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Motivation

In late winter with freezing nights and warm days maple sap is harvested.

Source: Wikipedia

Question

Why is the maple sap driven out of the tree if tapped?
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Exudation in sugar maple (Acer saccharum)

Key observations:

Maple sap begins to exude in
late February or early March.

Temperatures must oscillate
above/below 0◦C to generate
exudation pressures.

In winter, there is no
transpiration and little uptake
from roots.

Experiments on walnut trees
(Améglio et al., 2001)

Basic question:

What causes the build-up in stem pressure that drives sap exudation
during winter months when the tree is seemingly dormant?
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How does the high pressure in the tree arise?

{
Vessels: main sap carriers
(Fibre) Tracheids: secondary role in sap transport

(Libriform) Fibres: structural role

Unique in Maple: (Lib.) Fibres filled with air.
tracheid
libriform fiber
vessel

pit
parenchyma cell
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Modified Milburn–O’Malley prop.: freezing process

As temperature drops, ice forms on inner wall of the fibre.
Ice formation drives absorption from the vessel.
Ice growth compresses gas trapped in the fibre.
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Modified Milburn–O’Malley prop.: thawing process

As temperature rises, the process runs in reverse.
Compressed gas generates positive pressure in vessels and drives sap
flow if there is an exit (taphole).
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Mathematical model of thawing process
Start by considering only thawing: (Ceseri & Stockie, 2013)

One vessel, N identical fibres,
all cylindrical.

Three phases: gas, ice, water.

Ice melts in response to external
heat source.

Assume vessel thaws first due to
freezing point depression (sugar
in vessel, none in fibre).

Melt-water is driven through
porous fibre/vessel wall.

Gas in the vessel (new!) is in
turn compressed.

Bubbles dissolve/grow in
response to pressure changes.

Fiber
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Mathematical model

Mathematical model by Ceseri & Stockie (2013).

Fiber

Vessel

gasgas

sap

ice

s
gi

s
iw

r

U

water

U
root

Ṫ = D∆T

ṡiw = − kw
λρw

∂xT + U̇
2πsiwLf

0 = −ρi sgi ṡgi + (ρi − ρw )siw ṡiw + U̇
2πLf

ṙ = U̇N+U̇root

2πrLf

U̇ = − KA
NρwgW

(pvw − pfw − posm + pcap)

U̇root = −LpAr (p
v
w − proot)
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Results of the microscopic model
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This model matches:

1 overall increase

2 step-wise increase

3 pressure approaches threshold

Not yet:

1 gradual increase and decrease

2 pressure relaxation

3 ∆P ≈ 80kPa
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Upscaling of the microscopic model to the whole
tree stem

Cross-section of the maple-tree stem
Use periodic homogenisation for temperature equation!

Y

Ω
ε
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Averaging

General problem:

Shape of the microstructure:
complex or not known in detail.

Rapidly changing coefficients.

Coefficients do not give (direct) information about
observable properties.

General idea:

Averaging of the unknowns → unknowns defined on
the whole domain and observable parameters
→ macromodel

Schematic
cross-section of a

multi-phase
medium
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The idea of periodic homogenisation

Periodic homogenisation has been successfully employed to upscale
reaction–diffusion problems in porous media.

Assume that there exists a

a representative (unit) cell, Y = (0, 1)N , containing all components
where all important processes occur, and

a scale parameter ε > 0

such that the multi-phase material is the union of many scaled cells.

Left: schematic setup of a three-phase material.
Right: enlarged view of the microstructure.
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The idea of periodic homogenisation

Microscale: equations with ε-periodic coefficients valid in
each part of the multi-phase medium

Considering ε to be a free parameter, a whole family of
PDEs,

Lεuε = fε in Ωε,

with appropriate boundary conditions is considered.

Assuming that fε and the sequence of (unique) solutions uε
converge to limit functions f and u as ε→ 0, the question is:

What is the homogenised operator L such that u solves
Lu = f in Ω?
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Homogenisation limits

In general:
uε(x) −→ u(x , y)

−→

Fortunately, the problem can often be reduced, u = u(x) or u = ux(y),
e.g.
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Two-scale convergence

Definition

A sequence (uε) in L2(Ω) two-scale converges to a limit function
u0(x , y) ∈ L2(Ω× Y ) if

lim
ε→0

∫
Ω

uε(x) v(x , x/ε) dx =

∫
Ω

∫
Y

u0(x , y) v(x , y) dy dx

for all v ∈ C∞0 (Ω; C∞# (Y )).

Theorem

Every bounded sequence (uε) in L2(Ω) contains a subsequence, which
two-scale converges to a limit function u0(x , y) ∈ L2(Ω× Y ).

(Nguetseng 1989, Allaire 1992)
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Melting ice bars

For now: Only consider temperature! Array of “melting ice bars”.

Ω
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Melting ice bars

Using a regularised (i.e. smooth, strongly monotone)
temperature–enthalpy relation T = ω(E ), we may state the strong
formulation of the two-phase Stefan problem as

∂tE1,ε −∇ · [D(E1,ε)∇T1,ε] = 0 in Ω1
ε, (1a)

D(E1,ε)∇T1,ε · n = −ε2D(E2,ε)∇T2,ε · n on Γε, (1b)

−D(E1,ε)∇T1,ε · n = α(T1,ε − Ta) on ∂Ω ∩ ∂Ω1
ε, (1c)

∂tE2,ε − ε2∇ · [D(E2,ε)∇T2,ε] = 0 in Ω2
ε, (1d)

E2,ε = E1,ε on Γε, (1e)
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Melting ice bars
Function spaces (for Dirichlet b.c. at the exterior)

V1
ε :=

{
u ∈ L2([0, tm],H1(Ω1

ε)) ∩H1([0, tm],H1(Ω1
ε)
′) | u = 0 on ∂Ω1

ε ∩ ∂Ω
}
,

V2
ε :=

{
u ∈ L2([0, tm],H1(Ω2

ε)) ∩H1([0, tm],H1(Ω2
ε)
′) | u = 0 on Γε

}
,

V := L2([0, tm],H1
0(Ω)) ∩H1([0, tm],H1(Ω)′),

We then define the function Θε ∈ L2([0, tm],H1(Ω)) by

Θε =

{
E1,ε in Ω1

ε,
E2,ε in Ω2

ε,
and κε = χΩ1

ε
+ ε2χΩ2

ε
.

With %ε = Θε − ω−1(Ta), the weak form is finding %ε ∈ V such that

(∂t%ε, φ)Ω +(κεDω
′(%ε+ω−1(Ta))∇%ε,∇φ)Ω = (−∂tω−1(Ta), φ)Ω, (2)

for all φ ∈ H1
0(Ω).
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Results

Theorem

For given ε > 0, there exists a solution of Eq. (2).

Proof.

This seems to be non-standard (?). Our proof for this parabolic equation
with non-monotone non-linearity is based on writing the problem as

u′ +A(u, u) = f in V ∗,

u(0) = u0,
(3)

with A being the realisation of
〈A(t)(u, v),w〉 =

∑n
j=1

∫
Ω
a(x , t, u) ∂xj v ∂xjw dx

and applying Rothe’s method.
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Results

Lemma

There exists a constant C1, independent of ε, such that the solution Θε

of (2) (equivalently, E1,ε and E2,ε) satisfies

‖Θε‖2
Ω + ‖κε∇Θε‖2

Ω,t

= ‖E1,ε‖2
Ω1

ε
+ ‖∇E1,ε‖2

Ω1
ε,t

+ ‖E2,ε‖2
Ω2

ε
+ ε2 ‖∇E2,ε‖2

Ω2
ε,t
≤ C1.

Proof.

Pretty much standard estimates.
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Results
The a priori estimates immediately yield the following two-scale
convergence results

Lemma

There exist functions E1,0 ∈ L2([0, tm],H1(Ω)),

Ê1,0 ∈ L2([0, tm], L2(Ω,H1
#(Y 1))) and E2,0 ∈ L2([0, tm], L2(Ω,H1

#(Y 2)))
such that, up to subsequences,

E1,ε
2-scale−−−−−→ E1,0,

∇E1,ε
2-scale−−−−−→ ∇xE1,0 +∇y Ê1,0,

E2,ε
2-scale−−−−−→ E2,0,

∇E2,ε
2-scale−−−−−→ ∇yE2,0.
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Limit problem

If we assume that the function Dω′ in (2) is independent of Θε or if we
assume that Θε converges strongly, we can identify the limit problem:

|Y 1|(∂tE1, φ0)Ω + (ΠD(E1)ω′(E1)∇xE1, ∇xφ0)Ω

+ 〈D(E2)ω′(E2)∇yE2, φ0〉Γ×Ω = 0, (4a)

(∂tE2, φ2)Ω×Y 2 + (D(E2)ω′(E2)∇yE2, ∇yφ2)Ω×Y 2 = 0. (4b)

for all φ0 ∈ H1
0(Ω) and φ2 ∈ L2(Ω,H1

#(Y 2)), where Π is determined by
(standard) cell problems.

We can also show:

Lemma

The limit problem (i.e. the weak form of (4)) has at most one solution.
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Macroscopic model for sap exudation

Add the rest of the model of Ceseri & Stockie to the cell problem.
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2πrLf
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2πLf
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Result of the macroscopic model
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Improved model also matches:

1 gradual increase and decrease

2 pressure relaxation

3 ∆P ≈ 80kPa
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Summary

The most important aspects of tree-sap exudation can be explained
by a two-scale model.

Homogenisation of a two-phase Stefan problem in a highly
heterogeneous medium with melting/thawing in the slow transport
region was performed (limit identification still incomplete for general
case) .

Fibre Vessel
Air, no sap Air, sap

←← Water moves from vessel to fibre ←←
Water freezes Sugar prevents sap from freezing

↑↑ Water uptake through roots to vessel ↑↑
Ice melts

→→ Water moves back from fibre to vessel →→
Higher pressure in the tree
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