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Abstract: The paper introduces a finite element method for the Navier-Stokes equations of incompressible
viscous fluid in a time-dependent domain. The method is based on a quasi-Lagrangian formulation of the
problem and handling the geometry in a time-explicit way. We prove that numerical solution satisfies a dis-
crete analogue of the fundamental energy estimate. This stability estimate does not require a CFL time-step
restriction. The method is further applied to simulation of a flow in a model of the left ventricle of a human
heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed
Tomography images.
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Fluid flows in time-dependent domains are ubiquitous in nature and engineering. In many cases, fluid–
structure interaction phenomena play important role and the domain evolution is an unknown in themathe-
matical model that couples fluid and structure dynamics. Examples include blood flow in compliant vessels,
flows around turbine blades or fish locomotion. In other situations, one may assume that the motion of the
domain is given and one has to recover the induced fluid flow. In biomedical applications, this second sce-
nario is often accepted for the blood flow simulations in a human heart when the (patient-specific) motion
of the heart walls is recovered from a sequence of Magnetic Resonance (MR), contrast enhanced Computed
Tomography (ceCT) or ultrasonic images (see, e.g., [3, 4, 13, 16, 17, 24–26]). Nowadays numerical simulations
are commonly used to understand fluid dynamics and predict statistics of practical interest in this and other
applications. In the conventional approach one considers the Navier–Stokes equations in a time-dependent
domain to describe the fluid dynamics and further applies numerical method to solve them. In the present
paper, we introduce a finite element (FE) method for a quasi-Lagrangian formulation of the incompressible
Navier–Stokes equations in a moving domain. We analyze its numerical stability, and apply the method to
simulate a flow in a model of the left ventricle of a human heart.

Several techniques have been introduced in the literature to overcome the numerical difficulties due to
the evolution of the domain. This includes the space–time finite element formulations, immersed boundary
methods, level-set method, fictitious domain method, unfitted finite elements, and arbitrary Lagrangian–
Eulerian (ALE) formulation (see, e.g., [5, 8, 9, 11, 15, 19–21, 30]). In this paper we propose a finite element
method based on a quasi-Lagrangian formulation of the equations in the reference domain. Themethod uses
a fixed mesh fitted to the boundary of the computational domain. The time-dependent coefficients, which
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account for the domain evolution, are handled with a time lag. The above and the linearization of the in-
ertia terms lead to a linear discrete problem at each time step. We prove the stability of this semi-explicit
method without any CFL-type restriction at the time-step. Related analyses of finite element methods for
parabolic or fluid equations in moving domains can be found in several places in the literature. We note that
well-posedness of space-time weak saddle-point formulations of the (Navier–)Stokes equations is a subtle
question, see the recent treatment in [10] for the case of a steady domain. This may explain why a rigorous
stability and convergence analysis of space–time (FE)methods for fluid problems is seemingly lacking. Scalar
problems are understood much better; for example, a space–time discontinuous FE method for advection–
diffusion problems on time-dependent domains was analyzed in [27]. ALE and Lagrangian finite element
methods are more amenable to analysis. The stability of ALE finite element methods for parabolic evolution
problems was treated in [19]. In [14] the authors analyze the convergence of a finite element ALE method for
the Stokes equations in a time-dependent domain when the motion of the domain is given. The analysis im-
poses time step restriction and certain smoothness assumptions for the finite element displacement field. In
the present paper, we prove the energy stability of a finite element method applied to the quasi-Lagrangian
formulation of the Navier–Stokes problem.

We further illustrate the performance of the numericalmethod by applying it to simulate a flowdynamics
in amodel of the human left ventricle. The domainmotion in this example is reconstructed froma sequence of
ceCT images of a real patient heart over one cardiac cycle. Several techniques are commonly used for dynamic
model reconstruction from medical images, including control points tracking [16, 24] and contour propaga-
tion [4, 25]. In some cases, the conventional thresholdingmethod is sufficient, in others, themanual segmen-
tation is required. In our work, we use machine learning technique trained on partial manual segmentation.
The details of the reconstruction method and results of the simulation are given in Section 4.

1 Mathematical model
Let us consider a time-dependent domainΩ(t) ⊂ ℝd, d = 2, 3, occupied by fluid. To formulate a flowproblem,
we introduce the reference domain Ω0 = Ω(0) and a mapping from the space–time cylinder Q := Ω0 × [0, T]
to the physical domain:

ξ : Q → ⋃
t∈[0,T]

Ω(t).

The mapping is assumed to be level-preserving, i.e., ξ (Ω0 × {t}) = Ω(t) for all t ∈ [0, T]. We assume also that
the evolution of Ω(t) is sufficiently smooth such that ξ ∈ C2(Q)d. Denote the spatial gradient matrix of ξ by
F = ∇xξ , and J := det(F). Furthermore, we assume that there exist such positive reals CF , cJ that

inf
Q
J ⩾ cJ > 0, sup

Q
(‖F‖F + ‖F−1‖F) ⩽ CF , ‖F‖F := tr(FFT)1/2. (1.1)

The dynamics of incompressible Newtonian fluid can be described in terms of the velocity vector field
û(x, t) and the pressure function p̂(x, t) defined in Ω(t) for t ∈ [0, T]. In this paper, we distinguish between
the no-slip ∂Ωns(t), Dirichlet ∂ΩD(t) andoutflow ∂ΩN(t)parts of the boundary, and ∂Ω(t) = ∂Ωns(t)∪∂ΩD(t)∪
∂ΩN(t). On ∂Ωns(t)we impose no-penetration, no-slip boundary condition, i.e., the fluid velocity on ∂Ω(t) is
equal to the material velocity of the boundary (see Remark 1.1 below),

û = ξ t ∘ ξ
−1 on ∂Ωns(t) (1.2)

while on ∂ΩD(t) and ∂ΩN(t) we prescribe Dirichlet and Neumann conditions,

û = ûD on ∂ΩD(t), σ̂n = ĝ on ∂ΩN(t). (1.3)

Here uD is a given velocity, σ̂ denotes the Cauchy stress tensor, and n is the exterior unit normal vector to
∂ΩN(t).
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Remark 1.1. The normal velocity of the boundary ∂Ω(t) is vΓ = n ⋅ (ξ t ∘ ξ
−1). However, the material tangential

velocity of the boundary is definedby the tangential part of ξ t only if ξ is the Lagrangianmapping, i.e., ξ (x, t),
t ∈ [0, T], defines the material trajectory for x ∈ Ω0 (or at least for x ∈ ∂Ω0). In some applications such
Lagrangianmapping is not available, and in this case (1.2) may produce spurious tangential velocities on the
boundary. Thus, in practice one may amend (1.2) based on any additional information about the tangential
motions for a better model.

This paper introduces a finite element method for fluid equations formulated in the reference domain. For
u = û ∘ ξ , p = p̂ ∘ ξ defined in Q, the fluid dynamics is given by the following set of equations:

{
ut − J−1div (J(σ̂ ∘ ξ )F−T) + (∇u)(F−1(u − ξ t)) = f
div (JF−1u) = 0

in Q (1.4)

with body forces f = ̂f ∘ ξ . The governing equations are complemented with the initial condition

u(x, 0) = u0(x) in Ω0. (1.5)

We assume the fluid to be Newtonian, with the kinematic viscosity parameter ν. The constitutive relation in
the reference domain reads

σ̂ ∘ ξ = −pI + ν(∇uF−1 + F−T(∇u)T) in Q. (1.6)

The solvability of problem (1.4) and existence of its weak solutions is treated, for example, in [18]. Moreover,
it is shown in [18] that for smoothly evolving Ω(t) the mapping ξ can be chosen in such a way that J depends
only on t. However, from numerical viewpoint, the above mapping ξ may not be practically available, and so
we allow J to vary in time and space.

Before recalling the energy balance for a smooth solution of the fluid problem, we recall a few useful
identities. The mass balance yields the equality

Jt + div (JF−1(u − ξ t)) = 0 in Q. (1.7)

The Piola identity, div (JF−1) = 0, implies the following equality

div (JF−1u) = J(∇u) : F−T in Q (1.8)

where A : B := tr(ABT).

1.1 Energy equality

For the analysis, we shall assume that no-penetration no-slip boundary condition (1.2) is imposed on the
whole boundary, i.e., ∂Ω(t) = ∂Ωns(t). We handle non-homogeneous boundary conditions in a standard way
using the decompositionu = v+v1, with v1 = ξ t on ∂Ω0×[0, T]. Moreover, there exists v1 ∈ C1(Q)d satisfying
div (JF−1v1) = 0, cf. [18]. From this, the continuity equation in (1.4), and boundary condition (1.2), it follows
that

div (JF−1v) = 0, v = 0 on ∂Ω0 × [0, T]. (1.9)

By (⋅, ⋅) we denote the L2(Ω0) scalar product, and ‖ ⋅ ‖ denotes the L2(Ω0) norm. For vector fields v, u :
Ω0 → ℝd and tensor fields A, B : Ω0 → ℝd×d, we use the same notation to denote (u, v) = ∫Ω0

uTvdx and
(A, B) = ∫Ω0

tr(ABT)dx, and obviously ‖u‖ := (u, u)1/2, ‖A‖ := (A,A)1/2. We make use of the identity:

(w ⋅ ∇u, v) + 1
2
((divw)u, v) = 1

2 (
(w ⋅ ∇u, v) − (w ⋅ ∇v, u)) +

1
2 ∫
∂Ω0

(n ⋅w)uv ds. (1.10)
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We multiply the first equality in (1.4) by v, integrate it over the reference domain, and employ (1.10) for inte-
gration by parts and cancellation of the pressure term. We get

1
2
d
dt ‖J

1/2v‖2− 1
2
(Jt v, v) − (J(σ ∘ ξ )F−T , ∇v) +

1
2
(div (JF−1(v − ξ t)) v, v) + (J(∇v1F−1v), v)

= (Jf , v) − (J ∂v1∂t , v) − (J(∇v1)(F
−1(v1 − ξ t)), v).

The identity (1.7) leads to some cancellations and we get

1
2
d
dt ‖J

1/2v‖2 + (J(σ ∘ ξ )F−T , ∇v) + (J(∇v1F−1v), v) = (J [f −
∂v1
∂t − (∇v1)F

−1(v1 − ξ t)] , v) .

Using the notation Dξ (v) = 1
2 (∇vF

−1 + F−T(∇v)T) for the rate of deformation tensor in the reference coordi-
nates, we get with the help of (1.8) and the second equation in (1.4)

(J(σ ∘ ξ )F−T , ∇v) = (J(−pI + ν(∇uF−1 + F−T(∇u)T))F−T , ∇v) = 2ν(JDξ (u)F−T , ∇v)
= 2ν(JDξ (u), ∇vF−1) = 2ν(JDξ (u),Dξ (v)).

In the last equality we used that A : B = 1
2A : (B + BT) holds for any symmetric tensor A and any tensor B.

Hence, using the splitting u = v + v1 we get

(J(σ ∘ ξ )F−T , ∇v) = 2ν‖J1/2Dξ (v)‖2 + 2ν(div (JDξ (v1)F−T), v).

Therefore, the energy balance equality in ALE coordinates takes the form

1
2
d
dt ‖J

1/2v‖2 + 2ν‖J1/2Dξ (v)‖2 + (J(∇v1F−1v), v) = (f̃ , v) (1.11)

where
f̃ = (J(f − ∂v1∂t − (∇v1)F

−1(v1 − ξ t)) + 2νdiv (JDξ (v1)F−T)) ∈ L2(0, T;H−1(Ω0))

accounts for all external forces, including volume forces and those exerted on the fluid by the evolving bound-
ary. The mechanical interpretation of (1.11) is the following one: the work of all external forces (right-hand
side) is balanced by the change of kinetic energy (the first term), viscous dissipation of energy (the second
term), and flow intensification due to the boundary condition (the third term).

1.2 Weak formulation

We need some preliminaries. We start with Korn’s-type inequality in the reference domain,

‖∇u‖ ⩽ CK‖J1/2Dξ (u)‖ ∀ u ∈ H1
0(Ω0)d , t ∈ [0, T] (1.12)

with CK uniformly bounded with respect to t ∈ [0, T]. To show (1.12), one uses assumptions (1.1) and Korn’s
inequality for functions vanishing on the boundary: For any t ∈ [0, T], we have

‖∇u‖ = ‖J−1/2∇(u ∘ ξ−1)F‖L2(Ω(t)) ⩽ CFc−1/2J ‖∇(u ∘ ξ
−1)‖L2(Ω(t))

=
1
√2

CFc−1/2J ‖∇(u ∘ ξ
−1) + ∇T(u ∘ ξ−1)‖L2(Ω(t)) = √2CFc−1/2J ‖J

1/2Dξ (u)‖.

For t ∈ [0, T] we now introduce the following time-dependent trilinear and bilinear forms:

c(ξ ;w, u,ψ) = ∫
Ω0

J ((∇u)F−1w) ⋅ ψ dx, w, u,ψ ∈ H1(Ω0)d

a(ξ ;u,ψ) = ∫
Ω0

2νJDu : Dψ dx, u,ψ ∈ H1(Ω0)d

b(ξ ; p,ψ) = ∫
Ω0

pJF−T : ∇ψ dx, p ∈ L2(Ω0), ψ ∈ H1(Ω0)d .
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Thanks to (1.1) and the Korn’s-type inequality (1.12) the bilinear form a(ξ (t); ⋅, ⋅) is coercive and continuous
on H1

0(Ω0)d × H1
0(Ω0)d uniformly in time and b(ξ (t); ⋅, ⋅) is continuous on L2(Ω0) × H1

0(Ω0)d uniformly in
time. The weak formulation of (1.4) reads: Find {v, p} ∈ L2(0, T;H1

0(Ω0)d) ∩ L∞(0, T; L2(Ω0)d) × L2(Q) and
vt ∈ L2(0, T;H−1(Ω0)d) satisfying

(Jvt ,ψ) + c(ξ ;u − ξ t , v,ψ) + c(ξ ; v, v1,ψ) + a(ξ ; v,ψ) − b(ξ ; p,ψ) + b(ξ ; q, v) = (f̃ ,ψ) (1.13)

for all ψ ∈ H1
0(Ω0)d , q ∈ L2(Ω0) for all t ∈ [0, T] in the sense of distribution.

2 Discretization method
In this section we introduce both time and space discretizations of the formulation (1.4) in the reference do-
main. Treating the problem in reference coordinates allows us to avoid triangulations and finite element func-
tion spaces dependent on time. In this paper, we assume that the mapping ξ and velocity v1 are given explic-
itly and are used in the finite element formulation without any further numerical approximation.

Let a set of simplicesTh (triangles in d = 2and tetrahedra in d = 3) forma consistent regular triangulation
Th of the reference domain Ω0. Consider conforming FE spaces 𝕍h ⊂ H1(Ω0)d and ℚh ⊂ L2(Ω0); 𝕍0h is a
subspace of 𝕍h of functions vanishing on the boundary of Th. We assume that 𝕍0h and ℚh form the LBB-
stable finite element pair: There exists a mesh-independent constant c0, such that

inf
qh∈ℚh

sup
vh∈𝕍0h

(qh , div vh)
‖∇vh‖‖qh‖

⩾ c0 > 0. (2.1)

As an example of admissible discretization, we consider the generalized Taylor–Hood finite element spaces,

𝕍h = {uh ∈ C(Ω0)d : uh|T ∈ [Pm+1(T)]
d
∀ T ∈ Th}

ℚh = {qh ∈ C(Ω0) : qh|T ∈ Pm(T) ∀ T ∈ Th}
(2.2)

where integer m ⩾ 1 is a polynomial degree.
Assuming a constant time step ∆t = T/N, we use the notation vk(x) := v(k∆t, x), and the similar one for

p and ξ . To emphasize the dependence on k, denote Fk := ∇ξ k, Jk := det(F(ξ k)), Dk(v) := Dξ k (v).
For given spatial functions f i, i = 0, . . . , k, [f ]kt := (f k − f k−1)/∆t denotes the backward finite differ-

ence at t = k∆t. Let v0h be the Lagrange interpolant of the initial velocity field. The linearized finite element
discretization of (1.13) reads: For k = 1, 2, . . . , find {vkh , p

k
h} ∈ 𝕍

0
h × ℚh satisfying

(Jk−1 [vh]kt ,ψh) + (
1
2 [

J]kt vkh ,ψh) +
1
2
(div (JkF−1k wk

h)v
k
h ,ψh) + c(ξ

k;wk
h , v

k
h ,ψh) + c(ξ

k; vkh , v
k
1,ψh)

+ a(ξ k; vkh ,ψh) − b(ξ
k; pkh ,ψh) + b(ξ

k; qh , vkh) = (f̃
k ,ψh) (2.3)

for all ψh ∈ 𝕍
0
h , qh ∈ ℚh with ALE advection velocityw

k
h := v

k−1
h + v

k−1
1 − [ξ ]

k−1
t .

The second and third terms in (2.3) are consistent due to the identity (1.7) and are added in the FE for-
mulation to enforce the conservation property of the discretization. While our computations show that in
practice this term can be skipped, we need these terms for the stability bound in the next section. In the
numerical analysis of incompressible Navier–Stokes equations in the Eulerian description, including these
terms corresponds to the Temam’s skew-symmetric form of the convective terms [29].

For the problem of interest, the ν is locally modified using a simple Smagorinsky turbulence model. We
replace ν by an ‘effiective’ turbulence viscosity ντ as follows:

ντ = ν + (CshT)2√2Dk(wk
h) : Dk(wk

h) (2.4)

where Cs = 0.2 and hT = diam(T), T ∈ Th.
It is worth noting that the inertia terms are linearized so that a linear algebraic system should be solved

on each time step. In the next section we show that the finite element method is energy stable.
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3 Stability of FEM solution
First we test (2.3) with ψh = vkh, qh = p

k
h. We handle each resulting term separately and start with the first

term in (2.3):

(Jk−1 [vh]kt , vkh) =
1
2∆t (‖J

1/2
k vkh‖

2 − ‖J1/2k−1v
k−1
h ‖

2) −
1
2
([J]kt vkh , v

k
h) +

∆t
2
‖J1/2k−1 [vh]

k
t ‖

2 . (3.1)

Applying (1.10) to the fourth (inertia) term in (2.3) and using boundary conditions give

(Jk(∇vkhF
−1
k wk

h), v
k
h) = −

1
2 (

div (JkF−1k wk
h) v

k
h , v

k
h) . (3.2)

The sixth term in (2.3) gives

a(ξ k; vkh , v
k
h) = 2 (ντJkDk(vkh),Dk(vkh)) = 2ν

󵄩󵄩󵄩󵄩󵄩󵄩 J
1/2
k Dk(vkh)

󵄩󵄩󵄩󵄩󵄩󵄩
2
.

The b-terms cancel out for qh = pkh. Substituting all equalities back into (2.3), we obtain after some cancella-
tions the following energy balance for the finite element problem:

1
2∆t (‖J

1/2
k vkh‖

2 − ‖J1/2k−1v
k−1
h ‖

2)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

+2
󵄩󵄩󵄩󵄩󵄩󵄩ντJ

1/2
k Dk(vkh)

󵄩󵄩󵄩󵄩󵄩󵄩
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ +
(∆t)
2
󵄩󵄩󵄩󵄩󵄩󵄩J

1/2
k−1 [vh]

k
t
󵄩󵄩󵄩󵄩󵄩󵄩
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ + (Jk(∇v
k
1F
−1
k )v

k
h , v

k
h)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ = (f̃

k , vkh)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

variation of viscous and subgrid O(∆t) dissipative intensification work of
kinetic energy energy dissipation term due to b.c. ext. forces

(3.3)
One notes that the above equality resembles the energy balance (1.11) of the original flow problem up to a
O(∆t) term. The O(∆t) term in (3.3) is non-negative and dropping it changes the equality to inequality. We
deduce an energy stability estimate for the finite element method from the balance in (3.3). To this end, we
introduce ‖⋅‖k := (∫Ω0

Jk| ⋅ |2 dx)
1/2

, which defines a k-dependent normuniformly equivalent to the L2-norm.
Thanks to Sobolev’s embedding inequalities as well as (1.1) and (1.12), we bound the intensification term

resulting from the boundary motion in two ways,

|(Jk(∇vk1F
−1
k )v

k
h , v

k
h)| ⩽ {

C‖∇vk1‖‖∇v
k
h‖

2 ⩽ C1‖∇vk1‖‖Dk(vkh)‖
2
k

C‖∇vk1‖L∞(Ω0)‖vkh‖
2 ⩽ C2‖vkh‖

2
k .

If the factor C1‖∇vk1‖ is not too large so that it holds

C1‖∇vk1‖ ⩽
1
2
min
Ω0

ντ ∀t ∈ (0, T] (3.4)

then the intensification term can be absorbed by the viscous dissipation term. We handle the forcing term in
a standard way with the help of the Cauchy and Korn inequality (1.12). In this way we obtain from (3.3)

1
2
‖vkh‖

2
k + ∆t‖ντDk(vkh)‖

2
k ⩽

1
2
‖vk−1h ‖

2
k−1 + C∆t‖f̃

k‖2. (3.5)

Summing up inequalities (3.5) for k = 1, . . . , n, n ⩽ N, gives

1
2
‖vnh‖

2
n +

n
∑
k=1

∆t‖ντDk(vkh)‖
2
k ⩽

1
2
‖v0‖20 + C

n
∑
k=1

∆t‖f̃k‖2. (3.6)

Otherwise, if (3.4) does not hold, we estimate

1
2
(1 − 2C2∆t)‖vkh‖

2
k + ∆t‖ντDk(vkh)‖

2
k ⩽

1
2
‖vk−1h ‖

2
k−1 + C∆t‖f̃

k‖2. (3.7)

Now we assume that ∆t is sufficiently small such that (1 − 2C2∆t) = α > 0. Summing over k = 1, . . . , n, gives

1
2
‖vnh‖

2
n +

n
∑
k=1

∆t‖ντDk(vkh)‖
2
k ⩽ C2

n
∑
k=1

∆t‖vkh‖
2
k +

1
2
‖v0‖20 + C

n
∑
k=1

∆t‖f̃k‖2. (3.8)
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With the help of the discrete Gronwall lemma (see, e.g., [12]) inequality (3.8) yields

1
2
‖vnh‖

2
n +

n
∑
k=1

∆t‖ντDk(vkh)‖
2
k ⩽ e

2C2T/α (
1
2
‖v0‖20 + C

n
∑
k=1

∆t‖f̃k‖2) . (3.9)

Estimates (3.6) and (3.9) show the energy stability of the finite elementmethod. The first of these two inequal-
ities holds if (3.4) is satisfied.

4 Application to the left ventricle hemodynamics
We illustrate the performance of our method for solving the Navier–Stokes equations in a moving domain.
Themethod is applied to simulate a flow in amodel of the left ventricle of a human heart. The hemodynamics
of the heart is characterized by transitional or even turbulent blood flows (see, e.g., [3, 7, 22]). Therefore, real-
istic simulations should employ an advanced subgrid model, such as Large Eddy Simulation (LES) model of
turbulence [3], unless the mesh is sufficiently fine to resolve all scales in the flow. The choice and calibration
of a suitable turbulence model is beyond the scope of this study. Instead, we apply the simplest stabilization
by adopting the Smagorinsky turbulence dissipation (2.4). We consider the left ventricle due to its hemody-
namic significance, but the method is equally applicable to the right ventricle.

The motion of the ventricle is recovered from a sequence of ceCT images of a real patient. The recovered
data provide displacement field for the ventricle wall, which is used in the FE method (2.3). The input data
was a dataset of 100 images with 512×512×480 voxels and 0.625×0.625×0.25mm resolution. The images
were taken from a chest ceCT of a 50 years old female.

First, we build a dynamic gridmodel. Second, we use this auxiliary dynamic grid to define themapping ξ
in our quasi-Lagrangian method. We recall that all computations in our FE method are done on a fixed refer-
encemesh. The dynamic gridmodel is built in several steps. At the first stage, the images are preprocessed by
the 3D non-local means smoothing [2], and then cropped down and resampled to the region of interest. For
the machine-learning stage of the reconstruction, we select three images at different stages of cardiac cycle:
the beginning of systole, the end of systole, and the middle of rapid inflow during diastole. We perform a
manual segmentation of these three images using the level set method from ITK-SNAP package [31]. Next, all
the remaining images are segmented by themachine learning technique with the random forest classifier [1],
which was trained on the manually segmented images. At the next stage, the segmentation is smoothed, and
its subsequent correction is performed with the help of mathematical operations such as dilation, erosion,
and construction of connected regions. The valve areas are identified in each image as the interface between
the ventricle and the atrium and the interface between the ventricle and the aorta. We average the valve areas
over all the images to determine the unique position of the valve planes. To simplify themesh generation and
numerical modelling, the valve planes are assumed to be intact during the cardiac cycle.

Application of the Delaunay triangulation from CGAL Mesh library [23] for the first segmented image
yields an unstructured tetrahedral mesh with typical mesh size of 0.7 mm.Within the mesh, the left ventricle
is defined implicitly by segmented image, the valve planes are defined explicitly.We enforce each tetrahedron
to have at least one internal node by splitting each cell with four boundary nodes. The main requirement for
a 3D dynamic grid model of the heart ventricle is to preserve mesh connectivity: in the sequence of grids only
nodal positions change. We deform the mesh by node movements for each subsequent image. At the first
stage, we move only boundary nodes while simultaneously propagating and smoothing the surface mesh.
Each boundary node is shifted in the direction of the weighted sum of two vectors: the surface normal vector
(weight 0.2) and the vector pointing at the center of surrounding nodes (weight 0.4). This procedure is re-
peated until the maximum displacement drops below ε = 0.001 mm, or until the maximum number of 2000
iterations is exceeded. Note that the above algorithm does not recover the material trajectories of ventricle
points and therefore may produce spurious tangential velocities on the boundary (see Remark 1.1). We pay
special attention to the nodes on the valve planes: they should always stay on the planes (Fig. 1). At the sec-
ond stage, we apply simultaneous untangling and smoothing algorithm [6]; the boundary nodes are fixed,
and only the internal nodes are shifted. The untangling stage is robust due to the presence of internal nodes in
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Figure 1: The ventricle surface mesh at the end of systole, t = 300 ms: (a) horizontal long axis view, (b) vertical long axis view,
(c) anterior view.

Figure 2: Section of the volumetric mesh at the end of systole, t = 300 ms: (a) horizontal long axis view, (b) vertical long axis
view, (c) anterior view.

all tetrahedra. The final output is the series of topologically invariant meshes with 14033 nodes, 88150 edges
and 69257 tetrahedra for the left ventricle recovered from the dynamic ceCT images (Fig. 2).

To set up the boundary conditions, we split the left ventricle boundary into several patches shown in
Fig. 3. All the patches are time-dependent, but the flat patches labelled as 2 through 5 do not leave their
planes during themotion. We assume that the blood leaves the ventricle through the aortic valve 2 during the
systole phase, while the mitral valve 5 is connected to the atrium and sucks blood in during the expansion
stage called diastole. Patches 3 and 4 lie in the same planes as patches 2 and 5, respectively. Both these sites
are not involved in the blood transfer and serve as separators between the valves.

At the initial time moment, the beginning of the systole stage, we assume the system is at rest with zero
pressure.

The impact of the valves is taken into account in the model through appropriate boundary conditions.
The ventricle passes through the systole phase approximately until t = 355 ms releasing blood flow through
the aortic valve. During this time interval, we set the ‘do-nothing’ boundary condition (1.3) with ĝ = 0 on
the patch with label 2. For the remaining time interval ending at T = 1.2573 s, we impose the analogous
condition on the patch with label 5. Finally, on all other sites, including valve 2 during the diastole phase and
valve 5 during the systole phase, the no-penetration no-slip condition (1.2) is imposed, u = ξ t.
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Figure 3: Left ventricle with marked surface labels: wall surface
1, aortic valve 2, mitral valve 5, separators 3 and 4.

We note that both ‘do-nothing’ and no-penetration no-slip conditions on valve sites are simplifications.
We plan to implement more realistic generalizations [28] in a future.

The reference domainΩ0 is given by themesh at time t = 0. For the spatial discretization of the equations
in Ω0, we use the minimal degree Taylor–Hood finite element spaces (2.2) with m = 1. This leads to linear
systems with 320582 unknowns, comprised of 14033 nodal pressure degrees of freedom and 14033+88150
degrees of freedom residing at the mesh vertices and edge centers, for each velocity component. Denote by x
the spatial coordinates of a node of the reference grid at time t = 0, and identify the coordinates ξ (x, t) of the
corresponding node at time t = tk. We now define the mapping ξ k as the continuous piecewise linear vector
function on the reference grid, which takes the values ξ (x, t) at the reference grid nodes x.

Omitting the second and the third terms in (2.3) (see the comment right after (2.3)), we can rewrite the
method in the following convenient form: Find velocity uk ∈ 𝕍h and pressure pk ∈ ℚh satisfying equation

∫
Ω0

Jk
uk − uk−1

∆t ⋅ ψ dx + ∫
Ω0

Jk∇ukF−1k (u
k−1 −

ξ k − ξ k−1

∆t ) ⋅ ψ dx − ∫
Ω0

JkpkF−Tk : ∇ψ dx + ∫
Ω0

JkqF−Tk : ∇uk dx

+ ∫
Ω0

ντJk(∇ukF−1k F−Tk + F
−T
k (∇u

k)TF−Tk ) : ∇ψ dx = 0 (4.1)

and the no-penetration no-slip uk = (ξ k − ξ k−1)/∆t or the ‘do-nothing’ boundary conditions, for all ψ and q
from the appropriate FE spaces.

We note that the time between two adjacent frames (and meshes) is equal to 12.7 milliseconds. Given
the fast motion of the ventricle, such time step turned out to be too large to deliver acceptable accuracy.
Therefore, we take a step 20 times smaller, i.e., ∆t = 0.635 ms, and generate a new series of meshes in
the pre-processing phase. The intermediate meshes are interpolated by cubic splines from the available 100
meshes. The enriched mesh sequence contains 1981 meshes instead of 100. The calculation does not reveal
any time instance at which the condition J > 0 is violated. This indicates a good quality of the resulting
series of meshes, even though the ventricle varies considerably within the cardiac cicle. Figure 4 shows the
dependence of the ventricle volume on time.

The velocity streamlines and Q-criterion at 300ms (the systole phase) are shown in Figs. 5 and 6, respec-
tively.

5 Conclusion
We presented a finite element method for the solution of the Navier–Stokes equations in a time-dependent
domain. The method requires the solution of a linear system at each time step. The stability estimate does
not require a CFL time-step restriction.

We demonstrated applicability of the method by simulating a flow in the human left ventricle. The mov-
ing mesh sequence was generated from anonymized ceCT images. The shortcoming of the ceCT modality is
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Figure 4: The ventricle volume change in time.

Figure 5: Velocity streamlines at the end of systole, t = 300 ms: (a) horizontal long axis view, (b) vertical long axis view, (c) an-
terior view.

Figure 6: Q-criterion at the end of systole, t = 300 ms: (a) horizontal long axis view, (b) vertical long axis view, (c) anterior view.
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lack of information about the tangential velocity of the ventricle wall. A possible solution is the use of the 4D
Ultra Sound image dataset. Our forthcoming paper addresses error analysis of the finite elementmethod (2.3).
In a future we plan to consider more advanced variational multiscale subgrid model for more realistic hemo-
dynamics of the heart.

Funding: This work has been supported by the Russian Science Foundation (RSF) grant 14-31-00024.
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