dominates the complexity of the func-
tion evaluation, the speed-up is attributable to the ratio
of nevP for the standard algorithm and the accelerated
one. As can be seen from the tables, this ratio depends
on the type of unsteady solution and on the time moment.
For the saturating and quasi-periodic solutions, the
reduced model is capable of recovering the solution at



Table 2
Performance of the algorithm INB–POD (NITSOL) for the saturating solution at several time steps (i) and on two meshes (h), ui

0 ¼ V mûi

h = 2�7 h = 2�8

i = 32 i = 42 i = 52 i = 32 i = 42 i = 52

kF iðui
0Þk � 10�7 4.4 15 7 14 37 12

nevF 25 + 12 25 + 30 24 + 19 27 + 14 27 + 27 25 + 12
nevP 0 + 10 0 + 27 0 + 16 0 + 12 0 + 24 0 + 10
CPU time 0.1 + 0.16 0.1 + 0.4 0.1 + 0.3 0.7 + 0.9 0.7 + 1.8 0.6 + 0.7

The first entry of each sum corresponds to the contribution of the reduced model, the second is due to the original model.

Table 3
Performance of the algorithm INB–POD (NITSOL) for the nonsaturating solutions at several time steps (i) and on two meshes (h), ui

0 ¼ V mûi

h = 2�7 h = 2�8

i = 32 i = 52 i = 72 i = 32 i = 52 i = 72

Quasi-periodic solution

kF iðui
0Þk � 10�6 25 0.9 0.5 22 1 2.6

nevF 54 + 74 45 + 22 44 + 11 44 + 55 45 + 11 44 + 19
nevP 0 + 69 0 + 19 0 + 9 0 + 51 0 + 9 0 + 16
CPU time 0.2 + 1.1 0.2 + 0.3 0.2 + 0.15 1.2 + 4.2 1.1 + 1.1 1.1 + 1.2

Arrhythmic solution

kF iðui
0Þk � 10�4 4 3.6 1.7 5.5 4.3 1.8

nevF 50 + 110 51 + 96 49 + 94 50 + 98 42 + 80 49 + 77
nevP 0 + 105 0 + 91 0 + 89 0 + 93 0 + 75 0 + 72
CPU time 0.2 + 1.7 0.2 + 1.5 0.2 + 1.5 1.3 + 7.7 1.0 + 6.4 1.1 + 5.9

The first entry of each sum corresponds to the contribution of the reduced model, the second is due to the original model.
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the next time step very accurately ðkF iðui
0Þk � 10�6Þ which

provides the essential reduction of nevP (and nevF). How-
ever, at time step 32 the quasi-periodic flow is not yet very
well stabilised, and the prediction of the reduced model is
not as good ðkF iðui

0Þk � 10�5Þ yielding only 2-fold acceler-
ation. For the arrhythmic flow, the quality of the predic-
tion is even worse ðkF iðui

0Þk � 10�4Þ, and the typical
acceleration factor is 2–3. At the early stages of the
arrhythmic flow the acceleration may be small, as observed
for time step 32. Here, the solution from the previous time
step occasionally turns out to be almost as good as the ini-
tial guess predicted by the reduced model, �0.01 versus
�0.001. As a result, the reduction of nevP is only 10–20%,
and the overall acceleration is insignificant. On the other
hand, the complexity of the reduced model solution does
not vary considerably: nevF ranges from 25 to 50 for all
the cases. The reason is the low dimensionality (m = 10)
of the reduced problem.

We remark here that the arrhythmic flow is a very stiff
test for the methodology: the solution at the next time step
can hardly be approximated by a composition of several
solutions at previous time steps. Consequently, the POD-
reduced model is not capable of providing a very good ini-
tial guess and many-fold speed-ups. Could the extension of
the data (solution) series, n, and/or enrichment of the
reduced model basis, m, increase the speed-up? Controver-
sial tendencies do not allow us to answer the question a pri-

ori: the larger m is, the better the prediction of the reduced
model, but its quality is limited by the accuracy of the rep-
resentation of ui+1 via the series fuib � � � uieg; on the other
hand, the complexity of the reduced model solution
increases for large m. Therefore, the answer depends on
the particular problem and parameters and must be based
on numerical evidence. For the case of the arrhythmic solu-
tion, we present, in Table 4, the complexity of certain time
steps for several pairs m,n. The 2-fold increase of m does
provide a better initial guess but the increased cost of the
reduced model solution is not compensated by the speed-
up of the original model solution. On the other hand, the
2-fold increase of n does not provide a better resolution
of the reduced model: due to the irregularity (in time) of
the unsteady solution, the extension of the data series
may not provide a better approximation. Moreover, the
extension of data series may slightly deteriorate the perfor-
mance of the algorithm INB–POD. The reason is that the
more ‘‘useless’’ solutions contribute to the basis of the
reduced model, the less adequate the reduced model (with
fixed m). We notice that for unsteady problems with ‘‘pre-
dictable’’ solutions (saturating or quasi-periodic) the posi-
tive effects of the increase of n may be more pronounced,
with the exception that for the quasi-periodic solution the
choice n > T/Dt does not seem to be feasible. The increase
of m is always constrained by the compromise between the
cost of the solution of the reduced model and the actual
speed-up of the original model.

6.4. Asynchronous runs on a parallel computer

An important feature of the algorithm INB–POD is that
it is not strictly sequential: computation of the basis for the
reduced model may be performed on another processor.
The implicit solution may be advanced without the reduced



Table 4
Performance of the algorithm INB–POD (NITSOL) for the arrhythmic solution at several time steps (i), ui

0 ¼ V mûi

i = 32 i = 52 i = 72 i = 112 i = 152

m = 10, n = 20, X = {u20k�10 � � � u20k+9}
kF iðui

0Þk � 10�4 5.5 4.3 1.8 6 1.4
nevF 50 + 98 42 + 80 49 + 77 48 + 101 51 + 78
nevP 0 + 93 0 + 75 0 + 72 0 + 96 0 + 73
CPU time 1.3 + 7.7 1.0 + 6.4 1.1 + 5.9 1.1 + 8.0 1.2 + 6.0

m = 20, n = 20, X = {u20k�10 � � � u20k+9}
kF iðui

0Þk � 10�4 0.5 0.4 2.0 0.4 0.4
nevF 101 + 67 96 + 61 99 + 80 107 + 69 86 + 58
nevP 0 + 63 0 + 57 0 + 75 0 + 65 0 + 54
CPU time 4.0 + 5.2 4.2 + 4.8 4.2 + 6.3 4.7 + 5.3 3.5 + 4.5

m = 10, n = 40, X = {u40k�30 � � � u40k+9}
kF iðui

0Þk � 10�4 3.9 5.5 6.0 3.6
nevF 42 + 86 52 + 93 58 + 97 45 + 90
nevP 0 + 81 0 + 88 0 + 92 0 + 85
CPU time 1.0 + 6.7 1.2 + 7.2 1.3 + 7.6 1.1 + 7.1

m = 20, n = 40, X = {u40k�30 � � � u40k+9}
kF iðui

0Þk � 10�4 0.5 0.7 0.5 0.3
nevF 86 + 59 100 + 64 109 + 70 87 + 54
nevP 0 + 55 0 + 60 0 + 66 0 + 50
CPU time 4.0 + 4.5 4.5 + 4.9 4.8 + 5.4 3.6 + 4.1

The first entry of each sum corresponds to the contribution of the reduced model, the second is due to the original model, h = 2�8.

Table 5
Number of time steps using the obsolete data or no data because of
asynchronous data exchanges between the two processors (advancing the
implicit scheme and solving the partial eigenproblem), n = 20, m = 10,
h = 256�1

Update reduced model at time step i

32 52 72 92

Saturating sol.

ndelay 1 2 2 2

Quasi-periodic sol.

ndelay 1 2 2 2

Arrhythmic sol.

ndelay 1 1 1 1
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model POD acceleration, or with the obsolete (not updated)
reduced model acceleration. The technology of the asyn-
chronous data exchanges provides the tools for launching
the reduced model usage only when the respective reduced
basis is available (i.e., computed somewhere else and
received by the processor carrying out the implicit solution).
On the other hand, upon each time step termination the
solution may be sent asynchronously to the processor
resolving eigenproblems. Therefore, the number of time
steps ndelay accelerated with obsolete data (or not acceler-
ated) depends on the time for solving the partial eigenprob-
lem for matrix R = XXT and the time of data (solution
series and reduced model basis) exchange. For parallel com-
puters the time for data exchange is small (N + mN) in com-
parison with the the complexity of the partial eigenproblem
solution. Hence, it is the eigensolver that affects the value
of ndelay. In Table 5 we present ndelay for all types of
unsteady solutions on the mesh h = 256�1 when the partial
eigenproblem is solved on one processor while the implicit
time stepping is realised on another processor. It is seen that
asynchronous exchanges affect one or two time steps.

In order to minimise ndelay, one can reduce the time of
the partial eigensolution by its parallelisation, since it is
based on the R-matrix–vector multiplication [14]. Due to
the factored form of R = XXT, the R-matrix–vector multi-
plication is very easy to parallelise if each solution vector is
distributed over the set of available processors. The full
parallel code using BLAS routines is trivial:

1. subroutine av(X, ldx, n, m, v, w, buf, comm)
2. include ‘mpif.h’
3. integer n, m, ldx, comm
4. Double precision X(ldx,m), v(n), w(n), buf(*)
5. Double precision one, zero
6. parameter (one = 1D0, zero = 0D0)
7. Integer ierr

8. call dgemv(‘T’, n, m, one, X, ldx, v, 1, zero, w, 1)
9. call MPI_ALLREDUCE(w, buf, m,MPI_DOU-
BLE_PRECISION, & MPI_SUM,comm, ierr)

10. call dgemv(‘N’, n, m, one, X, ldx, buf, 1, zero,
w, 1)

11. return
12. end

Remarkably, this simple code provides a parallel effi-
ciency larger than 1, as can be seen from Table 6. The only
reason for this may be cash effects.

6.5. Comparison in the GRID framework

GRID experiments involve a computer A (SGI Altix350
with Ithanium 2 processors cadenced at 1.3 GHz/3 Mo,



Table 6
Speed-up of the parallelisation of the eigensolver PARPACK [15]

#Procs for eig. pr. 1 2 3
Time of the eig. sol. 8.5 3.4 1.4

Quasi-periodic solution, n = 20, m = 10, h = 256�1, 30th time step.
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1.3 Gb/s network bandwidth) and a computer B (6 nodes
Linux cluster with AMD BiAthlon 1600+ MP processors,
with 256KB L2-cache, 1GB of RAM per node, 100 Mb/s
Ethernet internal network). The MPICH communication
library is compiled with the ch_p4 interface. A latency of
140 ls and a maximum bandwidth of 71 Mb/s have been
measured for the communication network between com-
puters A and B. For compilation we use the g77 Fortran
compiler.

This section compares the conventional solver INB with
the initial guess from the previous time step, the INB–POD
solver running on computer A, and the INB solver running
on computer A and communicating with the POD genera-
tor running on computer B. The POD acceleration begins
at the 30th time step.

Figs. 3 and 4 give the elapsed time of the INB solver for
the arrhythmic and the periodic cases on the GRID archi-
tecture context. The figures show that:

• the INB–POD gives quite similar results when it per-
forms on the GRID context or on homogeneous com-
puter. Consequently the computer B can be used with
no penalty on the performances;

• the elapsed time is greater than that in Tables 1–4 due to
the poor performance of the g77 compiler on IA64 pro-
cessor. Nevertheless, the acceleration factor of the INB–
POD remains high.

Figs. 5 and 6 represent the GRID computation in detail.
In addition to the total elapsed time of each time step, they
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Fig. 3. Arrhythmic case: comparison of elapsed time of INB on computer
A, INB with POD initial guess computer A, INB with POD initial guess
GRID computer A (POD computed on computer B).
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Fig. 5. Elapsed times for the GRID computation of the arrhythmic case:
total time for the time step, time of computation of the initial guess by
INB, time of the INB solution of the original model.
exhibit the time t1 spent for the initial guess computation
by INB applied to the reduced model, and the time t2 of
the INB solution of the original model. We observe that
t1 is almost constant with the mean value 3.7 s for the peri-
odic case and 3.9 s for the arrhythmic case. In contrast, t2

manifests strong (more than 100%) fluctuations with the
mean value 6.6 s for the periodic case and 22.5 s for the
arrhythmic case. The stability of t1 is the consequence of
the stable convergence of INB due to the low dimension
(m = 10) of the reduced model.

We experiment with the counterpart of Table 5 for the
GRID computations. We consider two configurations
of resources. Configuration I uses one processor for
NITSOL and two processors for POD on computer A.
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Configuration II uses one processor for NITSOL on com-
puter A and four processors for POD on computer B. The
mesh size is h = 128�1. In both cases the number of delayed
time steps ndelay is equal to 1. The main reason for such a
good efficiency is greater computational time compared
to the alpha processor: the POD generator has more time
to compute and send the reduced basis to the INB solver
even on a coarser mesh. These results demonstrate the
appealing features of the approach in day-to-day engineer-
ing computations. First, it is possible to run the POD and
the INB on the same processor. However, there exists the
risk of performance deterioration due to cache reuse and/
or code swapping as the POD needs sufficient data to be
relevant. Second, the cost of computer B processor dedi-
cated to the POD is much less that of computer A proces-
sor. Consequently, it is beneficial to load the computer B
with the useful but not critical task of POD generation
and dedicate the advanced processors to heavy computa-
tion of nonlinear systems. Third, the spare processors on
computer B can postprocess the solution (a posteriori error
estimates, visualisation). Fourth, the spare processors can
monitor the computation and restart it in case of failure
of computer A.

We note that the reported GRID implementation sug-
gests certain improvements. MPICH-Madeleine [1] should
allow us to use different MPICH communications proto-
cols both inside and outside a cluster. Besides, the employ-
ment of the Intel Fortran compiler on the IA64 processor
architecture should improve the performance of the INB–
POD solver.
7. Conclusions

The method for the acceleration of the fully implicit
solution of nonlinear boundary value problems is pre-
sented. The use of the reduced model to a compute much
better initial guess reduces the computational time as well
as the numbers of nonlinear and linear iterations.

The asynchronous communications with the POD gen-
erator make the algorithm appealing for GRID computing
[3]. The parallel efficiency in the GRID context is under-
stood as the computational speed-up on the solver resource
due to communications with the POD generator, and not
the parallel speed-up with respect to the number of
processors.

Another appealing feature of the approach is its hard-
ware failure protection. Upon failure, the solver resource
can recover its computation by spawning the MPI pro-
cesses and using the POD data from the POD generator
resource.
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