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Gravity-driven fingering




Saturation and pressure overshoots

saturation
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[Xiong Y. Flow of water in porous media with saturation overshoot: A review // J.
Hydrol. 2014. Vol. 510. Pp. 353-362.]




Pressure overshoot

Saturation overshoot leads to capillary pressure and water pressure

overshoots.

[Xiong Y. Flow of water in porous media with saturation overshoot: A review // J.
Hydrol. 2014. Vol. 510. Pp. 353-362.]



Two-phase flow equations

QK(Vpa - pagvz)va =Ww,o0

Ha

Po — Pw = Pc(sw)aso +sy=1

® a = w, 0 — water, oil )
) m pc — capillary pressure
m s, — saturation S
B [l — VISCOSIty
m p, — pressure .
, ) m ko — rel. permeability
m u, — Darsy’s velocity .
] m K — abs. permeability
m b, — volume formation )
m p, — density
® g, — sources



Three-phase flow equations

0 [ ¢sa ) 1
9t E + div Faua = 4o, = W, 0, .a:W7¢-3I,g—
ter, oll,
0 (o5, s, e . water, oil, gas
— | = - +div(—ug+ —Uo) =Gqg, m peo — capillary
9t \ by bs be bo pressure
k,
Uy = — aK(Vpa—pasz),a: w,0,8 B rs — gas

(63

solubility
Sw+ So + 8¢ =1,Pa — Po = Pcas @ = W, 0,8,

m s, — saturation . .
B [l — VISCOSIty
m p, — pressure N
i ) m ko — rel. permeability
m u, — Darcy’s velocity -
; m K — abs. permeability
m b, — volume formation )
m p, — density
m g, — sources



Models with saturation overshoot (1)

6% +2(5) 5 |fnlsn) — Din(s) 5 |
- =)l [fals) - Dals) 5| = o
=(s.) = lim @ |zt 2)
_JLz/t >
@(y)_{o,z/tgc*

[Hilfer R., Steinle R. Saturation overshoot and hysteresis for two-phase flow in porous
media // Eur. Phys. J. Special Topics. 2014. Vol. 223. Pp. 2323-2338.]



Models with saturation overshoot (2). Dynamic capillary

pressure model.

O0sw Opw _
F(Smpa Ea W) =
For example
— 05w+ (5w pu)
Pc = w T(Sw; Pw ot

[Van Duijn C. G., Cao X., Pop I. S. Two-phase flow in porous media: dynamic
capillarity and heterogeneous media // Transport Porous Med. 2016. Vol. 114, no. 2.
Pp. 283-308.]



Differential maximum principles: summary

m required by a theorem

m not required by a theorem

two-phase three-phase
Po | Pot+P | Sa || Pa | Pot P
Pcwo = 0; Pcgo = 0 z E j___
35: Vﬁ: fwV Pewo + ngpcgo ! ! ! I !
va=const || M WM
h=1/l W N N
¢ = const . . .r —.—




Finite volume schemes

m Nonlinear multipoint — satisfies the discrete maximum
principle for diffusion equation

m Nonlinear two-point — violates the dicrete maximum principle
for diffusion equations

m Linear two-point — satisfies the dicrete maximum principle but
do not approximate diffusion equation

[2] Lipnikov K., Svyatskiy D., Vassilevski Y. Minimal stencil finite volume scheme with
the discrete maximum principle // Russ. J. Numer. Anal. Math. Modelling. — 2012. T.
27, Ne 4. — Pp. 369-385.



Differential and discrete maximum principles for pressure in

two-phase flow model

Differential | Discrete

pc =0 B
| |

Lo = const
bo=1
¢ = const

L
L

m required by a theorem

m not required by a theorem



Numerical experiment #1

zero capillary pressure

pc =0
constant viscosities
L LY Lo, = const
1 IR . e
incompressibility b, =1
constant porosity ¢ = const
Absolute permeability K =
R.(—0,)diag(ki, ka2, k3)R,(6>),
"Inicctor where
] kl = k3 = 100, k2 = 0.1,
m 0, =112.5°,
m R,(a) is the matrix of

rotation in xy-plane.



Numerical pressures

multi-point nonlinear two-point  linear two-point
max 4099.81 4112.64 4097.03
min 3901.10 3888.20 3928.91

Pressure
4100

-4060

-4020

3980
[3940
3900
Puc.: Pressure after 2000 model days for different flux discretization
schemes.




Numerical experiment #2

zero capillary pressure

pc=0
1ect ] ‘1‘ iun‘f\r constant viscosities
T H o = const
incompressibility b, = 1
constant porosity ¢ = const
Absolute permeability K =
EEE s R.(—0,)diag(ki, ka2, k3)R,(6>),
T u 1 = L where
il CHOT m kg = ks = 100, ko = 0.1,
m 0, =112.5°,
m R,(a) is the matrix of

rotation in xy-plane.



Numerical pressures

multi-point nonlinear two-point  linear two-point
max 4099.91 4122.31 4099.07
min 3906.32 3852.74 3952.38

Pressure
4100

-4060

-4020

3980
[3940
3900
Puc.: Pressure after 100 model days for different flux discretization
schemes.




Numerical saturations

multi-point nonlinear two-point  linear two-point
max 0.517 0.510 0.574
min 0.150 -0.995 0.150

Saturation

[0.65

-0.55

-0.45
| |
-0.35

[0.25
0.15
Puc.: Water saturation after 100 model days for different flux
discretization schemes. Initial saturation is s(0) = 0.15.




Experimental discrete maximum principle for nonconstant

parameters

Differential | Discrete
pc =0 -l -l

o = const ! 1
b, =1

¢ = const

m required by a theorem

m not required by a theorem



Summary

m 3 differential maximum principles for two-phase flow model
and 2 for three-phase flow model have been proven.

m The discrete maximum principle for numerical pressure
obtained using nonlinear multipoint scheme has been proven.

m The discrete maximum principle require additional assumption
on model coefficients.

m Numerical experiments support possible existence of the
discrete maximum principle for fewer assumptions.



Two-phase flow model equations (no gravity)

% (%) — div (%Z’—SKVP&> = Qo in 2 X (07 T)

Po — Pw = Pc(Sw)
So+s, =1



Differential maximum principle. Assumptions(1).

m zero capillary pressure p. =0
m strictly elliptic absolute permeability K

m smooth enough by, A\, = w, 0

m no incompressibility assumption: b, Z const
m no constant porosity assumption: ¢ % const

m no constant viscosity assumption: u, # const



Differential maximum principle(1). Pressure.

] boqo+bqu§O|nQX[O,T]:>

SUp po < SUp  Pa
Qx[0,T] o0 x[0,T)

| boqo+quW20|nQX[O,T]:>

inf > inf , QL= W, 0
Qx[o,T]po‘ - 8Q><[O,T)pa



Differential maximum principle. Assumptions(2)

fractional flows f, = % a = w, o depend solely on s,

m (implies constant viscosities, since A, = Z—Z and i = ta(pa))
there exists function p such that Vp = £, Vpc[1],
strictly elliptic absolute permeability K

smooth enough by, Ao, = w, 0

no incompressibility assumption: b, Z const

no constant porosity assumption: ¢ =% const

[1] Chen Z. Formulations and Numerical Methods of the Black Oil
Model in Porous Media. SIAM J. Numer. Anal., 2000;
38(2):489-514.



Differential maximum principle(2). Pressure.

B boGo + bwgw <0in Qx [0, T] =

sup p< sup p
Qx[0,T] oQx[0,T)

® boqo + bwqy >0in Q x [0, T] =

inf p> inf
Qx[0,T] o0x[0,T)

where p = p, — p.



Differential maximum principle. Assumptions(3)

constant viscosities p, = const, « = w, 0
incompressibility: b, =1, = w, 0

constant porosity: ¢ = const,

relative permeabilities k,, are monotonic functions of s,
Pe is monotonically decreasing function of s,

strictly elliptic absolute permeability K

smooth enough k.o, a = w, o0

no constant capillary pressure assumption: p. # 0,



Differential maximum principle(3). Saturations.

m gy <0,g0>0inQx[0,T]=

sup Sy < sup S, inf s, > inf s,
Qx[0,T] ax[0,T) Qx[0,t] 00x[0,T)

lquO,qOSOinQX[07T]:>

sup So < sup  So, inf s, > inf s,
Qx[0,T] 00x[0,T) Qx[0,] o01x[0,T)



Three-phase flow (no gravity)

d)p#s””> div (pw kerva> = qw

d’%’s") —div %@KVPO) = qo

%%Sg + % dlv(pg k""’KVpg+
+75Le e KV po) = qg

So+Sw+Ssg=1

Pa — Po = Pcao, & = &, W

Yo Slo §o




Differential maximum principle. Assumptions(1)

B peao =0, =w,g
m strictly elliptic absolute permeability K

m smooth enough by, A\, = w, 0

m no incompressibility assumption: b, Z const
m no constant porosity assumption: ¢ % const

m no constant viscosity assumption: u, # const



Differential maximum principle(1). Pressure

® byqo + bwqw + bgqg - bgrsoqo <0in Q2 x [O, T] =

SUp po < SUp  Pa
Qx[0,T] o0x[0,T)

® boqo + buwquw + bgqg — bgrsogo > 0in Q x [0, T] =

inf > inf , =W, o,
Qx[o,T]po‘ - 8Q><[O,T)pa &



Differential maximum principle. Assumptions(2)

fractional flows £,
sw and s,

—— 2o =
= ey A= w80 depend solely on

m (implies constant viscosities, since A, = Z’“ and g = ta(pa))

m there exits such function p that Vp = £, Vpewo + fg V Ppego[1]
m strictly elliptic absolute permeability K

m smooth enough by, A\, = w, 0

m no incompressibility assumption: b, Z const
m no constant porosity assumption: ¢ % const
[1] Chen Z. Formulations and Numerical Methods of the Black Oil

Model in Porous Media. SIAM J. Numer. Anal., 2000;
38(2):489-514.



Differential maximum principle(2). Pressure.

B boGo + bwquw + bgqg — bgrsoqo < 0in Q x [0, T] =

sup p< sup p
Qx[0,T] oQx[0,T)

® boGo + bwquw + bgqg - bgrsoqo >0in Q x [Oa T] =

inf p> inf
Qx[0,T] o0x[0,T)

where p = p, + p.



Discrete maximum principle. Assumptions.

zero capillary pressure: p. =0

[

m constant porosity: ¢ = const

m incompressibility: by =1, = w, 0
m

K is strictly elliptic

no constant viscosities assumption: i, Z 0



Discrete maximum principle. Pressure.

m Let 7in; be a set of cells where g, + go > 0 and 7 be a set of
boundary faces. Then

max pr<p = max pr.
TET\(Ti/UTs) T TiwUTe

m Let Tp0q be the set of cells where g, + g, < 0 and T be a
set of boundary faces. Then

min PT < Pmin = _min_ pT
TET\(F,;mdUTB) e 7;7rodUTB



	 

