Wave Attenuation Along a Rough Floating Elastic Beam

Sebastian Rupprecht ¹

Malte A. Peter ¹ Luke G. Bennetts ²

¹Institute of Mathematics, University of Augsburg, Germany

²School of Mathematics, University of Adelaide, Australia

《曰》 《聞》 《理》 《理》 三世

Marginal Ice Zone

Source: www.seaice.acecrc.org.au

Image: Image:

- Interested in attenuation of ocean waves (linear water waves) by many ice floes (floating elastic plates)
- Significant effects of irregularities in beam properties
- Consider a rough floating elastic beam as a model problem
- Exponential attenuation of wave energy expected
- Goal: Extraction of an attenuation coefficient Q

Energy $\approx e^{-Q_X}$

- Roughness modelled assuming knowledge of average properties
- Semi-analytical approach for effective wave field

伺 と く ヨ と く ヨ と

$$\Delta \phi = 0$$

$$-----z = -H$$

Rupprecht, Peter & Bennetts Wave Attenuation Along a Rough Floating Elastic Beam

Beam floating on water (Assumptions of Linear Theory)

Linear motions in fluid and beam:

Water • Incompressible • Irrotational • Inviscid • Linear, time-harmonic water waves with velocity potential $\Phi(x, z, t) = \Re \left(\phi(x, z) e^{-i\omega t} \right)$

Beam floating on water (Assumptions of Linear Theory)

Linear motions in fluid and beam:

Water Incompressible Irrotational Inviscid Linear, time-harmonic water waves with velocity potential

$$\Phi(x,z,t) = \Re \left(\phi(x,z) \mathrm{e}^{-\mathrm{i}\omega t} \right)$$

Beam

- Thin, elastic beam
- No submergence

Beam Equation

- Linear deformations
- No horizontal motion

$$\left[\partial_x^2(b(x)\partial_x^2) - \alpha g(x) + 1\right]\partial_z \phi(x, z) - \alpha \phi(x, z) = 0$$

- Frequency parameter $\alpha=\omega^2/g_{\rm r}$
- unit-amplitude wave incident from $x \to -\infty$
- varying beam rigidity b(x)
- varying beam mass g(x)

$$\left[\partial_x^2(\mathbf{b}\,\partial_x^2) - \alpha g(x) + 1\right]\partial_z \phi(x,z) - \alpha \phi(x,z) = 0$$

- Frequency parameter $\alpha = \omega^2/g_r$
- unit-amplitude wave incident from $x \to -\infty$
- constant beam rigidity b
- varying beam mass g(x) varying mass problem

$$\left[\partial_x^2(b(x)\partial_x^2) - \alpha g + 1\right]\partial_z \phi(x, z) - \alpha \phi(x, z) = 0$$

- Frequency parameter $\alpha = \omega^2/g_r$
- unit-amplitude wave incident from $x \to -\infty$
- varying beam rigidity b(x)
 constant beam mass g
 varying rigidity problem

$$\left[\partial_x^2(b(x)\partial_x^2) - \alpha g + 1\right]\partial_z \phi(x, z) - \alpha \phi(x, z) = 0$$

- Frequency parameter $\alpha = \omega^2/g_r$
- unit-amplitude wave incident from $x \to -\infty$
- varying beam rigidity b(x)
 constant beam mass g
 varying rigidity problem
- Retrieving beam displacement via

$$\left. \frac{\partial \phi(\mathbf{x}, \mathbf{z})}{\partial \mathbf{z}} \right|_{\mathbf{z}=\mathbf{0}} = -\mathrm{i}\omega \eta(\mathbf{x})$$

$$\begin{bmatrix} \partial_x^2(\mathbf{b} & \partial_x^2) - \alpha g(x) + 1 \end{bmatrix} \partial_z \phi(x, z) - \alpha \phi(x, z) = 0$$

• randomness incorporated via varying mass

$$g(x) = ar{g} + \epsilon \, \gamma(x) \quad ext{ with } \gamma(x) \sim \mathcal{O}(1) ext{ and } \langle \gamma
angle = 0$$

$$\left[\partial_x^2(b(x)\,\partial_x^2) - \alpha g + 1\right]\partial_z \phi(x,z) - \alpha \phi(x,z) = 0$$

• randomness incorporated via varying rigidity

$$b(x) = \overline{b} + \epsilon \, \beta(x)$$
 with $\beta(x) \sim \mathcal{O}(1)$ and $\langle \beta \rangle = 0$

$$\left[\partial_x^2(b(x)\,\partial_x^2) - \alpha g + 1\right]\partial_z \phi(x,z) - \alpha \phi(x,z) = 0$$

randomness incorporated via varying rigidity

$$b(x) = ar{b} + \epsilon \, eta(x) \quad ext{ with } eta(x) \sim \mathcal{O}(1) ext{ and } \langle eta
angle = 0$$

• Step approximation of b(x) with M intervals of equal length

$$\left[\partial_x^2(b(x)\,\partial_x^2) - \alpha g + 1\right]\partial_z \phi(x,z) - \alpha \phi(x,z) = 0$$

randomness incorporated via varying rigidity

$$b(x) = ar{b} + \epsilon \, eta(x) \quad ext{ with } eta(x) \sim \mathcal{O}(1) ext{ and } \langle eta
angle = 0$$

• Step approximation of b(x) with M intervals of equal length

Full linear solution

$$\phi(x,z) = \sum_{n=-2}^{\infty} \phi_n(x) \frac{\cosh(\kappa_n(z+H))}{\cosh(\kappa_n H)}$$

∃ → < ∃</p>

Full linear solution

$$\phi(x,z) = \sum_{n=-2}^{\infty} \phi_n(x) \frac{\cosh(\kappa_n(z+H))}{\cosh(\kappa_n H)}$$

Wave number κ has to satisfy dispersion relation for elastic plates (with constant rigidity, *b*, and mass, *g*):

$$\kappa anh(\kappa H) = rac{lpha}{b\kappa^4 - lpha g + 1}.$$

Full linear solution

$$\phi(x,z) = \sum_{n=-2}^{\infty} \phi_n(x) \frac{\cosh(\kappa_n(z+H))}{\cosh(\kappa_n H)}$$

Wave number κ has to satisfy dispersion relation for elastic plates (with constant rigidity, *b*, and mass, *g*):

Full linear solution

$$\phi(x,z) = \sum_{n=-2}^{\infty} \left(a^{(n)} \mathrm{e}^{-\mathrm{i}\kappa_n} + b^{(n)} \mathrm{e}^{\mathrm{i}\kappa_n} \right) \frac{\cosh(\kappa_n(z+H))}{\cosh(\kappa_n H)}$$

Wave number κ has to satisfy dispersion relation for elastic plates (with constant rigidity, *b*, and mass, *g*):

Multi-mode approximation of potential

$$\phi(x,z) \approx \sum_{n=-2}^{N} \left(a^{(n)} \mathrm{e}^{-\mathrm{i}\kappa_n} + b^{(n)} \mathrm{e}^{\mathrm{i}\kappa_n} \right) \frac{\cosh(\kappa_n(z+H))}{\cosh(\kappa_n H)}$$

Wave number κ has to satisfy dispersion relation for elastic plates (with constant rigidity, *b*, and mass, *g*):

Rupprecht, Peter & Bennetts Wave Attenuation Along a Rough Floating Elastic Beam

Individual vs. effective wave field

Individual wave field vs.	Effective wave field
Wave field for single realisation of roughness profile	Ensemble average of individual wave fields for many realisations
• 1 profile realisation	 1500 profile realisations
 single wave field 	mean wave field

Image: Image:

Individual vs. effective wave field

Figure: Example individual wave field (grey) and corresponding effective wave field (black), for $\epsilon = 10^{-2}$, and l = 0.9 (left) and 5.0 (right)

Individual vs. effective wave field

Figure: Example individual wave field (grey) and corresponding effective wave field (black), for $\epsilon = 10^{-2}$, and l = 0.9 (left) and 5.0 (right)

Attenuation Results (RS)

Attenuation rate from effective wave field $\langle \eta \rangle$

$$|\langle \eta
angle| \, \! \propto \! \mathrm{e}^{- Q_{\mathrm{eff}} x} \quad (\mathsf{0} < x < L)$$

(E)

Attenuation Results (RS)

Attenuation rate from effective wave field $\langle \eta \rangle$

$$\langle \eta \rangle | \propto e^{-Q_{\text{eff}}x} \quad (0 < x < L)$$

Figure: Attenuation of individual (\times) and effective (\circ) wave fields

PDE system for infinitely long, rough floating elastic beam

$$\Delta \phi = 0, \qquad z \in (-H, 0),$$

 $\frac{\partial \phi}{\partial z} = 0, \qquad z = -H,$
 $\left[\frac{\partial^2}{\partial x^2}b(x)\frac{\partial^2}{\partial x^2} - \alpha g(x) + 1\right]\frac{\partial \phi}{\partial z} = \alpha \phi, \qquad z = 0.$

Goal: Derivation of equation to describe potential

PDE system for infinitely long, rough floating elastic beam

$$\begin{aligned} \Delta \phi &= 0, \qquad z \in (-H,0), \\ \frac{\partial \phi}{\partial z} &= 0, \qquad z = -H, \\ \frac{\partial \phi}{\partial x^2} b(x) \frac{\partial^2}{\partial x^2} - \alpha g(x) + 1 \end{bmatrix} \frac{\partial \phi}{\partial z} &= \alpha \phi, \qquad z = 0. \end{aligned}$$

Goal: Derivation of equation to describe potential

- Consider two spatial scales:
 - Small scale $s \sim 2\pi/k$ with coordinate x
 - Observation scale $S = \epsilon^{-2}s$ with coordinate $x_2 = \epsilon^2 x \ (\epsilon \ll 1)$
- Adopt a multiple-scale expansion: $\phi(x, z) = \phi_0(x, x_2, z) + \epsilon \phi_1(x, x_2, z) + \epsilon^2 \phi_2(x, x_2, z) + \mathcal{O}(\epsilon^3)$
- Randomness incorporated via same process as in RS
 - varying beam mass: $g(x) = \overline{g} + \epsilon \gamma(x)$,
 - varying beam rigidity: $b(x) = \overline{b} + \epsilon \beta(x)_{a}$

PDE system of order 0

$$\Delta \phi = 0, \qquad z \in (-H, 0),$$
$$\frac{\partial \phi}{\partial z} = 0, \qquad z = -H,$$
$$\bar{b} \frac{\partial^4}{\partial x^4} - \alpha \bar{g} + 1 \bigg] \frac{\partial \phi}{\partial z} = \alpha \phi, \qquad z = 0.$$

Goal: Derivation of equation to describe potential

- Consider two spatial scales:
 - Small scale $s \sim 2\pi/k$ with coordinate x
 - Observation scale $S = \epsilon^{-2}s$ with coordinate $x_2 = \epsilon^2 x \ (\epsilon \ll 1)$
- Adopt a multiple-scale expansion: $\phi(x, z) = \phi_0(x, x_2, z) + \epsilon \phi_1(x, x_2, z) + \epsilon^2 \phi_2(x, x_2, z) + \mathcal{O}(\epsilon^3)$
- Randomness incorporated via same process as in RS
 - varying beam mass: $g(x) = \overline{g} + \epsilon \gamma(x)$,
 - varying beam rigidity: $b(x) = \overline{b} + \epsilon \beta(x)_{\Box}$

PDE system of order 0

$$\begin{split} \Delta \phi &= 0, \qquad z \in (-H,0), \\ \frac{\partial \phi}{\partial z} &= 0, \qquad z = -H, \\ \left[\bar{b} \frac{\partial^4}{\partial x^4} - \alpha \bar{g} + 1 \right] \frac{\partial \phi}{\partial z} &= \alpha \phi, \qquad z = 0. \end{split}$$

• System is deterministic

PDE system of order 0

- System is deterministic
- Consider a rightward propagating wave in leading order system

Solution

$$\phi_0(x, x_2, z) = A(x_2) \frac{\cosh(\kappa(z+H))}{\cosh(\kappa H)} e^{i\kappa x}$$

PDE system of order 0

$$\Delta \phi = 0, \qquad z \in (-H, 0),$$

 $\frac{\partial \phi}{\partial z} = 0, \qquad z = -H,$
 $\left[\bar{b}\frac{\partial^4}{\partial x^4} - \alpha \bar{g} + 1\right]\frac{\partial \phi}{\partial z} = \alpha \phi, \qquad z = 0.$

- System is deterministic
- Consider a rightward propagating wave in leading order system

Solution

$$\phi_0(x, x_2, z) = \frac{A(x_2)}{\cosh(\kappa (z + H))} e^{i\kappa x}$$

Task: Determine leading-order wave amplitude $A(x_2)$

Equation for $A(x_2)$

• Solving PDE system of 1^{st} and 2^{nd} order involves some algebra (Green's function, ensemble average $\langle \phi_2 \rangle$, ...)

Equation for $A(x_2)$

• Solving PDE system of 1^{st} and 2^{nd} order involves some algebra (Green's function, ensemble average $\langle \phi_2 \rangle$, ...)

Envelope equation for $\langle A(x_2) \rangle$

$$\frac{\partial}{\partial x_2}\langle A(x_2)\rangle = \cdots = -Q \cdot \langle A(x_2)\rangle.$$

with complex coefficient Q

Solution of ODE

Solution of envelope equation

$$\langle A(x_2)
angle = A_0 \cdot \mathrm{e}^{-Qx_2}$$

Equation for $A(x_2)$

• Solving PDE system of 1^{st} and 2^{nd} order involves some algebra (Green's function, ensemble average $\langle \phi_2 \rangle$, ...)

Envelope equation for $\langle A(x_2) \rangle$

$$\frac{\partial}{\partial x_2}\langle A(x_2)\rangle = \cdots = -Q \cdot \langle A(x_2)\rangle.$$

with complex coefficient Q

Solution of ODE

Solution of envelope equation

$$\langle A(x_2) \rangle = A_0 \cdot \mathrm{e}^{-Q_{x_2}}$$

• Attenuation coefficient *Q* describes effective wave field!

・ 同 ト ・ ヨ ト ・ ヨ ト

Attenuation Results (RS & MS)

Figure: Attenuation of MS approach (-) compared to attenuation of individual (\times) and effective (\circ) wave fields

Image: Image:

Attenuation Results (RS & MS)

Figure: Attenuation of MS approach (-) compared to attenuation of individual (\times) and effective (\circ) wave fields

- Attenuation rates predicted by MS agree for both problems
- Agreement between RS and MS up to $arepsilon pprox 10^{-1}$

Rupprecht, Peter & Bennetts

Wave Attenuation Along a Rough Floating Elastic Beam

Question

When is effective wave field representative for individual wave field?

3 🕨 🖌 🗐

Question

When is effective wave field representative for individual wave field?

Sample problem

Wave propagation along a rough string with varying density

Question

When is effective wave field representative for individual wave field?

Sample problem

Wave propagation along a rough string with varying density

Figure: Attenuation of individual (\times) and effective (\circ) wave fields

Question

When is effective wave field representative for individual wave field?

Sample problem

Wave propagation along a rough string with varying density

Figure: Attenuation of individual (\times) and effective (\circ) wave fields

Summary & Future work

Summary:

- RS computationally expensive (CPU time: Days vs. 2sec)
- Multiple-scale approach only captures attenuation rate for effective wave field (for small ε)
- Same attenuation rates for varying mass and varying rigidity
- Attenuation rates for effective wave field not the same as attenuation rates for individual wave fields
- Representative attenuation for large profile roughness

Summary & Future work

Summary:

- RS computationally expensive (CPU time: Days vs. 2sec)
- Multiple-scale approach only captures attenuation rate for effective wave field (for small ε)
- Same attenuation rates for varying mass and varying rigidity
- Attenuation rates for effective wave field not the same as attenuation rates for individual wave fields
- Representative attenuation for large profile roughness

Future work:

- Further investigation of attenuation rate regime change
- Experimental validation for in-vacuo beams
- Extension of the method to multiple floating rough elastic plates

伺 ト イ ヨ ト イ ヨ ト

Thanks for your attention!

∃ → < ∃</p>