Overshoots and maximum principles in porous media flow models

Novikov Konstantin

June 14, 2016

Outline

- Experimental observations
- Multiphase flow model formulations
- 3 Differential maximum principles
- Discrete maximum principle
- 5 Numerical experiments

Maximum principle

Gravity-driven fingering

Saturation and pressure overshoots

[Xiong Y. Flow of water in porous media with saturation overshoot: A review // J. Hydrol. 2014. Vol. 510. Pp. 353–362.]

Pressure overshoot

Saturation overshoot leads to capillary pressure and water pressure overshoots.

[Xiong Y. Flow of water in porous media with saturation overshoot: A review // J. Hydrol. 2014. Vol. 510. Pp. 353–362.]

Two-phase flow equations

- $\alpha = w, o$ water, oil
- \mathbf{s}_{α} saturation
- p_{α} pressure
- \mathbf{u}_{α} Darsy's velocity
- lacksquare b_{lpha} volume formation
- \mathbf{q}_{α} sources

- p_c capillary pressure
- \blacksquare μ_{α} viscosity
- $k_{r\alpha}$ rel. permeability
- K abs. permeability
- ρ_{α} density

Three-phase flow equations

$$\begin{split} \frac{\partial}{\partial t} \left(\frac{\phi s_{\alpha}}{b_{\alpha}} \right) + \operatorname{div} \left(\frac{1}{b_{\alpha}} u_{\alpha} \right) &= q_{\alpha}, \alpha = w, o, \\ \frac{\partial}{\partial t} \left(\frac{\phi s_{g}}{b_{g}} - \frac{r_{s} s_{o}}{b_{o}} \right) + \operatorname{div} \left(\frac{1}{b_{g}} u_{g} + \frac{r_{s}}{b_{o}} u_{o} \right) &= q_{g}, \\ u_{\alpha} &= -\frac{k_{r\alpha}}{\mu_{\alpha}} \mathbb{K} (\nabla p_{\alpha} - \rho_{\alpha} g \nabla z), \alpha = w, o, g \\ s_{w} + s_{o} + s_{g} &= 1, p_{\alpha} - p_{o} = p_{c\alpha}, \alpha = w, o, g, \end{split}$$

$$\bullet \quad \alpha = w, o, g - w_{o} = w_{o}, \alpha =$$

- \mathbf{s}_{α} saturation
- p_{α} pressure
- u_{α} Darcy's velocity
- b_{α} volume formation
- \mathbf{q}_{α} sources

- μ_{α} viscosity
- $k_{r\alpha}$ rel. permeability
- K abs. permeability
- ρ_{α} density

Models with saturation overshoot (1)

$$\phi \frac{\partial s_{w}}{\partial t} + \Xi(S) \frac{\partial}{\partial z} \left[f_{im}(s_{w}) - D_{im}(s_{w}) \frac{\partial S}{\partial z} \right]$$

$$[1 - \Xi(s_{w})] \frac{\partial}{\partial z} \left[f_{dr}(s_{w}) - D_{dr}(s_{w}) \frac{\partial S}{\partial z} \right] = 0,$$

$$\Xi(s_{w}) = \lim_{\varepsilon \to 0} \Theta \left[\frac{\partial s_{w}}{\partial t} (z, t - \varepsilon) \right],$$

$$\Theta(y) = \begin{cases} 1, z/t > c^{*} \\ 0, z/t \le c^{*} \end{cases}$$

[Hilfer R., Steinle R. Saturation overshoot and hysteresis for two-phase flow in porous media // Eur. Phys. J. Special Topics. 2014. Vol. 223. Pp. 2323–2338.]

Models with saturation overshoot (2). Dynamic capillary pressure model.

$$F(s_w, p_c, \frac{\partial s_w}{\partial t}, \frac{\partial p_w}{\partial t}) = 0$$

For example

$$p_c = \psi(s_w) + \tau(s_w, p_w) \frac{\partial s_w}{\partial t}$$

[Van Duijn C. G., Cao X., Pop I. S. Two-phase flow in porous media: dynamic capillarity and heterogeneous media // Transport Porous Med. 2016. Vol. 114, no. 2. Pp. 283–308.]

Differential maximum principles: summary

	two-phase			three-phase		
	p_{α}	$p_o + \widetilde{p}$	s_{α}	p_{α}	$p_o + \widetilde{p}$	
$p_{cwo}\equiv 0, p_{cgo}\equiv 0$						
$\exists \widetilde{p} : \nabla \widetilde{p} = f_w \nabla p_{cwo} + f_g \nabla p_{cgo}$						
$\mu_lpha \equiv {\it const}$						
$b_lpha \equiv 1$						
$\phi \equiv {\it const}$						

- required by a theorem
- not required by a theorem

Finite volume schemes

- Nonlinear multipoint satisfies the discrete maximum principle for diffusion equation
- Nonlinear two-point violates the dicrete maximum principle for diffusion equations
- Linear two-point satisfies the dicrete maximum principle but do not approximate diffusion equation

[2] Lipnikov K., Svyatskiy D., Vassilevski Y. Minimal stencil finite volume scheme with the discrete maximum principle // Russ. J. Numer. Anal. Math. Modelling. – 2012. T. 27, \mathbb{N}^2 4. – Pp. 369–385.

Differential and discrete maximum principles for pressure in two-phase flow model

	Differential		Discrete		ete	
$p_c \equiv 0$						
$\mu_{lpha} \equiv {\it const}$						
$b_lpha\equiv 1$						
$\phi \equiv \mathit{const}$						

- required by a theorem
- not required by a theorem

Numerical experiment #1

- 1 zero capillary pressure $p_c \equiv 0$
- 2 constant viscosities $\mu_{\alpha} = const$
- $oxed{3}$ incompressibility $b_{lpha}=1$
- **4** constant porosity $\phi \equiv const$
- 5 Absolute permeability $\mathbb{K} = R_z(-\theta_z) diag(k_1, k_2, k_3) R_z(\theta_z)$, where
 - $k_1 = k_3 = 100, k_2 = 0.1,$
 - $\theta_z = 112.5^\circ$,
 - $R_z(\alpha)$ is the matrix of rotation in *xy*-plane.

Numerical pressures

Puc.: Pressure after 2000 model days for different flux discretization schemes.

Numerical experiment #2

- 1 zero capillary pressure $p_c \equiv 0$
- 2 constant viscosities $\mu_{\alpha} = const$
- $oxed{3}$ incompressibility $b_{lpha}=1$
- **4** constant porosity $\phi \equiv const$
- 5 Absolute permeability $\mathbb{K} = R_z(-\theta_z) diag(k_1, k_2, k_3) R_z(\theta_z)$, where
 - $k_1 = k_3 = 100, k_2 = 0.1,$
 - $\theta_z = 112.5^\circ$,
 - $R_z(\alpha)$ is the matrix of rotation in *xy*-plane.

Numerical pressures

Puc.: Pressure after 100 model days for different flux discretization schemes.

Numerical saturations

Puc.: Water saturation after 100 model days for different flux discretization schemes. Initial saturation is s(0) = 0.15.

Experimental discrete maximum principle for nonconstant parameters

	Differential			Discrete		
$p_c \equiv 0$						
$\mu_{lpha} \equiv {\it const}$						
$b_lpha \equiv 1$						
$\phi \equiv \mathit{const}$						

- required by a theorem
- not required by a theorem

Summary

- 3 differential maximum principles for two-phase flow model and 2 for three-phase flow model have been proven.
- The discrete maximum principle for numerical pressure obtained using nonlinear multipoint scheme has been proven.
- The discrete maximum principle require additional assumption on model coefficients.
- Numerical experiments support possible existence of the discrete maximum principle for fewer assumptions.

Two-phase flow model equations (no gravity)

$$\begin{cases} \frac{\partial}{\partial t} \left(\frac{\phi \rho_{\alpha} s_{\alpha}}{b_{\alpha}} \right) - div \left(\frac{\rho_{\alpha}}{b_{\alpha}} \frac{k_{r_{\alpha}}}{\mu_{\alpha}} \mathbb{K} \nabla p_{\alpha} \right) = q_{\alpha} \text{ in } \Omega \times (0, T) \\ p_{o} - p_{w} = p_{c}(s_{w}) \\ s_{o} + s_{w} = 1 \end{cases}$$

Differential maximum principle. Assumptions(1).

- zero capillary pressure $p_c \equiv 0$
- lacksquare strictly elliptic absolute permeability $\mathbb K$
- smooth enough $b_{\alpha}, \lambda_{\alpha}, \alpha = w, o$
- no incompressibility assumption: $b_{\alpha} \not\equiv const$
- no constant porosity assumption: $\phi \not\equiv const$
- no constant viscosity assumption: $\mu_{\alpha} \not\equiv const$

Differential maximum principle(1). Pressure.

•
$$b_o q_o + b_w q_w \leq 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\sup_{\Omega\times[0,T]}p_{\alpha}\leq\sup_{\partial\Omega\times[0,T)}p_{\alpha}$$

•
$$b_o q_o + b_w q_w \ge 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\inf_{\Omega\times[0,T]}p_{\alpha}\geq\inf_{\partial\Omega\times[0,T)}p_{\alpha},\alpha=w,o$$

Differential maximum principle. Assumptions(2)

- fractional flows $f_{\alpha} = \frac{\lambda_{\alpha}}{\lambda_{w} + \lambda_{o}}$, $\alpha = w, o$ depend solely on s_{w}
 - (implies constant viscosities, since $\lambda_{\alpha} = \frac{k_{r\alpha}}{\mu_{\alpha}}$ and $\mu_{\alpha} = \mu_{\alpha}(p_{\alpha})$)
- lacksquare there exists function \widetilde{p} such that $abla \widetilde{p} = f_{\sf w}
 abla p_c[1]$,
- $lue{}$ strictly elliptic absolute permeability $\mathbb K$
- smooth enough $b_{\alpha}, \lambda_{\alpha}, \alpha = w, o$
- no incompressibility assumption: $b_{\alpha} \not\equiv const$
- no constant porosity assumption: $\phi \not\equiv const$
- [1] Chen Z. Formulations and Numerical Methods of the Black Oil Model in Porous Media. SIAM J. Numer. Anal., 2000; 38(2):489–514.

Differential maximum principle(2). Pressure.

■
$$b_o q_o + b_w q_w \le 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\sup_{\Omega \times [0, T]} p \le \sup_{\partial \Omega \times [0, T)} p$$

•
$$b_o q_o + b_w q_w \ge 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\inf_{\Omega\times[0,T]}p\geq\inf_{\partial\Omega\times[0,T)}p$$

where
$$p = p_o - \widetilde{p}$$
.

Differential maximum principle. Assumptions(3)

- constant viscosities $\mu_{\alpha} = const$, $\alpha = w$, o
- incompressibility: $b_{\alpha} = 1, \alpha = w, o$
- constant porosity: $\phi = const$,
- relative permeabilities $k_{r\alpha}$ are monotonic functions of s_w
- $lackbox{\textbf{p}}_c$ is monotonically decreasing function of s_w
- $lue{}$ strictly elliptic absolute permeability $\mathbb K$
- smooth enough $k_{r\alpha}$, $\alpha = w$, o
- no constant capillary pressure assumption: $p_c \not\equiv 0$,

Differential maximum principle(3). Saturations.

$$q_w \leq 0, q_o \geq 0 \text{ in } \Omega \times [0, T] \Rightarrow$$

$$\sup_{\Omega \times [0,T]} s_w \leq \sup_{\partial \Omega \times [0,T)} s_w, \qquad \inf_{\Omega \times [0,t]} s_o \geq \inf_{\partial \Omega \times [0,T)} s_o$$

$$q_w \ge 0, q_o \le 0 \text{ in } \Omega \times [0, T] \Rightarrow$$

$$\sup_{\Omega \times [0,T]} s_o \leq \sup_{\partial \Omega \times [0,T)} s_o, \qquad \inf_{\Omega \times [0,t]} s_w \geq \inf_{\partial \Omega \times [0,T)} s_w$$

Three-phase flow (no gravity)

$$\begin{cases} \frac{\partial}{\partial t} \left(\frac{\phi \rho_{w} s_{w}}{b_{w}} \right) - div \left(\frac{\rho_{w}}{b_{w}} \frac{k_{rw}}{\mu_{w}} \mathbb{K} \nabla p_{w} \right) = q_{w} \\ \frac{\partial}{\partial t} \left(\frac{\phi \rho_{o} s_{o}}{b_{o}} \right) - div \left(\frac{\rho_{o}}{b_{o}} \frac{k_{ro}}{\mu_{o}} \mathbb{K} \nabla p_{o} \right) = q_{o} \\ \frac{\partial}{\partial t} \left(\frac{\phi \rho_{g} s_{g}}{b_{g}} + \frac{r_{so} \rho_{o} s_{o}}{b_{o}} \right) - div \left(\frac{\rho_{g}}{b_{g}} \frac{k_{rg}}{\mu_{g}} \mathbb{K} \nabla p_{g} + \right. \\ \left. + \frac{r_{so} \rho_{o}}{b_{o}} \frac{k_{ro}}{\mu_{o}} \mathbb{K} \nabla p_{o} \right) = q_{g} \\ s_{o} + s_{w} + s_{g} = 1 \\ p_{\alpha} - p_{o} = p_{c\alpha o}, \alpha = g, w \end{cases}$$

Differential maximum principle. Assumptions(1)

- $p_{c\alpha o} \equiv 0, \alpha = w, g$
- lacksquare strictly elliptic absolute permeability $\mathbb K$
- smooth enough b_{α} , λ_{α} , $\alpha = w$, o
- no incompressibility assumption: $b_{\alpha} \not\equiv const$
- no constant porosity assumption: $\phi \not\equiv const$
- no constant viscosity assumption: $\mu_{\alpha} \not\equiv const$

Differential maximum principle(1). Pressure

■
$$b_o q_o + b_w q_w + b_g q_g - b_g r_{so} q_o \le 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\sup_{\Omega \times [0, T]} p_\alpha \le \sup_{\partial \Omega \times [0, T)} p_\alpha$$

■
$$b_o q_o + b_w q_w + b_g q_g - b_g r_{so} q_o \ge 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\inf_{\Omega \times [0, T]} p_\alpha \ge \inf_{\partial \Omega \times [0, T)} p_\alpha, \alpha = w, o, g$$

Differential maximum principle. Assumptions(2)

- fractional flows $f_{\alpha} = \frac{\lambda_{\alpha}}{\lambda_{w} + \lambda_{o} + \lambda_{g}}$, $\alpha = w, g, o$ depend solely on s_{w} and s_{o}
 - (implies constant viscosities, since $\lambda_{\alpha}=\frac{k_{r\alpha}}{\mu_{\alpha}}$ and $\mu_{\alpha}=\mu_{\alpha}(p_{\alpha})$)
- lacktriangle there exits such function \widetilde{p} that $abla\widetilde{p}=f_w
 abla p_{cwo}+f_g
 abla p_{cgo}[1]$
- $lue{}$ strictly elliptic absolute permeability $\mathbb K$
- smooth enough b_{α} , λ_{α} , $\alpha = w$, o
- no incompressibility assumption: $b_{\alpha} \not\equiv const$
- lacktriangleright no constant porosity assumption: $\phi \not\equiv const$
- [1] Chen Z. Formulations and Numerical Methods of the Black Oil Model in Porous Media. SIAM J. Numer. Anal., 2000; 38(2):489–514.

Differential maximum principle(2). Pressure.

■
$$b_o q_o + b_w q_w + b_g q_g - b_g r_{so} q_o \le 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\sup_{\Omega \times [0, T]} p \le \sup_{\partial \Omega \times [0, T)} p$$

■
$$b_o q_o + b_w q_w + b_g q_g - b_g r_{so} q_o \ge 0$$
 in $\Omega \times [0, T] \Rightarrow$

$$\inf_{\Omega \times [0, T]} p \ge \inf_{\partial \Omega \times [0, T)} p$$

where
$$p = p_o + \widetilde{p}$$
.

Discrete maximum principle. Assumptions.

- **v** zero capillary pressure: $p_c \equiv 0$
- constant porosity: $\phi \equiv const$
- incompressibility: $b_{\alpha} = 1, \alpha = w, o$
- K is strictly elliptic
- lacksquare no constant viscosities assumption: $\mu_{lpha}\not\equiv 0$

Discrete maximum principle. Pressure.

■ Let \mathcal{T}_{inj} be a set of cells where $q_w + q_o \ge 0$ and \mathcal{T}_B be a set of boundary faces. Then

$$\max_{T \in \mathcal{T} \setminus (\mathcal{T}_{inj} \cup \mathcal{T}_B)} p_T \leq p_{max} = \max_{\mathcal{T}_{inj} \cup \mathcal{T}_B} p_T.$$

■ Let \mathcal{T}_{prod} be the set of cells where $q_w + q_o \leq 0$ and \mathcal{T}_B be a set of boundary faces. Then

$$\min_{T \in \mathcal{T} \setminus (\mathcal{T}_{prod} \cup \mathcal{T}_B)} p_T \leq p_{min} = \min_{\mathcal{T}_{prod} \cup \mathcal{T}_B} p_T$$

