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Problem formulation

Let  be a polygonal (in R?) or polyhedral (in R?) domain. In €
we consider the diffusion problem in the mixed formulation:

D7 'u 4+ gradp = 0in Q
—divu —¢cp = —finQ
u-n = 0on 0N
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Problem formulation

The equivalent weak (variational) formulation of (1) is as follows:
Find u € Hy;,(2), u-n = 0o0n 99, p € L2(Q), such that

Jo(D7tu) -vdz +  [(Vv)-pdz = 0,

—Jo(Vu) -qdz —  [c-p-qdz = — [, f-qdx

for all ve Hy;, (), v-n = 0on 0Q, g€ La(Q)
Here D = D(x) is a symmetric positive definite matrix and
¢ = ¢(x) is a nonnegative function for any x € .
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Differential Macro-Hybrid Problem

Let 2 be covered by polygonal/polyhedral conforming mesh Qg
with macro-cells £, Fs, ..., Ex, N > 1. The corresponding
differential macro-hybrid mixed formulation is as follows: Find the
vector-functions ug, functions ps and A4, s <t, s,t € 1, N, such

that
D;lug + gradps = 0 in Es,
—div ug, — C Ps = —f in B,
st = Ds = a.eonl'y;,
us-ng + u-ng = 0 aeonl'y,,
us;-ng = 0 aeondE;NIN,

s<t, s, t=1,N,

where OF is the boundary of E, I's; = 0Fs N OE; and nj, is the
outward unit normal to 0E, s =1, N.
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Prismatic Cluster as a Macro-Cell
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Polyhedral Mesh Cells

Yuri Kuznetsov Nonconforming mixed FEM on polyhedral meshes. 7/51



Degenerated Macro-Cell
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Non-Matching Meshes on Faults

Left subdomain Right subdomain
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Example of a Distorted Hexahedral Mesh Cell on a Fault

Surface: Non-matching, or Nonconforming Polyhedral
Meshes

Pl Wy
/
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[llustration

B Pinchout M Thin layer
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Classical mixed macro-hybrid formulation

The equivalent variational mixed macro-hybrid formulation is:
Find us € Vs, ps € Qs, Ast € Agt such that

/S(D_lus)~vsdx—/sps'(V'vs)d$

s—1
—Z/ ( nSAtsdl—i— Z/ ns)\ts dl =0,
t=1 Tt t=s+1 st

—/(Vus)~qsdx—/ c-ps-qsdwz—/ fqsdx
S S ES

V (Vs,qs) € Ve x Qs, s=1,N,
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Matching interface conditions

/ :ust(us'ns +ut'nt)dl:0
Fst

ViLst € As,t, s<t, s,t=1,N.
Here,
Ve={v:ve Hy,(Q),v-ns =0 on 90},

Qs - L2<Qs); As,t - L2(Fs,t)7
s<t, s,t=1,N.
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Saddle-point quadratic functional

Let us define the variational functional

N
J(V, q) = Z Js("& QS)a
s=1
where

1
Js(Vs,qs) = 2/ (D_lvs) vgdr — / qs - (V- vg)dz —

1
/ c-qﬁdﬂf—/qudﬂ:,
2 JE, B,

vi € Vi, gs €Qs, s=1,N.
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Another variational problem

It is well known that the above variational problem is equivalent to
another variational problem: Find u € V, p € @, such that:

J(u,p) = inf sup J(v,p),
(®.9) = jnf sup J @)

where

V:{V:(vl,...,vN):vseVs, s=1,N,

/ ,ust(us-ns +ut'nt)dl:O, Vust EAs,ty s<t, s,t= 1,N},

Fst

Q:{qz(%m,(m)iqse@s, 3:17\7}.
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Nonmatching meshes by mortar element method

International collaboration in 1992-2000

e France: Y. Achdou, O. Pironneau (University Paris-6),
J. Periaux (Dassault Aviation)
A. Bespalov, K. Lipnikov, Yu. K.

e Germany: R. Hoppe, B, Wohlmuth (Ausburg University)
Yu. Vassilevski, Yu. lliash, Yu. K.

@ USA: M. Wheeler, I. Yotov (Rise University/UT Austin)
Yu. Vassilevski, Yu. K.
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The original ldea(2003)

1 To partition each macro-cell E; into simple shape subcells
{esi}
2 To use a discretization methods in subcells.

3 To impose matching conditions on the interfaces between
macro-cells.

4 To eliminate DOFs for normal fluxes in subcells.
5 To sub-assemble the submatrices inside macro-cells and for
the whole macro-mesh.
Restrictions in Industrial applications:

— in each macro-cell should be only one “cell-centred” DOF for
the solution function;

— on each interface should be only one DOF for the normal flux.
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Kuznetsov, Repin (KR, 2003)

Let E; j, be a conformal triangular/tetrahedral mesh in E, and

V,n C Hy;(Es) be the lowest order Raviart-Thomas (RTg) FE
space. Let

Vs,h = {V € Vs,h;
v-ng =0 a.e. on 0FE; NIN,
V -v = const a.e. in Eg,

Vp s Ng = consty a.e.on Iy, = 0B, NOE;, s # t},

s=1,N,
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Kuznetsov, Repin (KR, 2003)

Vh:{V:(vl,vQ,...,vN) :vs €V s=1,N,

Vs -ng+vi-ny =0ae onlyy s#t},

Qrn=1{7=(q1,92,--.,qn) : gs = const in E; s =1,N}.
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Kuznetsov, Repin (KR, 2003)

KR - method: Find uy € Vj, D € Qp, such that

J (up,p) = inf sup J (v,q)
vevy, 7€Qn

Remark: KR was intensively used in experimental codes at URC
ExxonMobil and at INRIA by J.Jaffre & Team.
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Algebraic system

M BT CT

u 0
B - 0 pl=|-F
C 0 0 A 0

Condensed system by eliminating u:

Aﬁ:SpPSp)\ P\ _(—F & ar
Sy ()\>_<S)\p ENVACY RN A Spr =5y =0

Remark: Matrix M is block-diagonal: one block per a macro cell.
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Example of a Mixed macro-cell

Mixed macro-cells arise in interdisciplinary problems, for instance,
high temperature gas dynamics coupled with heat diffusion.

Partitioning of E into E,;, i =1,..., is based on information
from previous time-steps and the “volume fraction” condition
(LANL).
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Drawback of the KR-method

In mixed macro-cells the condition

div ug; = const

does not work in case of strongly contrast materials.
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Another macro-hybrid FE method (Kuznetsov,

Let Ej, = {es,i};=, be a triangular/tetrahedral mesh in
Es, s=1,N. Then we define

V,p={ve V/s,h, v-n, =0, a.e. on 0F; NI,

Vs - Ng = consty a.e.on gy, s#t}, s=1,N,

Vi, ={v=_(vi,vo,...,vn) :vs €V} s =1 N,

Vs-ng+v-ng=0ae only,, s#t},

Qs,n =1{¢s : gs = const in each e € E 1},

Qn={7= (1,92, .,qn) 1 ¢s € Qs s=1,N}.
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Another macro-hybrid method (Kuznetsov, 2005)

After eliminating of the “interior” DOFs for u,j € V;; and DOFs
for ps 5, € Qs the algebraic saddle point problem can be
transformed into system

M BT CT ug (L
B —-X 0 EH == -G
C 0 0 g 0

w~ith the KR matrices B, C' and ¥ and with difFer@t mjtrices
M # M and with the new right hand side vector G # F. Here
=T _

pH - (pQ7"‘7pN)'

1 &
Ps = @ ;ps,i‘es,i‘

and uwy € R™, where m is the total number of interfaces between
macro-cells.

Remark: The method was intensively used in the production code
at Los Alamos NL.
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PWCEF discretization vs RT; method (Kuznetsov, 2007)

Drawbacks of RTq discretization inside polyhedral macro-cells:

— The matrix M in RTq discretization may be very
ill-conditioned: anisotropic tetrahedrons, anisotropic diffusion
tensor, and combination of both. In practical situations we
observed Cond M > 105, s > 1.

— In the case of many tetrahedrons in E; calculation of M
could be rather expensive.
In practical codes we replace RT( discretization by newly
developed FE method with piece-wise constant fluxes
(PWCF-method).
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Discontinuous Galerkin on quadrilateral meshes

(Kuznetsov, 2007)

Let E; and E; be quadrilaterals with the common interface
I'= Fkli

or

We partition Ey and Ej into triangles with faces ;. and -y,
respectively, as shown above.
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Discontinuous Galerkin on quadrilateral meshes

(Kuznetsov, 2007)

Let w = wr be the union of two triangles with the common
interface I'y;:

or
Let nr be the unit normal to I'y; directed from E}, into Ej, and w
be the piecewise constant vector field defined as follows:

@ w is constant in B, Nw and E; Nw

Qw-np=1onTl

@w-n=0 ondwnNIEL\T and dwNIoE; \T
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Discontinuous Galerkin on quadrilateral meshes

(Kuznetsov, 2007)

Let u*, p* be the exact solution of the original problem:

D™l + Vp* =0 inw.

Consider the exact algebraic equation

/w(D_lu*)wdx + /(Vp*)'wd:z =

w

/w(D_lu*)wdx +/ (n, -w)p*ds

ow
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Discontinuous Galerkin on quadrilateral meshes

(Kuznetsov, 2007)

It can be easily shown that

where
Pr = p ds, p p ds.
h/k| Vi ’l’ o]

Thus, we get the exact equation
/ (D'w)wdz + [T| (o} —pf) = 0.
w

Remark: The latter formula looks like the two-point discretization
of the normal flux at I'.
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Discontinuous Galerkin on quadrilateral meshes

(Kuznetsov, 2007)

Now, we define the bilinear forms

a(u, v) = /Q(Dlu)vdx and  b(p, v) = Y |Twil (p — 1) v,
k<l

where

1 1
PkZ/pdS, ’UMZ/V'"kldS.
Vel sy, \Tkz|r
kl
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Discontinuous Galerkin on quadrilateral meshes

(Kuznetsov, 2007)

We have proved that u*, p* satisfy the equations

a(u*, v) + b(p;kz,int’ v) = 0,

b(Q7 u;,int) = l(q)7

where

l(q) = —/qudfv

for any ve W, and g € Q.
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Discontinuous Galerkin on quadrilateral meshes

(Kuznetsov, 2007)

Then, the Discontinuous Galerkin method with PWC fluxes reads
of follows:

Find uy € Wy, pr € Qp, such that

a(up, v) + b(p, v) = 0,
b(q, up) = I(q)

for any v € Wy, q € Q.
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Error estimate for PWC fluxes (Kuznetsov, 2011)

Using the previously described operations, we can easily prove that

a (u* — uy, u;;,int - uh> =0, J

which is equivalent to

luf, —unlpr = a(uj —u”, uj —u)

and results in the estimate

lu* = unll o1 < 2" —ur il J

Remark: The latter estimation was extended to the above two
macro-hybrid methods with both RTy and PWCF methods inside
macro-cells.
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Error estimate for PWC fluxes (Kuznetsov, 2011)

Mesh cells in 2D

€ €

triangle quadrilaterals

A

Mesh cells in 3D

tetrahedron pyramid with a flat pyramid with a broken
polygon ABCD polygon ABCD
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Drawback of the above methods

The methods with constant normal fluxes on the interfaces
between macro-cells don’t work in two important cases:

— strongly “broken” interfaces;

— mixed macro-cells with several contrast materials on
interfaces.
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Numerical Example

Parameters

Domain: Q= (-1,1) x (0,2)
Mesh: €2, 25 x 25 cells h; = hy, = 0.8
Time Step: ot = 0.005

Subdomains: interleaving strips with k; = 107'2 and ky = 1
Problem:

Tk k-1
At At
T = 1ondQn(y=0),
T = 0ondQnN(y=2),
(KVT)-n = 1on 00N (z=-1), 00N (z=1),
7° = 0on Q.

v (KVT’“) +

Yuri Kuznetsov Nonconforming mixed FEM on polyhedral meshes. 37/51



Square mesh with mixed macro-cells
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New nonconforming method

Vs n for E are the same, s = 1, N. The new FE space is based on
the continuity of the total fluxes on the interfaces between
macro-cells:

V;, = {V: (vi,va,...,vn) :vg €Vgp, s=1,N,

/ vs-ns+/ vi-ng =0a.e onlgy, s;ét},
Fs,t Fs,t

@y, is the same.
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Accuracy of solutions
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Non-conforming meshes

In theoretical research, a mesh is said to be conforming if any two
adjacent mesh cells satisfy the condition:

o ‘vertex-to-vertex”:
o “edge-to-edge”;
o “face-to-face”.

Otherwise, the meshes are said to be non-conforming. For instance,
non-matching meshes,generally speaking, are non-conforming ones.
In practice, very often we have to use non-conforming meshes

Qn = UL, E; such that either |E; N Ey| # 0 for some s # ¢ or
Qg # Q, or both.

Yuri Kuznetsov Nonconforming mixed FEM on polyhedral meshes. 43/51



An Example of the Original Conforming Mesh
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An example of a non-conforming mesh

01 015 02 025 03 035 04 0.45 05

Figure: An example of a non-conforming mesh
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“Logically” Conforming Meshes

An example:

ts

Flux matching conditions:

/ (VUS) *Ngt dl +/ (VUt) cNyg dl = 0.
I‘lst

Fts
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Relative Errors

Table: Relative error in PWC discrete solution w;,

« = 45°, conforming mesh

PWC" %'

G Go G
4h | 6.47516 5.9941 5.98602
2h | 3.23569 | 2.02823 | 2.98601
h | 1.61761 | 0.842736 | 1.49213

Table: Relative error in PWC discrete solution w}’

« = 45°, non-conforming mesh

WC' %'

G Ga Gs
4h | 6.47512 | 5.9229 | 5.98567
2h | 3.23567 | 1.96789 | 2.98584
h | 1.6176 | 0.812716 | 1.49205
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Domain G and Mesh G}, for Mesh Step Size 4h,
(e, yo) = (—1.475, 0.05)

\ )
R ||
I i
||||| R
[N \

\
iy
it
[
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Size 2h, Non-Conforming Mesh

Mesh Cell Inside G}, for Angle o = 85° and Mesh Step

50.0138 78.5864 ' ’
? ?
o o
— —
x x
49.9988 78,5714
~3.75 11.25 54887
x107° x10°

2.5038
x 1073
Figure: Mesh cell inside G, 2 for angle o = 85° and mesh step size 2h,
non-conforming mesh
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Relative Errors (2)

, in %, for angle

Table: Relative error in PWC discrete solution w? V¢
a = 85°, conforming mesh
G Gs Gs
4h | 5.11235 | 9.58808 | 4.74141
2h | 2.54404 | 2.98806 | 2.35079
h | 1.27059 | 1.06517 | 1.17285

Table: Relative error in PWC discrete solution wj,

« = 85°, non-conforming mesh

PWC

, in %, for angle

G Ga Gs
4h | 5.11111 | 8.61626 | 4.73696
2h | 2.54334 | 2.02273 | 2.34864
h | 1.27043 | 0.905955 | 1.1724
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