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Motivation

Interested in attenuation of ocean waves (linear water waves)
by many ice floes (floating elastic plates)

Significant effects of irregularities in beam properties

Consider a rough floating elastic beam as a model problem

Exponential attenuation of wave energy expected

Goal: Extraction of an attenuation coefficient Q

Energy ≈ e−Qx

Roughness modelled assuming knowledge of average properties

Semi-analytical approach for effective wave field
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Thin-elastic beam floating on water model

x

z

z = 0
[
∂2x (b(x)∂2x )− αg(x) + 1

]
∂zφ(x , z)− αφ(x , z) = 0

Wave
∆φ = 0

∂zφ = 0
z = −H
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Beam floating on water (Assumptions of Linear Theory)

Linear motions in fluid and beam:

Water

Incompressible

Irrotational

}
Potential Theory

Inviscid

Linear, time-harmonic water waves with velocity potential

Φ(x , z , t) = <
(
φ(x , z)e−iωt

)

Beam

Thin, elastic beam

No submergence

}
Beam Equation

Linear deformations

No horizontal motion
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Thin-elastic beam floating on water model

[
∂2x (b(x)∂2x )− αg(x) + 1

]
∂zφ(x , z)− αφ(x , z) = 0

[
∂2x (b ∂2x )− αg(x) + 1

]
∂zφ(x , z)− αφ(x , z) = 0

[
∂2x (b(x)∂2x )− αg + 1

]
∂zφ(x , z)− αφ(x , z) = 0

Frequency parameter α = ω2/gr

unit-amplitude wave incident from x → −∞
varying beam rigidity b(x)

varying beam mass g(x)

Retrieving beam displacement via

∂φ(x , z)

∂z

∣∣∣∣
z=0

= −iωη(x)
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Thin-elastic beam floating on water model

[
∂2x (b(x) ∂2x )− αg(x) + 1

]
∂zφ(x , z)− αφ(x , z) = 0

randomness incorporated via varying mass

g(x) = ḡ + ε γ(x) with γ(x) ∼ O(1) and 〈γ〉 = 0

randomness incorporated via varying rigidity

b(x) = b̄ + ε β(x) with β(x) ∼ O(1) and 〈β〉 = 0

Step approximation of b(x) with M intervals of equal length

0 20 40

x

−0.3b̄

6

?

O(ε)

b(x)

0 20 40

x

−0.3b̄

6

?

O(ε)

b(x)
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Full Solution & Ice Cover Dispersion Relation

Full linear solution

φ(x , z) =
∞∑

n=−2
φn(x)

cosh(κn(z + H))

cosh(κnH)

Wave number κ has to satisfy dispersion relation for elastic plates
(with constant rigidity, b, and mass, g):

κ tanh(κH) =
α

bκ4 − αg + 1
.

κ−2 and κ−1 complex solutions with
positive real part,

κ0 purely imaginary, negative solution
→ κ = iκ0,

κn for n > 0 positive, real solutions.

Im

Re

κ1 κ2κ3κ4κ5

κ0

κ−1

κ−2
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Full Solution & Ice Cover Dispersion Relation

Multi-mode approximation of potential

φ(x , z) ≈
N∑

n=−2

(
a(n)e−iκn + b(n)eiκn

)cosh(κn(z + H))

cosh(κnH)

Wave number κ has to satisfy dispersion relation for elastic plates
(with constant rigidity, b, and mass, g):

κ tanh(κH) =
α

bκ4 − αg + 1
.

κ−2 and κ−1 complex solutions with
positive real part,

κ0 purely imaginary, negative solution
→ κ = iκ0,

κn for n > 0 positive, real solutions.

Im

Re

κ1 κ2κ3κ4κ5

κ0

κ−1

κ−2
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Individual vs. effective wave field

Individual wave field vs. Effective wave field

Wave field for single realisation
of roughness profile

1 profile realisation

single wave field

Ensemble average of individual
wave fields for many realisations

1500 profile realisations

mean wave field
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Figure: Example individual wave field (grey) and corresponding effective wave
field (black), for ε = 10−2, and l = 0.9 (left) and 5.0 (right)
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Individual vs. effective wave field
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Attenuation Results (RS)

Attenuation rate from effective wave field 〈η〉

|〈η〉|∝∼ e−Qeff x (0 < x < L)
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Figure: Attenuation of individual (×) and effective (◦) wave fields
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Multiple-scale approach

PDE system for infinitely long, rough floating elastic beam

∆φ = 0, z ∈ (−H, 0),

∂φ

∂z
= 0, z = −H,[

∂2

∂x2
b(x)

∂2

∂x2
− αg(x) + 1

]
∂φ

∂z
= αφ, z = 0.

Goal: Derivation of equation to describe potential

Consider two spatial scales:
Small scale s ∼ 2π/k with coordinate x
Observation scale S = ε−2s with coordinate x2 = ε2x (ε� 1)

Adopt a multiple-scale expansion:
φ(x , z) = φ0(x , x2, z) + ε φ1(x , x2, z) + ε2 φ2(x , x2, z) +O(ε3)

Randomness incorporated via same process as in RS
varying beam mass: g(x) = ḡ + εγ(x),
varying beam rigidity: b(x) = b̄ + εβ(x)
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Multiple-scale approach

PDE system of order 0

∆φ = 0, z ∈ (−H, 0),

∂φ

∂z
= 0, z = −H,[

b̄
∂4

∂x4
− αḡ + 1

]
∂φ
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Goal: Derivation of equation to describe potential
Consider two spatial scales:

Small scale s ∼ 2π/k with coordinate x
Observation scale S = ε−2s with coordinate x2 = ε2x (ε� 1)

Adopt a multiple-scale expansion:
φ(x , z) = φ0(x , x2, z) + ε φ1(x , x2, z) + ε2 φ2(x , x2, z) +O(ε3)

Randomness incorporated via same process as in RS
varying beam mass: g(x) = ḡ + εγ(x),
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Multiple-scale approach

PDE system of order 0

∆φ = 0, z ∈ (−H, 0),

∂φ

∂z
= 0, z = −H,[

b̄
∂4

∂x4
− αḡ + 1

]
∂φ

∂z
= αφ, z = 0.

System is deterministic

Consider a rightward propagating wave in leading order system

Solution

φ0(x , x2, z) = A(x2)
cosh(κ(z + H))

cosh(κH)
eiκx

Task: Determine leading-order wave amplitude A(x2)
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Equation for A(x2)

Solving PDE system of 1st and 2nd order involves some
algebra (Green’s function, ensemble average 〈φ2〉, ...)

Envelope equation for 〈A(x2)〉
∂

∂x2
〈A(x2)〉 = · · · = −Q · 〈A(x2)〉.

with complex coefficient Q

Solution of ODE

Solution of envelope equation

〈A(x2)〉 = A0 · e−Qx2

Attenuation coefficient Q describes effective wave field!
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Attenuation Results (RS & MS)
Varying mass
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Figure: Attenuation of MS approach (-) compared to attenuation of individual
(×) and effective (◦) wave fields

Attenuation rates predicted by MS agree for both problems

Agreement between RS and MS up to ε ≈ 10−1
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Effective vs. individual wave field

Question

When is effective wave field representative for individual wave field?

Sample problem

Wave propagation along a rough string with varying density
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Figure: Attenuation of individual (×) and effective (◦) wave fields
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Summary & Future work

Summary:

RS computationally expensive (CPU time: Days vs. 2sec)

Multiple-scale approach only captures attenuation rate for
effective wave field (for small ε)

Same attenuation rates for varying mass and varying rigidity

Attenuation rates for effective wave field not the same as
attenuation rates for individual wave fields

Representative attenuation for large profile roughness

Future work:

Further investigation of attenuation rate regime change

Experimental validation for in-vacuo beams

Extension of the method to multiple floating rough elastic
plates
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The End

Thanks for your attention!
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