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Abstract—Some theoretical issues associated with optimal unstructured triangulations are considered.
Published results are overviewed, and an existence theorem is proved for optimal triangulations.

1. INTRODUCTION

In a number of papers published in the last decade (see, for example, [1, 2]), it was shown that obtuse
triangles stretched in the direction of the minimal second derivative of a certain function can be the elements
best suited for minimizing an interpolation error. It is for this reason that optimal adaptive grids frequently
contain anisotropic elements, i.e., obtuse triangles. Theoretical analysis of anisotropic meshing is a chal-
lenging problem. In this paper, we review several theoretical issues related to optimal (possibly anisotropic)
triangulations. The results published in our previous papers [3-5] are summarized. All results, except for
the existence of an optimal triangulation, are extended to the case of tetrahedral 3D meshes [3, 4].

The paper is organized as follows. In Section 2, we define the optimal triangulation and prove its exist-
ence under certain assumptions. In Section 3, we formulate the main property of optimal triangulations and
give an L., error estimate for a piecewise linear interpolation operator. In Section 4, we give a constructive
definition of quasi-optimal triangulations and show that they approximate optimal ones. The methodology
used in this paper is based on the Hessian recovered from a discrete P, solution. In Section 5, we discuss

some methods for Hessian recovery.

2. EXISTENCE OF OPTIMAL TRIANGULATIONS

LetQe Rbea polygon and Q, be its conformal partition into triangles,

N(Qy)
Qh = U €

i=1
where N'(Q,) is the number of elements in Q,. Let C¥(D) be the space of functions with continuous partial

derivatives up to order k in D c Q. Denote by ||+||... p and ||+ ||, p the L.(D) and C%(D) norms, respectively,
and define ||||.. = |||, We also define the space P,(£2,) of functions that are continuous on Q and linear

on each element in . Furthermore, let %h : CO%(Q) —= P,(,) be a projector onto the discrete space

P,(Q,) and ‘56?2;. : C%(Q) —= P,(Q)) be a linear interpolation operator. We omit mesh-related subscripts
whenever this does not result in ambiguity.

Some theoretical results formulated in this paper are based on the assumption that the solution of a con-
tinuous second-order boundary value problem belongs to C%(Q ). However, the constants contained in our
error estimates are independent of the actual value of the C? norm of the solution. Since C%(Q) is dense in

C%Q), one can try to analyze regularized problems having smooth solutions and obtain error estimates for
the original problem, making use of the density mentioned above. We will address this challenging problem
in a future study.
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828 VASSILEVSKI, LIPNIKOV

Definition 1. Let u € C%(Q) and %h be given. A triangulation Q,(Ny, u) consisting of at most Ny ele-
ments is said to be optimal if it solves the optimization problem

. (1)

Q,(Ny,u) = arg  min “u—?)’?,hu
Q, : N(Q) <Ny

oo

Another optimization problem can be formulated when the number of nodes is restricted. Denote the
number of nodes in Q, by M(Q,,).

Definition 2. Let ue C%(Q) and 97’;'2” be given. A triangulation Q,(Np, u) consisting of at most N nodes
is said to be optimal if it solves the optimization problem

@)

Qu(Npyu) = arg  min  |u—-Phu
Q, : M(Q) SN,

In the general case, optimization problems (1) and (2) may be ill posed, and the optimal triangulation
may not exist. However, the definitions of optimal triangulations imply that there exists a triangulation that
is arbitrarily close to the optimal one. Under certain conditions, optimal triangulations can be proved to
exist. Since the number of triangles is not greater than twice the number of nodes in any conformal grid,
optimization problems (1) and (2) are equivalent.

Theorem 1. Let u e CYQ) and “u - @ghu“w be a continuous functional of the node coordinates, i.e.,

oo*

”'” - @f},,u“oe - “u - g’gzu“m’ < C(u)e,

where Q,, is the triangulation resulting from an arbitrary €-perturbation of nodes in a conformal triangu-

. . h .
lation Q. Furthermore, let the projector @Qh satisfy

h
Ju- @

h
<y
< “u g)ﬂ;‘.u

oo oo

for any triangulation Q,zl obtained as a hierarchical partition of a triangulation Q ,1, . Then, the optimization
problem (4) has a solution.

Proof. Since “u - @ghu“w 2 0, there exists a sequence of triangulations {Qﬁ }i- such that

lim|u-Po = inf  Ju-Phu.. 3)

ja—— 00 Q, : M(Q,) SN,

A triangulation Qf, can be defined by a set of nodes Xfl and a connectivity table TZ (a list of triangles
with reference to nodes). Since the Cartesian product Q X ... X Q of Npcompact and bounded sets is compact

and bounded, the sequence XZ contains a convergent (in the product metric) subsequence. For the sake of
simplicity, we assume that this subsequence is {Xﬁ }:= ;- Let

X7 = lim X} 4

k— o0
and N be the number of distinct elements (distinct points) in the set X; . It is obvious that Ny < Np.

Let xf G=1,2,..., N’;) be the distinct elements of XZ (k=1,2,...,0) (distinct points in Q) and denote
the minimal distance between these points by 8. The convergence in (4) means that any small € > 0 can be
associated with k. such that any x;‘ with k = k. belongs to the disk (x;°, €) of radius € centered at xf. The

indexes i and j may be different since the elements of X, are not arranged in any particular order.

Denote by o the minimal angle in all possible nondegenerate triangles with nodes from X, and define
€, = 1/m for an integer m = m, > 0, where my is a sufficiently large integer such that 8~sin /10 > €,,. By

virtue of (3), there exists a conformal triangulation Q:’” = {X:’", 7;’” } with nodes in the €,-neighborhood
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OPTIMAL TRIANGULATIONS: EXISTENCE, APPROXIMATION 829

of X, . Let the nodes in X;, be numbered similarly to those in X:’": the existence of / nodes of Xk,,"’ in the

gn-neighborhood of a node x; entails counting x; Itimes. Therefore, we can formally define the triangu-

. Ak - ; ’ ky - ;
lation Q)" = { X}, TJ,‘l } as resulting from an g,-perturbation of Q,". Then, by the continuity assumption,
we can write

<

oo

h
u—@) k, U
Q,

Nu—@:}:mu _+Clue,,

A km . . . .
where C(u) depends only on u. However, 5" may not be a conformal triangulation, since some triangles
in Ti’" may be degenerate (have zero areas). The assumption that §sino/10 > €, implies that the triangles

A km . . . A km % . oo oo oo .
in Q" cannot tangle. Indeed, assume that there exists a triangle in Q" with vertices (le v Xjy 0 X, ) that is
tangled with a neighboring triangle. Since €, is small with respect to the sides and angles in these triangles,

. N T . b kp o ko oy . : :
the triangle in Q," with vertices (x in» Xj, » X5, ) 1s tangled with its neighbor as well. This contradicts the

~ kn . . 00 .
conformality of Q:”' . We modify Tkh”‘ to obtain a conformal triangulation ;" with the nodes in X} . To this

end, we eliminate from Tf’" all triangles that degenerate to a point, a side, or two sides (Fig. 1). This does
not alter the norm of the error. The hanging nodes left by the triangles that reduce to edges are transformed
into nodes of a conformal mesh by hierarchical partition of triangles adjoining the degenerate ones without
inserting any additional nodes (Fig. 2). The partition cannot increase the norm of the error. By the assump-
tions of Theorem 1,

h h h
“u—97)~kmu SNu—@Akmu S“u—@ kmul + C(u)e,,
Qh o Q}, oo Qh o0
Therefore,
. h . h ) h
lim “u—-@Jmu' <limu-P" | = inf ”u—?]’nhuua°
m—> oo Q' |l m—ee Q7 o Q,: MQYSN,

= kn y i 00
and there exists a sequence of conformal triangulations ;" with nodes in X, such that

Since the total number of connectivity tables corresponding to a particular X; is finite, there exists a con-

lim

m—» oo

. h
= inf ”u - Pq,u
© Q,: MQ,)<N,

h
u—P o u
Qp

formal triangulation Q, with nodes in X, minimizing “u - @ghu”w such that

= inf ”u - QPghu”w.

h
- P
e Q, : M(Q,) <N,

The theorem is proved.
Note that the interpolation operator ﬁ’flk satisfies the assumptions of Theorem 1. Therefore optimization

problem (2) with @’;,h = J’}éh has a solution that is not necessarily unique.

Fig. 1. Types of triangle degeneration. Open circles correspond to original triangles; bold segments and closed circle, to
degenerate triangles.
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830 VASSILEVSKI, LIPNIKOV

(a) (b) (©)

Fig. 2. Breakdown and recovery of mesh conformality: (a) original (hatched) triangle; (b) degenerate triangle (two solid
segments); (c) hierarchical partition.

Recall that the existence of an optimal triangulation was conditioned in [1, 6] on the existence of a coor-
dinate transformation resulting in a canonical Hessian. The sufficient conditions for the existence of such a
transformation were found to be very stiff [1] and could be weakened only in a different error norm [6].

3. ERROR ESTIMATES FOR OPTIMAL GRIDS

Let a function u € C%(Q) have a nonsingular Hessian H(x) = {H ps(X) }f,,s -ple., detH(x) #0 for Vx e
Q. Since the Hessian is symmetric, there exists its spectral decomposition at any x € Q,

H=W A O w,

where W is an orthonormal matrix and |A| < A, |. It is clear that A # O and

|H| = W’[ p"ll 0 JW
0 A

defines a continuous metric on Q. Let [Q| be the volume of Q in this metric. Then, the following a priori
error estimates are valid for the P, interpolation operator.

Theorem 2. Let Ny >0, u e CXQ), and |H| be the metric induced by the Hessian of u. Furthermore, let
Qu be an optimal mesh, and the following estimate holds for any triangle e € Qn:

|Hps— He, ol e < g|M(H)|/2, 0<g<1, p,s=1,2, 6))

where q is a constant, x, = argmax|det(H(x))|, and H, = H (x,). Then,

cl(q)% <|u- 944 < cz(q)'if,l;”, ©)

where C, (q) and C, (g) depend only on q.
The proof can be found in [3, 5]. One straightforward corollary to this theorem is as follows: if a projector

@gh satisfies the relation

“u~9})ghu“wSC”u—9f}hu o @)
then inequality (6) implies
-l < ecyi’ e, ®)

We should note here that error estimates (6) are in good agreement with Tikhomirov’s result [7]: for any
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) 2,
discrete space V, and Q € R’ it holds that
inf sup inf Ju—v,|. = N7.
Vy: dimV, SNy flully g = 1v,e V,

The assumption that the Hessian is nonsingular is used for the sake of simplicity. Actually, all results
presented in this paper can be extended to functions with singular Hessians. To this end, we replace the sin-
gular Hessians with a nonsingular approximation and use it to construct the metric [3].

4. QUASI-OPTIMAL MESHES AS APPROXIMATIONS TO THE OPTIMAL MESH

2 . 4 h s ¥ s
Since the exact solution is not known, the error ”u - @Qhu”w cannot be estimated. For this reason, opti-

mization problem (1) should be replaced by a different optimization problem whose solution approximates
the solution of (1). To this end, we introduce the concepts of mesh quality and mesh quasi-optimality.

Let O(€,) be an easily calculable quantitative characteristic of a mesh Q, such that 0 < Q(,) < 1. We
invoke the definition of Q(€2,) proposed in [8]. Let the number Ny of elements be prescribed, define a con-
tinuous metric G(x) = { G, (x) }f,, s=1,X€E R’in €),, and denote by x, € e the point in the triangle e at which
|det(G(x))| attains its maximal value. We introduce G, = G(x,) and define the area of the triangle and the
length 1, € R’ of its side (in metric G) as

lelg = lel(det(G)'"* and [Llg = (G1. 1),
respectively, where |e| is the triangle’s area in the Cartesian coordinate system. Denote the perimeter of
the triangle under metric G by |de|s. Let |€2,|sbe the area of the computational domain measured in the met-
ric G:

Qe = Z lelg.

ee Q,
Following [3], we define Q(Q2,) as
. . lelg (19elg
Q) = . h = 12./3—=F| —|, 9
Q) = minQ(e), with Q(e) = 12./3 el (3h*) ©

where the function F(-) and the average length h* of the triangle’s side (in metric G) are

ool ] -

respectively. Hereinafter, we write Q(G, Ny, £,) instead of Q(€2,) to emphasize its dependence on the metric
G and the prescribed number Ny It is easy to verify that 0 < (G, Nr, ©,) < 1 and the maximal Q(G, Ny, £,)
is attained when all mesh elements are equilateral (in metric G) triangles of diameter A*. We say that Q(G,
Nr, Q) is the mesh quality with respect to the metric G and the number of elements Ny

Definition 3. Let G be a continuous metric and Ny be a given integer. A mesh €, is said to be G-quasi-
optimal if there exists a positive constant O, such that g, = O(1) and

Q(G, NT’ Qh) > QO'

Definition 4. Let u € C%(Q) and |H| be the metric induced by the Hessian of . The triangulation Q,(Nr, u)
corresponding to the given function u and a given integer Ny is said to be quasi-optimal if it is |H|-quasi-
optimal.

A quasi-optimal mesh characterized by Q(H, Ny, €,) = 1 may not exist because of restrictions imposed
by the boundary of Q. When Q, < 1, the above constraint becomes weaker. On the other hand, when

Q(H, Ny, &) < 1, the number N(Q,) of triangles in the |H|-quasi-optimal mesh may differ from Np
approaching Ny as Q, — 1.

Quasi-optimal meshes (QOMs) were studied in [3, 5]. It was found that, in certain cases, the QOM is an
approximate solution of optimization problem (1).
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Theorem 3. Let Ny >0, u € CX(Q) and |H| be the metric induced by the Hessian of u. Furthermore, let
Qy(Nr, u) and Qi (Ny, u) be quasi-optimal and optimal meshes, respectively, and e* € Q, be the element
where ”u - .S"';zhu“m is attained. Suppose that the following estimate holds for e* € Q, and any element ¢
Qi

|Hps— H, pollw . <q|M(H|/2, 0<g<1, p,s=1,2, (10)

where q is a constant, x, = argmax|det(H (x))|, and H, = H(x,). Then,

”u—ﬁghu wSC(QO,q)“u—ﬁghu‘ ’ (11)

where C(Qy, q) is a constant depending only on q and Qo from Definition 3.
The proof can be found in [3, 5]. One straightforward corollary to this theorem is as follows: if a projector

@gh satisfies (7), then relations (6) and (11) entail

oo

_SECHQC(Q )2 (12)

h
I'u - @Qnu N;

5. DOUBLE DIFFERENTIATION ON OPTIMAL AND QUASI-OPTIMAL MESHES
As a rule, the Hessian H(x) is an unknown function. Practical computations make use of its approxima-
tion H" recovered from the discrete solution 97’?2” u. In what follows, we briefly describe some methods for
Hessian recovery [4, 8, 9] and advocate the replacement of H(x) by its discrete counterpart H".
Lt g = @ghu be a discrete function in P,(£2,). The discrete Hessian H* = {Hﬁs};’s= , with st €
P,(€2) is defined as follows. At an interior node a;, its entries are defined by
[Hp(apv"dx = - ou'dv!
pav=s dx, 0x;
c; c;
where ©; is the union of the triangles sharing the node a; (superelement). At a boundary node a;, the values

of Hﬁs (@) (p, s = 1, 2) are obtained by weighted extrapolation from the neighboring interior nodal values

[4]:

dx Vv'e Pi(c), v"=0 on 9o, (13)

;€ 00,

-1
st(ai) = J(P(ai)Hﬁsdxl:j(P(ai)Lz (P(aj)de:, s (14)

where @(a;) denotes a nodal basis function from P,(Q,) and I;ﬁs stands for the finite element function
defined by (13) as vanishing on 0Q,.
Theorem 4. Let Ny >0, u € C¥(Q), u" = 9]‘?2,, u, H be the Hessian of u, and H" be the discrete Hessian

recovered from u" by using (13) and (14). Furthermore, let the following estimates hold for any superele-
ment © € Q, associated with a mesh node a:

”Hps“Hc,psnw,c< 8’ (15)

|Hpy(a) - H,, | <, (16)

where H,; = H (x,) and x, = argmax|det(H (x))|. Then, for € and & that are sufficiently small with respect to
XEO

the minimal eigenvalue of |H,|, the |H"| is quasi-optimal mesh Q, (Q(H"|, Ny, Q) 2 Q) is |H|-quasi-optimal
as well:

O(lH|, N, Q,) 2 CQ,
with constant C independent of Ny and ||u,,
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The proof can be found in [3]. The theorem states that, under certain assumptions, |H"|-quasi-optimality
is a sufficient condition for |H|-quasi-optimality. By assumption (15), the variation of the Hessian on any
superelement ¢ is small. Assumption (16) means that the Hessian must be approximated at the nodes. The
latter assumption does not always hold true in practice, since it implies that the gradient error in u” is small.
Small gradient error is not typical for functions with singularities. To recover the discrete Hessian for non-
smooth functions, we suggest a different definition of the discrete Hessian, which satisfies (16) in a weaker
norm [4].

The alternative definition of the discrete Hessian is based on the following identity:
o’v ov 2
- = [ 2 = 1
JHpsvdx J'uaxsaxpdx J.uaxSnpdt Vve C(c), v =0 on do, 17
G o oo

where p, s = 1, 2. Representation (17) has an important advantage over (13): the Hessian is defined in terms
of the function rather than its derivatives. Its main drawback is higher smoothness of the test functions,
which imposes restrictions on the geometry of ¢ and, as a consequence, on the triangulation used in recov-
ering a discrete Hessian.

Definition 5. A triangulation Q, satisfies Condition A if, for any ith interior superelement, there exists an
affine mapping &, = &, o R, such that F(c;) is a shape regular superelement of diameter 1 whose inscribed
radius is O(1). Here, &; and R, denote scaling and rotation matrices, respectively.

Note that a triangulation may not satisfy Condition A. A two-dimensional mesh containing two anisotro-
pic neighboring triangles whose stretching axes are orthogonal provides a simple example. Adaptive trian-

gulations, however, do satisfy Condition A. Condition A does not imply the shape regularity of every trian-
gle but requires local similarity of triangles. Thus, adaptive anisotropic meshes satisfy Condition A.

Let a; be an interior node of a mesh Q, and ©; be the corresponding superelement. Let B; be the largest
circle centered at &;(a;) and inscribed in %;(c;). Due to the shape regularity of %;(c;), the radius R; of B;
is O(1). Introducing polar coordinates with the origin at %;(a;), we define the smooth function U, =1-

/R on B; . The span of the functions v= 0697,71 (U;))witha e R' defines a space V; of local test functions.

Note that ve V;implies that the support |B;| = |o;| satisfies the relation B;= %;' (B;), and ve CX(B), v=0
on 0B,.

Now, we recover the components H;',s € P1(Q,) of a discrete Hessian at the interior nodes a;:

o*v" 0V h
Hh(a)v'ox = [W'Z—dx- ["Tndr Vv'e V. (18)
l.!i B ;!: dx,0x, dx,

3B
There may exist such triangulations that some components of the Hessian cannot be recovered by using

identity (17) at boundary nodes. For this reason, the values of the discrete Hessian H" at all boundary nodes
are the weighted extrapolations given by (14).

As was mentioned above, Condition A is a natural restriction on the shape of the superelement c;. To
establish that a discrete Hessian converges to the differential one, we have to impose additional restrictions
on the mesh triangles. Recall that Condition A is satisfied if, for any superelement o;, there exists a pair of

operators (rotation R, and scaling ;) whose combination transforms the superelement into a shape regular
one. Therefore, for any triangle A < Q" (superelement 6 c Q), there exists a rotation operator R, (Ry)
such that the image Ag, = RA(A) (Og, = R(0)) can be scaled along the coordinate axes into a shape regular
element. A rotated triangle Ag, is naturally characterized by

hg = max |(x),—(¥), k=1,2.
X,y € Ag

A similar characterization applies to a rotated superelement G4 Note that the rotation operator does not
affect the best P, approximation of the function u:

ug, = Ra(@), ug = u(Ra(x)).
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Recall that the best P, approximation is defined as follows:

f(u—a)dx = 0, ja“(u—u)dx =0 Vi =1, (19)
A A

where o = {ay;, 0} is a multiindex with o, = 0, 1.

Definition 6. For a given function u € W»(Q), a triangle in a triangulation satisfying Condition A sat-
isfies Condition B if there exists a constant Cy > 0 such that

Ellfihgz”aa(u% — )| Lyag < Cglglli:fllhgz“aa(um — ug)| £,a: (20)

where

2
o, l_l L
hgt = h’?R,k'
k=1

Condition B means isotropic distribution of the gradient error associated with the best P, approximation
of ue W'P(Q) defined by (19). It does not imply any conditions for the angles of a triangle. Rather, it means
that the triangle A must be adapted to the local behavior of the function .

Definition 7. A triangle A in a triangulation Q" satisfying Condition A and a function u € WLP(Q) satisfy
Condition C if there exists a constant C. > 0 such that

h§ 0% (ug — ug)| g < CchP, o] =1, B>0. 1)

Condition C means convergence of the best P, approximation # to the function x on A. Actually, it
implies a higher than W-?(Q) smoothness of u. We do not specify any class of smooth functions here since
the appropriate class varies widely depending on the application.

Conditions B and C rely on a certain relationship between the mesh and the function. The triangles of
the mesh must ensure isotropic distribution of the error associated with the best P, approximation in the
sense of (20) and convergence of the approximation to u (21) if u has some extra smoothness. It is clear that
a mesh complying with Condition A may not satisfy Conditions B and C. However, every mesh adapted to
the function does meet both Condition B and Condition C.

Theorem 5. Let a function u e Wh2(Q) N W21(Q) (p > 2) and the interior superelement O; satisfying
Conditions A, B, and C be given. Suppose that the differential Hessian H deviates insignificantly from its
mean value on G;:

“HPS - FIPS”Ll(C‘,-) = 8’ D,§s = 1, 2. (22)

Then, the discrete Hessian recovered from the piecewise linear interpolant .Sbﬁi u by using (18) converges to
the differential Hessian:

h
ps

“Hps_ H

i

Ly S 8+CyCela) 7 minzh!;,‘,‘c. (23)

Moreover;

|Hpe— sy = 8+ CBCckrgilnzhgi;i’P. 24)

The proof can be found in [2]. Note that estimate (24) implies the local convergence of the discrete Hes-
sian in the weak norm as the number of triangles in the mesh tends to infinity. Indeed, for any triangulation
adapted to a function with a nonsingular Hessian,

max min kg, —= 0 npu N(Q,) — .
c, k=12

The importance of the theorem lies in the fact that it is the first (to our knowledge) result where the local
convergence of the recovered Hessian is established for anisotropic meshes and for functions with singular-

ities.
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CONCLUSIONS
Several theoretical issues related to optimal triangulations have been reviewed. The results presented

here provide insight into the asymptotic properties of optimal and quasi-optimal triangulations and methods
for recovering the discrete Hessian.

10.
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