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1. INTRODUCTION

Approaches to modeling the blood flow using one�dimensional network models have been successfully
developed in recent decades. This class of models proved to be effective in the investigation of the global
blood flow in humans, of transport of various substances by blood, and of specific features of hemodynam�
ics under pathological changes in the organism. One of the first network dynamic models was developed
by the team of researchers under the guidance of Favorskii (see [1–5]). A number of mathematical prob�
lems concerning the statement and solution of the boundary value problem of the graph of vessels were
solved. Physiological aspects related to the neuroregulation of vascular tone were examined. Models of
substance transport and blood flow under g�loads were constructed, and several versions of state equations
describing the elasticity of vessel walls were investigated.

Modeling the elasticity of blood vessel walls is a key issue in one�dimensional modeling of hemody�
namics. Presently, several mathematical formulations are available. Despite their differences, they are
successfully used not only for qualitative but also for quantitative personalized hemodynamic calculations.

This paper is devoted to the comparative analysis of various mathematical descriptions of elastic prop�
erties of vessel walls in modern one�dimensional models of hemodynamics. In Section 2, a brief descrip�
tion of the anatomical structure of vessels of various types is given. Section 3 is devoted to the discussion
of various phenomenological models of elasticity of vessel walls. In Section 4, a general description of the
most popular mathematical formulation of elasticity properties of large arteries and veins used in one�
dimensional models of hemodynamics is given. The data of medical investigations of the human common
carotid artery, human common femoral artery, and canine common femoral vein are used to adjust each
model. We compare the numerical results of the propagation of a single impulse in a single vessel whose
elastic properties are simulated using each model. The main differences in the systolic pressure, pulse wave
propagation rate, and formation of shock waves are analyzed.

2. ANATOMICAL STRUCTURE OF VESSEL WALLS

Blood vessels are elastic tubular formations that transport blood throughout the entire organism.
Depending on the direction of blood flow relative to the heart, the blood vessels are classified into veins
and arteries. The size of vessels and their morphology depend on their place in the vascular network, age,
systemic diseases, etc.

In blessed memory of A.P. Favorskii

On the Elasticity of Blood Vessels in One�Dimensional
Problems of Hemodynamics

Yu. V. Vassilevskia,b, V. Yu. Salamatovaa,b, and S. S. Simakova,b,c

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700 Russia
b Institute of Numerical Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119333 Russia

c Institute of Computer�Aided Design, Russian Academy of Sciences,
Vtoraya Brestskaya ul. 19/18, Moscow, 123056 Russia

e�mail: yuri.vasilevski@gmail.com, simakovss@ya.ru, salamatova@gmail.com
Received February 26, 2015

Abstract—One�dimensional models of hemodynamics proved to be effective in the analysis of blood
flow in humans in the normal and pathological states. A key factor contributing to the successful sim�
ulation using one�dimensional models is the inclusion of elastic properties of blood vessel walls. This
paper is devoted to the comparative analysis of various mathematical descriptions of elastic properties
of vessel walls in modern one�dimensional models of hemodynamics.

DOI: 10.1134/S0965542515090134

Keywords: mathematical modeling, hemodynamics, blood vessel, constitutive equations.



1568

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 55  No. 9  2015

VASSILEVSKI et al.

The wall of a blood vessel (except for capillaries) can be divided into three layers—internal layer
(tunica intima), middle layer (tunica media), and external layer (tunica adventitia), see Fig. 1.

The basic structure elements of blood vessels are as follows: endothelial cells, collagen fibers, elastin
fibers, smooth muscular cells, and the main substance that joins all the elements. Depending on the mor�
phological composition of a vessel wall, arteries can be classified into elastic and muscular ones (see [7]).
Elastic arteries have a relatively large diameter and are closer to the heart (e.g., aorta or carotid artery);
their media contains a lot of elastic membranes. The number of elastic membranes decreases with
decreasing vessel size (i.e., when the vessels become father from the heart). Muscular arteries have almost
no elastic membranes. Muscular arteries are at the periphery (e.g., the femoral artery, abdominal artery,
or cerebral arteries). The middle layer of muscular arteries mainly consists of smooth muscular cells.
There are arteries with a combined internal structure of the walls (elastic muscular arteries).

In contrast to arteries, veins are classified by their internal diameter. The walls and the middle layer of
veins are much thinner than those of arteries. However, veins have a thicker external layer (adventitia).
Large veins can have valves to pass the blood only in one direction.

Consider specific features of the structure of each of the three layers depending on the vessel type.
Intima—the internal layer of all blood vessels—consists of (1) a layer of endothelial cells that line the

vessel wall, (2) a thin basal membrane, and (3) a subendothelial layer consisting of collagen fibers, elastic
fibrils, smooth muscular cells, and some amount of fibroblast. The subendothelial layer is present only in
large human elastic arteries. In all other blood vessels, the intima consists of a layer of endothelial cells and
a basal membrane.

Media—the internal layer of blood vessels—consists of smooth muscular cells, a certain number of
elastic membranes, and elastin and collagen fibers. There may be no smooth muscular cells in large veins,
but they are prevalent in the media of the majority of vessels. This layer is thicker in arteries than in veins.
In arteries, fenestrated elastic membranes (about several tens) divide the media into concentric layers.
These layers form a complex three�dimensional network of smooth muscular cells, elastin, and collagen.
The number of elastic membranes decreases with decreasing size of the arteries. There are practically no
elastic membranes in muscular arteries. In muscular arteries, one can clearly discern an internal elastic
membrane and an external elastic membrane. For elastic arteries, they are indistinguishable from the
internal elastic membranes. The media of veins typically consists of two or three layers of smooth muscular
cells and bundles of collagen and elastin fibers.

Adventitia—the external layer of the blood vessel wall—consists of fibroblasts, fibrocytes, and bundles
of collagen fibers. The external layer of all arteries and the majority of veins (except for large ones) do not
contain smooth muscular cells. In almost all the vessels, collagen fibers are the prevailing structure com�
ponent in the adventitia. The thickness of the external layer depends on the type and location of the vessel.
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Fig. 1. Typical structure of the blood vessel wall (see [6]).
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For example, the cerebral vessels have no adventitia, while this layer is thicker in muscular arteries than in
elastic arteries. In veins of medium and large size, the external layer is the thickest one.

A detailed description of the structure of blood vessels can be found in [7].

3. MODERN MODELS OF VESSEL WALL ELASTICITY

It is seen from the description above that the walls of blood vessels consist of a complex composite
material, which can be represented by an isotropic matrix reinforced by differently oriented groups of
fibers. The material of vessel walls is nonlinear, anisotropic, and weakly compressible (see [8, 9]). This
material can be described by the finite deformation model, which assumes a geometric nonlinearity of ves�
sel wall deformation models. Figure 2 shows a typical deformation curve of a blood vessel wall.

The mechanical properties of blood vessels are classified into passive (which do not take into account
smooth muscular contractions) and passive–active (which take such contractions into account). In the
majority of experimental studies only passive mechanical properties are considered. In this case, it is
assumed that the elastic properties of blood vessels depend on the spatial arrangement of the main elastic
fibers (elastinic and collagen ones) and their functional features are related to vessel deformations. The
elastin fibers are fairly soft (the modulus of elasticity is about 105 Pa), while this modulus for the collagen
fibers, which play the major role in maintaining the structural integrity of vessel walls, is about 108 Pa. The
contribution of collagen and elastin to the rigidity of the iliac artery was studied in [10]. It was shown that
in the case of low pressure, the major role is played by elastinic fibers. As the pressure increases, the con�
tribution of collagen fibers increases. The load is distributed between the elastin and collagen. As the load
increases further, the collagen becomes the major load�carrying element. The progressive involvement of
different fibers is illustrated in Fig. 3. At the physiological level of pressure in arteries, both the elastin and
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Fig. 2. Schematic curve of the blood vessel wall deformation.
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Fig. 3. Schematic curves of the artery wall deformation: 1 for removal of elastin from the wall; 2 for removal of collagen
from the wall; 3 in the presence all the structural components.
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collagen are involved in the load distribution, which corresponds to increasing slope of the tangent to the
plot of the deformation curve in Fig. 3.

The account for the nonlinear mechanical properties of blood vessels is an important condition for
their modeling. The nonlinearity must be included in the constitutive equations. The issue of constitutive
equations for blood vessel walls has been under intensive development in recent decades. The state of the
art and the history of this problem are described in [8, 11–13]. Recently, works devoted to the construction
of constitutive equations based on the internal microstructure of vessel walls have appeared (see [14–16]).

The constitutive equations are determined by the form of the elastic deformation energy (elastic poten�
tial). There are a lot of papers devoted to this issue in the case of arteries. Various forms of deformation
energy based on experimental data are considered. Due to significant differences in the structure of vessels
depending on their location in the vascular system, none of the proposed versions is universal for all types
of arteries. The most interesting among the proposed form of the elastic deformation energy are the ver�
sions proposed in [17–19].

In [18], the dependence of the stress�strain state of a thick wall cylinder occurring under the action of
tensile and torsional loads on the form of the elastic deformation energy was analyzed. The elastic poten�
tials that are widely used for modeling deformations of artery walls were selected from the family of elastic
potentials. Almost all of them have a term that exponentially depends on the components of the right
Cauchy–Green strain tensor. Limitations of the proposed models are discussed in [18]. These limitations
are due to the representation of the vessel wall as an isotropic material and the limited application of the
proposed models to a small class of loads.

As a result of solving the problem of deformation of a thick wall cylinder the action of tensile loads and
a torque for different types of constitutive equations, dependences of the internal pressure on the internal
radius were obtained in [18]. All the plots are similar (see Fig. 4)—the tangent slope increases with
increasing vessel radius.

The constitutive equations proposed in [9] take into account the anisotropy of the wall material, and
they are widely used in applications. The deformation energy function is represented in the form

(3.1)

where the first term Ψiso describes the isotropic contribution of the wall material without taking collagen
into account; this term is determined by the isotropic neo�Hookean model

(3.2)

The second term Ψaniso in (3.1) describes the involvement of two families of collagen fibers, which
increases the rigidity of the wall material. Ψaniso is represented by the anisotropic function

(3.3)
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Fig. 4. Schematic curve of the dependence of pressure on the internal diameter of a circular cylinder based on the results
obtained in [18].
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In (3.2) and (3.3), μ, k1, k2, k3, and k4 are constants depending on the material; I1 is the first invariant of
the Cauchy–Green strain tensor; and I4 and I6 are the invariants characterizing the degree of stretching
of the fibers of the corresponding family.

A model that takes into account different orientations of the collagen fibers in the vessel wall was pro�
posed in [19]. The mechanical properties of each individual layer were studied in [20]. The resulting con�
stitutive equations for each layer have form (3.2) and (3.3).

The number of studies devoted to veins is not large. In [21], the passive mechanical properties of the
cava in rats were investigated, and the phenomenological model

was proposed, where λθ, max, cinel, and λel, max are the model constants; λθ and λz are the elongations in the
circumferential and axial directions, respectively.

In [21], the vein wall was represented by a set of elastic fibers oriented along the vessel axis and con�
nected between themselves by rigid inextensible elements. The idea of representing soft tissues by a set of
elastic fibers was earlier used for modeling heart tissues (see [22, 23]). Such a representation of the vessel
wall was used for solving the problem of the influence of the cava filter on blood flow (see [24]) and in the
study of hemodynamics in the network of arterial vessels with atherosclerotic plaques (see [25]).

Among the works devoted to the constitutive equations for veins, we note [16, 26–28]. The majority of
the proposed constitutive equations for veins are based on the arterial models described above. However,
another phenomenological model was proposed in [27] based on the experimental data obtained for the
sheep suprarenal vein:

Let us briefly discuss the modeling of passive–active properties of blood vessel walls; these properties
are due to smooth muscular cell contractions. This contraction is a response to various chemical stimuli,
and it contributes to the stress in the vessel walls (see Fig. 5). This contraction results in a considerable
reduction of the stress gradient in the vessel walls (see [11, 14]). The same effect is obtained when the
residual stresses in the vessel walls are taken into account (see [11]).

In distinction from passive properties, the constitutive equations for the passive–active properties of
blood vessels are given less attention. The description of currently available equations can be found in [29].
It is assumed that the elastic deformation energy is an additive quantity:

Ψ
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Fig. 5. Experimental dependence of the circumferential stresses on the circumferential elongation depending on contrac�
tions of smooth muscular cells for the media of the pig coronary artery [14].



1572

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 55  No. 9  2015

VASSILEVSKI et al.

Here, Ψpassive describes the passive properties (using, e.g., the model proposed in [9]), and Ψactive describes
the contribution of smooth muscular cells. A possible representation of Ψactive is

where S([А]) is the activation function due to the concentration of the vasoconstrictor element [А] and
f(λf) is a cubic polynomial of the elongation of smooth muscular cells λf.

Based on the above discussion, we conclude that all the constitutive equations (both for passive and
passive–active walls) describe the increase in the rigidity of vessels due to the involvement of collagen
fibers when the transmural pressure increases. In this case, the slope of the tangent to the deformation
curve increases (e.g., see Fig. 5). At the physiological level of pressure, both the elastin and collagen are
involved in the load distribution in the artery wall. The available constitutive equations are based on the
experimental data for the tissue deformation, and they are phenomenological. The constitutive equations
are constructed with regard to the microstructure of vessel walls. The development of this approach is
complicated by the requirement to have data of immunohistochemical examination, which are impossible
to obtain for individual patents. For venous constitutive equations, arterial models are mainly used; how�
ever, it is not always valid because of different anatomic structure and functional properties of arteries and
veins.

4. VESSEL ELASTICITY IN ONE�DIMENSIONAL MODELS OF HEMODYNAMICS

During the last decades, a number of one�dimensional models for the blood flow in the vascular bed
have been developed (see [1, 30–34] and others). Under this approach, the blood flow is considered as the
flow of incompressible fluid in the network of elastic tubes. The models are constructed on the basis of
mass and momentum conservation laws in an isolated vessel and are then extended for the network by stat�

Ψactive S A[ ]( ) f λf( ),=

Table 1.  Generalized dependence of the pressure and squared pulse wave propagation rate on the cross section for
arteries: 1 was used in [1, 2, 37] and others; 2 in [30]; 3 in [31, 33, 34, 38–40] and others; 4 in [32, 35, 36] and others.
The constant α was determined by matching the data in [41] (see curve 5 in Fig. 6)

No. P(η) c2(η) α, kPa (CCA) α, kPa (CFA)

1 α(η – 1) αη 25.8080 33.3330

2 70.3217 64.5750

3 57.4200 72.7695

4 α(exp(η – 1) – 1) αηexp(η – 1) 19.8916 25.1076
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Table 2.  Generalized dependence of the pressure and squared pulse wave propagation rate on the cross section of
the canine femoral vein: 1 was used in [37]; 2 in [45]; 3 in [46]; 4 in [32, 35, 36] and others. The values of the coef�
ficients for model [45] were found using the least squares method and data [43, 44]. The constant α was determined
by matching the data in [43, 44] (see curve 5 in Fig. 8a)

No. P(η) c2(η) α, kPa (ОСА)

1 7.210

2 aη3 + bη2 + cη 3aη3 + 2bη2 + cη –22.091 (kPa), 53.022 (kPa), –31.170 (kPa)

3 1.501

4 α lnη α 11.7169
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ing boundary conditions at the junctions of the vessel with other vessels, with the heart and microcircula�
tion regions. Here is a possible mathematical statement:

(4.1)

(4.2)

Here, t is the time, x is the coordinate along the vessel, ρ ≈ 1 g/cm3 is the blood density, S(t, x) is the vessel
cross section, u(t, x) is the linear blood flow velocity averaged over the cross section under the assumption
of the Poiseuille profile, Р is the pressure, fs is the source or sink of mass per the unit vessel length, and fu
is the flow acceleration due to various forces. In this paper, we assume that fs = 0 and fu = 0.

In the construction of such models, an important phase is to close the hyperbolic system (4.1), (4.2)
by introducing a function P(S) determining the pressure in a vessel cross section depending on the area of
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Fig. 6. Pressure in the common carotid artery (a) and common femoral artery (b). Curves 1–4 correspond to the rows in
Table 1; 5 corresponds to the data in [41].
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this cross section. The form of Р(S) is determined by the elastic properties of the vessel wall. This function
can be obtained for each specific vessel using the approaches described in Section 3; however, this requires
data about the structure of the vessel wall. The function Р(S) can be determined more accurately by direct
simultaneous measurements of Р and S. However, due to limitation of the modern diagnostics means, the
use of such approaches for the construction of an individual model of a specific patent, which should
include at least several tens of large arteries and veins, is difficult. In the majority of studies, Р(S) is
obtained empirically or by simplifying the combined elastic models described in Section 3. In most cases,
Р(S) can be written as

(4.3)

where Р0 = const, α = const, and η(S) = S/S0.
The values for P0, α, and S0 should be specified for each vessel, depending on its anatomic features and

elastic properties. Tables 1 and 2 present the most widespread expressions for f(α, η) upon reducing Р(S)
used in different works to form (4.3). The values for P0, α, and S0 are determined using the data of medical
examinations for the human common carotid artery (CCA), human common femoral artery (CFA) (see
[41, 42]), and the canine common femoral vein (see [43, 44]). For the arteries with circular cross section,
it was assumed that η ≥ 1; and for the veins with an elliptic cross section, η < 1 (see [37]).

For the CCA, S0 = 0.2165 cm2 was used, for the CFA we used S0 = 0.3578 cm2, and for the vein com�
mon femoral artery S0 = 0.229 mm2. In all the cases, Р0 = 6.666118 kPa. The values of all the constants,
including the values of α shown in Tables 1 and 2, were chosen so as to make the curves Р(S) to pass
through the same values of the minimum and maximum pressures obtained experimentally [41–44]. The
form of functions P(S) obtained for these values of parameters for the CCA and CFA is illustrated in Fig.
6; for the canine common femoral vein, it is shown in Fig. 8a. The indexes of curves in Figs. 6 and 8a cor�
respond to the rows in Tables 1 and 2, respectively.

An important factor for the analysis of the influence of the form of Р(S) on the wave pattern in the case
of pulsating flow of viscous incompressible fluid in the network of elastic tubes is the propagation rate of
the pulse wave (the propagation rate of small perturbations in the vessel wall) in each tube of the network.
This parameter can be found by calculating eigenvalues of the Jacobian matrix of system (4.1), (4.2) (for
details see, e.g., [1, 34, 36, 39]):

It is seen from Figs. 6 and 8a that the curves corresponding to different functions P(S) differ only insig�
nificantly. By using various criteria for the choice of model constants, one can make the curves almost
identical at η ≈ 1. The difference becomes significant in the analysis of с(η) for different cases. In Figs. 7
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and 8b one can see significant differences of the dependences of the pulse wave propagation on the cross
section. These differences persist even for the constants at which Р(S) are almost identical at η ≈ 1. Thus,
calculations based on different models of wall elasticity can yield significantly different results.

To test various models, the numerical discretization of system (4.1), (4.2) using the grid�characteristic
method of the second approximation order (see [47]) was used. A fairly long elastic tube (L = 100 cm) was
considered. At its left endpoint, the flow was specified by

(4.4)

where Q0 = 15 mL/s was used for the common carotid artery and Q0 = 30 mL/s for the common femoral
artery; this agrees with typical conditions in the cardiovascular system in humans. Along with condition
(4.4), an explicit second�order approximation of the consistency condition for the hyperbolic system
(4.1), (4.2) (see [32, 36]) along the characteristic leaving the domain was set at the left endpoint of the
tube. The boundary conditions at the right endpoint of the tube can be set arbitrarily in our case. The tube
length was chosen such that the boundary conditions at the right endpoint do not affect the solution near
the left endpoint (in the range from 0 through 40 cm) during the observation period.
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Fig. 9. Pressure and rate in the common carotid artery for various state equations. t1 = 0.8 s, t2 = 1. 0 s, t3 = 1.2 s, t4 =
1.4 s. 1 corresponds to [1, 2, 37] and others, 2 to [30],; 3 to [38,31, 39, 40, 33, 34] and others, 4 to [35, 32, 36] and others.
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The numerical results are illustrated in Figs. 9 and 10. Wave patterns at the times t1 = 0.8 s, t2 = 1.0 s,
t3 = 1.2 s, and t4 = 1.4 s from the time when pulse (4.4) begins. The differences are more clearly seen in
the simulation of the propagation of a solitary pulse in the common carotid artery (Fig. 9). Differences
both in the pressure amplitude and in the pulse wave propagation rate are seen. Note that the leading edge
(right�hand part) of the wave front is significantly steeper in case 4.

According to elasticity model 4 (see Table 1), the pulse wave propagation rate is higher in the domain
when the cross section is stretched, which results in the wave running on the leading edge with the subse�
quent formation of the shock wave. The same effect is observed in the other cases because qualitatively the
function Р(S) for vessels is monotone (see [37]). However, the shock wave is generated much farther (sev�
eral meters), which is beyond the physiological range. Nevertheless, it is known that in some pathological
cases related to the increased rigidity of arterial walls, increase of the left ventricle stroke volume, in the
case of stenotic vessel involvement, and other cases, a shock wave can occur within several tens of centi�
meters from the heart. For the numerical simulation of such cases within the one�dimensional hemody�
namic models, the elasticity model Р(S) must be analyzed more thoroughly.

In the case of the common femoral artery (Fig. 10), the pattern is somewhat different. The spread of
the curves corresponding to different cases is less significant. The differences in the pressure levels and in
the pulse wave propagation rates are also less significant. The trend to the formation of a shock wave is
again most well defined for model 4 (see Table 1). It seems that this is due to the greater cross section of
the common femoral artery compared with the common carotid artery. The differences become visible far
beyond the physiologically feasible range.

5. CONCLUSIONS

Computational experiments described in this paper for the common carotid and femoral arteries sug�
gest that various elasticity models represented by functions Р(S) yield satisfactory results in the physiolog�
ically admissible range of parameters conditionally corresponding to normal conditions. The differences
between models become detectable in the cases of pathological changes in heart functions, elastic prop�
erties of vessel walls, and stenotic vessel involvement. In the simulation of such cases, the validity of the
elasticity model should be verified using medical examinations, and the underlying mathematical model
should be more complex and match the physical models of vessel wall elasticity described in Section 3.

However, a number of factors reduce the need for more accurate simulation of elasticity in one�dimen�
sional models than was described in Section 4. The propagation of pulse waves and blood flow in the
modes that are close to the formation of shock waves are considerably affected by such factors as blood
viscosity, visco�elasticity of vessel walls, longitudinal extensibility of vessels, and autoregulation, which are
beyond the scope of this paper.

The simulation of venous blood flow by analogy with arterial flow in this paper is difficult because some
of the vein elasticity models do not cover the case η > 1 (circular cross section). In the case of veins, the
proposed comparison technique based on the calculation of solitary pulse propagation is inadequate
because there are almost no wave flows in veins. On the other hand, the venous blood flow is significantly
affected by such factors as venous valves, the sucking effect of the heart, and the muscle pump effect,
which require the development of new experiments.
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