Numerical simulation of incompressible flows in time-dependent domains

Alexander Lozovskiy¹ Yuri Vassilevski^{1,2} Maxim Olshanskii³ Victoria Salamatova^{1,2} Alexander Danilov^{1,2}

¹Institute of Numerical Mathematics RAS ²Moscow Institute of Physics and Technology ³University of Houston

Germany-Russia-USA workshop on Numerical Methods and Mathematical Modelling in Geophysical and Biomedical sciences

June 13, 2017, Moscow

Contents

Numerical tests in 2D:

- FSI3: elastic beam in fluid
- Blood vessel with aneurysm

Numerical tests in 3D:

- Silicone filament in glycerol
- · Hemodynamics in the left ventricle of human heart

Numerical scheme

$$\begin{split} &\int_{\Omega_s} \rho_s \frac{\mathbf{v}^{k+1} - \mathbf{v}^k}{\Delta t} \psi \, \mathrm{d}\mathbf{x} + \int_{\Omega_s} \mathbf{F}(\mathbf{u}^k) \mathbf{S}(\mathbf{u}^{k+1}, \mathbf{u}^k) : \nabla \psi \, \mathrm{d}\mathbf{x} \\ &+ \int_{\Omega_f} \rho_f J^{k-1} \frac{\mathbf{v}^{k+1} - \mathbf{v}^k}{\Delta t} \psi \, \mathrm{d}\mathbf{x} + \int_{\Omega_f} \rho_f J^k (\nabla \mathbf{v}^{k+1}) \mathbf{F}^{-1}(\mathbf{u}^k) \Big(\mathbf{v}^k - \frac{\mathbf{u}^k - \mathbf{u}^{k-1}}{\Delta t} \Big) \psi \, \mathrm{d}\mathbf{x} \\ &+ \int_{\Omega_f} 2\mu_f J^k \{ (\nabla \mathbf{v}^{k+1}) \mathbf{F}^{-1}(\mathbf{u}^k) \}_s : \{ (\nabla \psi) \mathbf{F}^{-1}(\mathbf{u}^k) \}_s \, \mathrm{d}\mathbf{x} - \int_{\Omega_f} \rho_f^{k+1} J^k \mathbf{F}^{-T}(\mathbf{u}^k) : \nabla \psi \, \mathrm{d}\mathbf{x} \\ &+ \int_{\Omega_f} \frac{\rho_f}{2} \frac{J^k - J^{k-1}}{\Delta t} \mathbf{v}^{k+1} \psi + \int_{\Omega_f} \frac{\rho_f}{2} \mathrm{div} \left(J^k \mathbf{F}^{-1}(\mathbf{u}^k) \left(\mathbf{v}^k - \frac{\mathbf{u}^k - \mathbf{u}^{k-1}}{\Delta t} \right) \right) \mathbf{v}^{k+1} \psi \, \mathrm{d}\mathbf{x} \\ &+ \int_{\Omega_f} \mathbf{H}(\mathbf{u}^{k+1}, \mathbf{u}^k) : \nabla \phi \, \mathrm{d}\mathbf{x} = 0 \quad \text{for all } \psi \in \mathbb{V}_h \text{ and all } \phi \in \mathbb{V}_h^0. \end{split}$$

 $\int_{\Omega_s} \frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} \phi \, \mathrm{d}\mathbf{x} - \int_{\Omega_s} \mathbf{v}^{k+1} \phi \, \mathrm{d}\mathbf{x} = 0 \quad \text{for all } \phi \in \mathbb{V}_h^0 \quad \text{(kinematics equation in solid),}$

 $\int_{\Omega_f} J^k \nabla \mathbf{v}^{k+1} : \mathbf{F}^{-T}(\mathbf{u}^k) q \, \mathrm{d} \mathbf{x} = 0 \quad \text{for all } q \in \mathbb{Q}_h \quad (\text{incompressibility equation in fluid}).$

Numerical scheme

$$\begin{split} &\int_{\Omega_s} \rho_s \frac{\mathbf{v}^{k+1} - \mathbf{v}^k}{\Delta t} \psi \, \mathrm{d}\mathbf{x} + \int_{\Omega_s} \mathbf{F}(\mathbf{u}^k) \mathbf{S}(\mathbf{u}^{k+1}, \mathbf{u}^k) : \nabla \psi \, \mathrm{d}\mathbf{x} \\ &+ \int_{\Omega_f} \rho_f J^{k-1} \frac{\mathbf{v}^{k+1} - \mathbf{v}^k}{\Delta t} \psi \, \mathrm{d}\mathbf{x} + \int_{\Omega_f} \rho_f J^k (\nabla \mathbf{v}^{k+1}) \mathbf{F}^{-1}(\mathbf{u}^k) \Big(\mathbf{v}^k - \frac{\mathbf{u}^k - \mathbf{u}^{k-1}}{\Delta t} \Big) \psi \, \mathrm{d}\mathbf{x} \\ &+ \int_{\Omega_f} 2\mu_f J^k \{ (\nabla \mathbf{v}^{k+1}) \mathbf{F}^{-1}(\mathbf{u}^k) \}_s : \{ (\nabla \psi) \mathbf{F}^{-1}(\mathbf{u}^k) \}_s \, \mathrm{d}\mathbf{x} - \int_{\Omega_f} \rho_f^{k+1} J^k \mathbf{F}^{-T}(\mathbf{u}^k) : \nabla \psi \, \mathrm{d}\mathbf{x} \\ &+ \int_{\Omega_f} \frac{\rho_f}{2} \frac{J^k - J^{k-1}}{\Delta t} \mathbf{v}^{k+1} \psi + \int_{\Omega_f} \frac{\rho_f}{2} \mathrm{div} \left(J^k \mathbf{F}^{-1}(\mathbf{u}^k) \left(\mathbf{v}^k - \frac{\mathbf{u}^k - \mathbf{u}^{k-1}}{\Delta t} \right) \right) \mathbf{v}^{k+1} \psi \, \mathrm{d}\mathbf{x} \\ &+ \int_{\Omega_f} \mathbf{H}(\mathbf{u}^{k+1}, \mathbf{u}^k) : \nabla \phi \, \mathrm{d}\mathbf{x} = 0 \quad \text{for all } \psi \in \mathbb{V}_h \text{ and all } \phi \in \mathbb{V}_h^0. \end{split}$$

 $\int_{\Omega_s} \frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} \phi \, \mathrm{d}\mathbf{x} - \int_{\Omega_s} \mathbf{v}^{k+1} \phi \, \mathrm{d}\mathbf{x} = 0 \quad \text{for all } \phi \in \mathbb{V}_h^0 \quad \text{(kinematics equation in solid),}$ $\int_{\Omega_f} J^k \nabla \mathbf{v}^{k+1} : \mathbf{F}^{-T}(\mathbf{u}^k) q \, \mathrm{d}\mathbf{x} = 0 \quad \text{for all } q \in \mathbb{Q}_h \quad \text{(incompressibility equation in fluid).}$

Follows from $\frac{\partial J}{\partial t} + \operatorname{div} \left(J \mathbf{F}^{-1} (\mathbf{v} - \frac{\partial \mathbf{u}}{\partial t}) \right) = 0$ in Ω_f .

Numerical scheme

In practice

Examples of displacement extension:

• Linear elasticity:

$$-\int_{\Omega_f} (2\mu_m \{\nabla \mathbf{u}^{k+1}\}_s : \nabla \phi + \lambda_m \mathrm{div} \, \mathbf{u}^{k+1} \mathrm{div} \, \phi) \, \mathrm{d} \mathbf{x}$$

• Harmonic:

$$-\int_{\Omega_f}
abla \mathbf{u}^{k+1}
abla \phi \, \mathrm{d} \mathbf{x}$$

Heat:

$$\int_{\Omega_f} \frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} \phi \, \mathrm{d} \mathbf{x} - \alpha \int_{\Omega_f} \nabla \mathbf{u}^{k+1} \nabla \phi \, \mathrm{d} \mathbf{x}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: *Fluid-structure interaction*, Springer Berlin Heidelberg, 371–385, 2006.

- fluid: 2D transient Navier-Stokes, $\rho_f = 1000$, $\mu_f = 1$
- stick: SVK constitutive relation, $\rho_s = 1000$, $\lambda_s = 4\mu_s = 8 \cdot 10^6$

- outflow: "do-nothing"
- rigid walls: no-slip condition

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: *Fluid-structure interaction*, Springer Berlin Heidelberg, 371–385, 2006.

• inflow: parabolic profile

$$v_x(0, y, t) = \frac{12}{0.1681}v(t)y(H-y), \quad y \in [0, H],$$

where

$$v(t) = \begin{cases} \frac{1}{2} \left(1 - \cos\left(\frac{\pi t}{2}\right) \right) & \text{for } t < 2, \\ 1 & \text{for } t \ge 2. \end{cases}$$

- Linear elasticity extension operator for displacement in Ω_f
- Taylor-Hood element (P₂ + P₁) for fluid and P₂ for solid.
- Grad-Div stabilization for fluid.
- Simulations were run using BDF with time step $\Delta t = 10^{-3}$ until T = 8.

UMFPACK solver for linear systems

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: *Fluid-structure interaction*, Springer Berlin Heidelberg, 371–385, 2006.

Fortran open source software Ani2D, http://sf.net/p/ani2d/:

	$\#$ of cells in Ω_f	$\#$ of cells in Ω_s	# of DOFs
Mesh 1	8652	162	76557
Mesh 2	17540	334	154242
Mesh 3	35545	658	310997

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: *Fluid-structure interaction*, Springer Berlin Heidelberg, 371–385, 2006.

Table: computed statistics for FSI3 test for the time interval [7,8]

Mesh/method	$u_x \cdot 10^3$	$u_y \cdot 10^3$	F _D	F_L
1	-2.8 ± 2.6	1.5 ± 34.3	432.9 ± 22.3	0.98 ± 152.1
2	-3.0 ± 2.8	1.4 ± 35.9	453.8 ± 26.8	2.6 ± 154.0
3	-3.0 ± 2.9	1.4 ± 36.1	$\textbf{458.0} \pm \textbf{27.6}$	$\textbf{3.0} \pm \textbf{154.5}$
Turek, S. et al	[-3.04, -2.84]	[1.28, 1.55]	[452.4, 474.9]	[1.81, 3.86]
	\pm [2.67, 2.87]	\pm [34.61, 46.63]	\pm [26.19, 36.63]	\pm [152.7, 165.9]
Liu, J.	-2.91 ± 2.74	1.46 ± 35.2	460.3 ± 27.67	2.41 ± 157

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: *Fluid-structure interaction*, Springer Berlin Heidelberg, 371–385, 2006.

Displacement extension in fluid domain:

- Harmonic → mesh tangling
- Linear elasticity with $\mu_m = \mu_s$ and $\lambda_m = \lambda_s \rightarrow$ mesh tangling
- Linear elasticity with $\mu_m=20\mu_s$ and $\lambda_m=20\lambda_s$ for adjacent to the beam elements \to OK

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. In: *Fluid Structure Interaction II*, Springer Berlin Heidelberg, 193–220, 2010.

- Showing reliability of the semi-implicit scheme for hemodynamic applications
- Investigating sensitivity to compressibility of the vessel material: measuring wall shear stress(WSS) since it serves as a good indicator for the risk of aneurysm rupture

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. In: *Fluid Structure Interaction II*, Springer Berlin Heidelberg, 193–220, 2010.

Material properties:

 $\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \rho_{s} & \mu_{s} & \rho_{f} & \mu_{f} \\ \hline 1.12 \cdot 10^{3} \ \text{kg/m}^{3} & 270000 \ \text{Pa} & 1.035 \cdot 10^{3} \ \text{kg/m}^{3} & 3.4983 \cdot 10^{-3} \ \text{Pa} \cdot \text{s} \\ \hline \end{array}$

• Weakly compressible neo-Hookean model:

$$\boldsymbol{\sigma}_{s} = \frac{\mu_{s}}{J^{2}} \left(\mathbf{F} \mathbf{F}^{T} - \frac{1}{2} \mathrm{tr} \ (\mathbf{F} \mathbf{F}^{T}) \mathbf{I} \right) + \left(\lambda_{s} + \frac{2\mu_{s}}{3} \right) (J-1) \mathbf{I}, \quad \lambda_{s} \to \infty$$

Extrapolation is used in the model to retain semi-implicitness

• Pulsatile parabolic inflow profile:

$$v_1(0, y, t) = -50(8 - y)(y - 6)(1 + 0.75\sin(2\pi t)), \quad 6 \le y \le 8.$$

- λ_s takes on values 10⁴, 10⁶, 10⁸ kPa, i.e. Poisson's ratio $\nu \rightarrow 0.5$.
- Time step $\Delta t = 10^{-3}$ s until T = 3 s.
- Elasticity based displacement extension with μ_m = μ_s, λ_m = 4λ_s.

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. In: *Fluid Structure Interaction II*, Springer Berlin Heidelberg, 193–220, 2010.

Global pressure made of p_s and p_f is **not** continuous along the interface Γ_{fs} in general!

	[kinematics	kinematics:	0	1	
	u	v	10		
One variable for pressure :	dynamics:	dynamics:			
	u	v			
	0	incompressibility	/ 0		
Γ	kinematics:	kinematics:	0	0	1
	u	v	U	U	
- · · · ·	dynamics:	dynamics:		-	
I wo variables for pressure :	u	v	ρ_f		p_s
	0	incompressibility	0	0	
	0	incompressibility	0	0	

・ロト・(中下・(中下・(中下・))

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. In: *Fluid Structure Interaction II*, Springer Berlin Heidelberg, 193–220, 2010.

WSS for weakly incompressible and fully incompressible cases, with unified and disconntected pressure:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

S. Turek et al. Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. In: *Fluid Structure Interaction II*, Springer Berlin Heidelberg, 193–220, 2010.

Oscillations for unified pressure decrease with mesh refinement:

Best choices (area of wall, WSS): Neo-Hookean compressible with moderate λ_s and incompressible with disconnected pressures. The first one has fewer DOFs.

Benchmark challenge for CMBE 2015, Paris

Image from A. Hessenthaler et al. Experiment for validation of fluid-structure interaction models and algorithms. *Int. J. for Numer. Meth. Biomed. Engng.*, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Meshed volume: original and extended domains.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

SVK material

M. Landajuela et al. Coupling schemes for the FSI forward prediction challenge: comparative study and validation. In: *Int. J. for Numer. Meth. in Biomed. Engng.*, 2016.

- $\rho_s = 1.063 \cdot 10^{-3} \text{ g mm}^{-3}$, $\lambda_s = 140.12 \text{ kg s}^{-2}\text{mm}^{-1}$, $\mu_s = 82.2 \text{ kg s}^{-2}\text{mm}^{-1}$, gravity **not** neglected!
- Two inflow regimes:

	Phase I	Phase II
velocity	stationary	pulsatile
ρ_{f}	$1.1633 \cdot 10^{-3} \mathrm{~g~mm^3}$	$1.164\cdot 10^{-3}~{ m g~mm^{-3}}$
μ_f	$12.5 \cdot 10^{-3} \text{ g mm}^{-1} \text{s}^{-1}$	$13.37 \cdot 10^{-3} \text{ g mm}^{-1} \text{s}^{-1}$

• Inflow velocities for one cycle of frequency 1/6 Hz for phase II:

3D: silicone filament in glycerol SVK material

M. Landajuela et al. Coupling schemes for the FSI forward prediction challenge: comparative study and validation. In: *Int. J. for Numer. Meth. in Biomed. Engng.*, 2016.

Fortran open source software Ani3D, http://sf.net/p/ani3d/

- Simulation was run with $\Delta t = 10^{-2}$ s.
- The filament is lighter than the fluid and deflects upward
- Linear elasticity model is used for the **update** of the displacement extension in Ω_f ! The PDE model is non-linear due to mapping to the reference domain. The Lame parameters are heterogeneous, i.e. element-volume dependent:

$$\lambda_m = 16\mu_m = 16\frac{\mu_s}{v_e^{1.2}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Multi-frontal massively parallel sparse direct solver (MUMPS) to solve the linear system at every time step.

SVK material

M. Landajuela et al. Coupling schemes for the FSI forward prediction challenge: comparative study and validation. In: *Int. J. for Numer. Meth. in Biomed. Engng.*, 2016.

	$\#$ of cells in Ω_f	$\#$ of cells in Ω_s	# of DOFs
Mesh 1	28712	733	259914
Mesh 2	51496	733	459984

Deflection due to buoyancy force:

3D: silicone filament in glycerol SVK material

M. Landajuela et al. Coupling schemes for the FSI forward prediction challenge: comparative study and validation. In: *Int. J. for Numer. Meth. in Biomed. Engng.*, 2016.

Phase I:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3D: silicone filament in glycerol SVK material

M. Landajuela et al. Coupling schemes for the FSI forward prediction challenge: comparative study and validation. In: *Int. J. for Numer. Meth. in Biomed. Engng.*, 2016.

Phase II:

The law of motion for the ventricle walls is known thanks to ceCT scans \rightarrow 100 mesh files with time gap 0.0127 s \rightarrow **u** given as input \rightarrow FSI reduced to NSE in a moving domain.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2 aortic valve (outflow).
- 5 mitral valve (inflow).

- Quasi-uniform mesh: 14033 vertices, 69257 elements, 88150 edges.
- Boundary conditions: Dirichlet $\mathbf{v} = \frac{\partial \mathbf{u}}{\partial t}$ except:
 - Do-nothing on aortal valve during systole
 - Do-nothing on mitral valve during diastole
- Time step 0.0127 s is too large! \implies refined to $\Delta t = 0.0127/20$ s \implies Cubic-splined **u**.
- Blood parameters: $\rho_f = 10^3 \text{ kg/m}^3$, $\mu_f = 4 \cdot 10^{-3} \text{ Pa} \cdot \text{s}$.

DNS resulted in convective instability during sharp deformation phases. Physics-changing workaround: 10 x viscosity and milder wall motion.

Alternative using LES: simple Smagorinsky-alike filtered model. Scheme(in the current configuration):

$$\mathbf{z}^{k-1} := \mathbf{w}^{k-1} - \frac{\mathbf{u}^k - \mathbf{u}^{k-1}}{\Delta t},$$
$$\int_{\Omega(t^{k-1})} \frac{\mathbf{w}^k - \mathbf{w}^{k-1}}{\Delta t} \cdot \boldsymbol{\psi} \, \mathrm{d}\mathbf{x} + \int_{\Omega(t^{k-1})} \nabla \mathbf{w}^k \mathbf{z}^{k-1} \cdot \boldsymbol{\psi} \, \mathrm{d}\mathbf{x}$$
$$- \int_{\Omega(t^{k-1})} \mathbf{s}^k \mathrm{div} \, \boldsymbol{\psi} \, \mathrm{d}\mathbf{x} + \int_{\Omega(t^{k-1})} q \mathrm{div} \, \mathbf{w}^k \, \mathrm{d}\mathbf{x} + \int_{\Omega(t^{k-1})} 2\nu \{\nabla \mathbf{w}^k\}_s : \nabla \boldsymbol{\psi} \, \mathrm{d}\mathbf{x} +$$
$$\sum_e \int_{\Omega_e(t^{k-1})} 2\nu_T^{k-1} \{\nabla \mathbf{w}^k\}_s : \nabla \boldsymbol{\psi} \, \mathrm{d}\mathbf{x} = 0,$$

where

$$u_T^{k-1} = 0.04 h_e^2 \sqrt{2\{\nabla \mathbf{z}^{k-1}\}_s : \nabla \mathbf{z}^{k-1}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Worked for the entire cardiac cycle with the original viscosity and mesh!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thanks for your attention!