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Problem formulation

Let Ω be a polygonal (in R2) or polyhedral (in R3) domain. In Ω
we consider the diffusion problem in the mixed formulation:

D−1u + grad p = 0 in Ω

−div u − cp = −f in Ω

u · n = 0 on ∂Ω

(1)
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Problem formulation

The equivalent weak (variational) formulation of (1) is as follows:
Find u ∈ Hdiv(Ω), u · n = 0 on ∂Ω, p ∈ L2(Ω), such that

∫
Ω(D−1u) · v dx +

∫
Ω(∇v) · p dx = 0,

−
∫

Ω(∇u) · q dx −
∫

Ω c · p · q dx = −
∫

Ω f · q dx

for all v ∈ Hdiv(Ω), v · n = 0 on ∂Ω, q ∈ L2(Ω)

Here D = D(x) is a symmetric positive definite matrix and
c = c(x) is a nonnegative function for any x ∈ Ω.
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Differential Macro-Hybrid Problem

Let Ω be covered by polygonal/polyhedral conforming mesh ΩH

with macro-cells E1, E2, . . . , EN , N > 1. The corresponding
differential macro-hybrid mixed formulation is as follows: Find the
vector-functions us, functions ps and λs,t, s < t, s, t ∈ 1, N , such
that

D−1
s us + grad ps = 0 in Es,

−div us − c ps = −f in Es,
λs,t ≡ ps ≡ pt a.e on Γs,t ,

us · ns + ut · nt = 0 a.e on Γs,t ,
us · ns = 0 a.e on ∂Es ∩ ∂Ω ,

s < t, s, t = 1, N,

where ∂Es is the boundary of Es, Γs,t = ∂Es ∩ ∂Et and ns is the
outward unit normal to ∂Es, s = 1, N .
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Prismatic Cluster as a Macro-Cell
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Polyhedral Mesh Cells
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Degenerated Macro-Cell
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Non-Matching Meshes on Faults

Left subdomain Right subdomain
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Example of a Distorted Hexahedral Mesh Cell on a Fault
Surface: Non-matching, or Nonconforming Polyhedral
Meshes
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Illustration

Thin layerPinch out
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Classical mixed macro-hybrid formulation

The equivalent variational mixed macro-hybrid formulation is:
Find us ∈ Vs, ps ∈ Qs, λst ∈ Λst such that

∫
Es

(D−1us) · vs dx−
∫
Es

ps · (∇ · vs) dx

−
s−1∑
t=1

∫
Γts

(vs · ns)λts dl +

N∑
t=s+1

∫
Γst

(vs · ns)λts dl = 0,

−
∫
Es

(∇us) · qs dx−
∫
Es

c · ps · qs dx = −
∫
Es

f · qs dx

∀ (vs, qs) ∈ Vs ×Qs, s = 1, N,
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Matching interface conditions

∫
Γst

µst(us · ns + ut · nt) dl = 0

∀µst ∈ Λs,t, s < t, s, t = 1, N.

Here,

Vs = {v : v ∈ Hdiv(Ωs), v · ns = 0 on ∂Ω},

Qs = L2(Ωs), Λs,t = L2(Γs,t),

s < t, s, t = 1, N.
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Saddle-point quadratic functional

Let us define the variational functional

J(v, q) =

N∑
s=1

Js(vs, qs),

where

Js(vs, qs) =
1

2

∫
Es

(D−1vs) · vs dx −
∫
Es

qs · (∇ · vs) dx −

1

2

∫
Es

c · q2
s dx−

∫
Es

fqs dx,

vs ∈ Vs, qs ∈ Qs, s = 1, N .
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Another variational problem

It is well known that the above variational problem is equivalent to
another variational problem: Find u ∈ V, p ∈ Q, such that:

J(u, p) = inf
v∈V

sup
p∈Q

J(v, p),

where

V =
{
v = (v1, . . . , vN ) : vs ∈ Vs, s = 1, N,∫

Γst

µst(us · ns + ut · nt) dl = 0, ∀µst ∈ Λs,t, s < t, s, t = 1, N
}
,

Q =
{
q = (q1, . . . , qN ) : qs ∈ Qs, s = 1, N

}
.
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Nonmatching meshes by mortar element method

International collaboration in 1992-2000

France: Y. Achdou, O. Pironneau (University Paris-6),
J. Periaux (Dassault Aviation)
A. Bespalov, K. Lipnikov, Yu. K.

Germany: R. Hoppe, B, Wohlmuth (Ausburg University)
Yu. Vassilevski, Yu. Iliash, Yu. K.

USA: M. Wheeler, I. Yotov (Rise University/UT Austin)
Yu. Vassilevski, Yu. K.
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The original Idea(2003)

1 To partition each macro-cell Es into simple shape subcells
{es,i}.

2 To use a discretization methods in subcells.

3 To impose matching conditions on the interfaces between
macro-cells.

4 To eliminate DOFs for normal fluxes in subcells.

5 To sub-assemble the submatrices inside macro-cells and for
the whole macro-mesh.

Restrictions in Industrial applications:

− in each macro-cell should be only one “cell-centred” DOF for
the solution function;

− on each interface should be only one DOF for the normal flux.
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Kuznetsov, Repin (KR, 2003)

Let Es,h be a conformal triangular/tetrahedral mesh in Es and

Ṽs,h ⊂ Hdiv(Es) be the lowest order Raviart-Thomas (RT0) FE
space. Let

Vs,h = {v ∈ Ṽs,h,

v · ns = 0 a.e. on ∂Es ∩ ∂Ω,

∇ · v ≡ const a.e. in Es,

vh,s · ns ≡ constst a.e. on Γs,t = ∂Es ∩ ∂Et, s 6= t},

s = 1, N,
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Kuznetsov, Repin (KR, 2003)

Vh =
{
v = (v1, v2, . . . , vN ) : vs ∈ Vs,h s = 1, N,

vs · ns + vt · nt = 0 a.e. on Γs,t, s 6= t} ,

Qh = {q = (q1, q2, . . . , qN ) : qs ≡ const in Es s = 1, N}.

Yuri Kuznetsov Nonconforming mixed FEM on polyhedral meshes. 19/51



Kuznetsov, Repin (KR, 2003)

KR - method: Find uh ∈ Vh, p ∈ Qh such that

J (uh, p) = inf
v∈Vh

sup
q∈Qh

J (v, q)

Remark: KR was intensively used in experimental codes at URC
ExxonMobil and at INRIA by J.Jaffre & Team.
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Algebraic system

M BT CT

B −Σ 0
C 0 0

up
λ

 =

 0

−F
0


Condensed system by eliminating u:

Ŝpλ

(
p

λ

)
≡
(
Spp Spλ
Sλp Sλλ

)(
p

λ

)
=

(
−F
0

)
, Ŝpλ = ŜTpλ > 0

Remark: Matrix M is block-diagonal: one block per a macro cell.

Yuri Kuznetsov Nonconforming mixed FEM on polyhedral meshes. 21/51



Example of a Mixed macro-cell

E
s,1

E
s,2

E
s,3

Mixed macro-cells arise in interdisciplinary problems, for instance,
high temperature gas dynamics coupled with heat diffusion.
Partitioning of Es into Es,i, i = 1, . . ., is based on information
from previous time-steps and the “volume fraction” condition
(LANL).
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Drawback of the KR-method

In mixed macro-cells the condition

div us ≡ const

does not work in case of strongly contrast materials.
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Another macro-hybrid FE method (Kuznetsov, 2005)

Let Es,h = {es,i}ns
i=1 be a triangular/tetrahedral mesh in

Es, s = 1, N . Then we define

Vs,h = {v ∈ Ṽs,h, v · ns = 0, a.e. on ∂Es ∩ ∂Ω,

vs,h · ns ≡ constst a.e. on Γs,t, s 6= t}, s = 1, N,

Vh = {v = (v1, v2, . . . , vN ) : vs ∈ Vs,h s = 1, N,

vs · ns + vt · nt = 0 a.e. on Γs,t, s 6= t},

Qs,h = {qs : qs ≡ const in each e ∈ Es,h},

Qh = {q = (q1, q2, . . . , qN ) : qs ∈ Qs,h s = 1, N}.
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Another macro-hybrid method (Kuznetsov, 2005)

After eliminating of the “interior” DOFs for us,h ∈ Vs,h and DOFs
for ps,h ∈ Qs,h the algebraic saddle point problem can be
transformed into systemM̃ BT CT

B −Σ 0
C 0 0

uHpH
λH

 =

 0

−G
0


with the KR matrices B, C and Σ and with different matrices
M̃ 6= M and with the new right hand side vector G 6= F . Here
pTH = (pq, . . . , pN ),

ps =
1

|Es|

ns∑
i=1

ps,i|es,i|

and uH ∈ Rm, where m is the total number of interfaces between
macro-cells.
Remark: The method was intensively used in the production code
at Los Alamos NL.
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PWCF discretization vs RT0 method (Kuznetsov, 2007)

Drawbacks of RT0 discretization inside polyhedral macro-cells:

− The matrix M in RT0 discretization may be very
ill-conditioned: anisotropic tetrahedrons, anisotropic diffusion
tensor, and combination of both. In practical situations we
observed CondM > 1015, s > 1.

− In the case of many tetrahedrons in Es calculation of Ms

could be rather expensive.
In practical codes we replace RT0 discretization by newly
developed FE method with piece-wise constant fluxes
(PWCF-method).
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Discontinuous Galerkin on quadrilateral meshes
(Kuznetsov, 2007)

Let Ek and El be quadrilaterals with the common interface
Γ = Γkl:

γk γl

Γkl

E
k

E
l or

γl

Γkl

E
k

E
l

γk

We partition Ek and El into triangles with faces γk and γl,
respectively, as shown above.
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Discontinuous Galerkin on quadrilateral meshes
(Kuznetsov, 2007)

Let ω ≡ ωΓ be the union of two triangles with the common
interface Γkl:

γk γl

Γkl

or

γl

Γkl

γk

Let nΓ be the unit normal to Γkl directed from Ek into El, and w
be the piecewise constant vector field defined as follows:

1 w is constant in Ek ∩ ω and El ∩ ω
2 w · nΓ = 1 on Γ

3 w · n = 0 on ∂ω ∩ ∂Ek \ Γ and ∂ω ∩ ∂El \ Γ
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Discontinuous Galerkin on quadrilateral meshes
(Kuznetsov, 2007)

Let u∗, p∗ be the exact solution of the original problem:

D−1u∗ + ∇p∗ = 0 in ω .

Consider the exact algebraic equation∫
ω

(
D−1u∗

)
wdx +

∫
ω

(∇p∗) ·w dx ≡

≡
∫
ω

(
D−1u∗

)
w dx +

∫
∂ω

(nω ·w) p∗ ds = 0 .
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Discontinuous Galerkin on quadrilateral meshes
(Kuznetsov, 2007)

It can be easily shown that∫
∂ω

(nω ·w) p∗ ds = |Γ| (p∗k − p∗l ) ,

where

p∗k =
1

|γk|

∫
γk

p∗ ds , p∗l =
1

|γl|

∫
γl

p∗ ds .

Thus, we get the exact equation∫
ω

(
D−1u∗

)
w dx + |Γ| (p∗k − p∗l ) = 0 .

Remark: The latter formula looks like the two-point discretization
of the normal flux at Γ.
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Discontinuous Galerkin on quadrilateral meshes
(Kuznetsov, 2007)

Now, we define the bilinear forms

a(u, v) =

∫
Ω

(
D−1u

)
v dx and b(p, v) =

∑
k<l

|Γkl| (pk − pl) vkl,

where

pk =
1

|γk|

∫
γk

p ds , vkl =
1

|Γkl|

∫
Γkl

v · nkl ds .
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Discontinuous Galerkin on quadrilateral meshes
(Kuznetsov, 2007)

We have proved that u∗, p∗ satisfy the equations

a(u∗, v) + b(p∗
h,int, v) = 0 ,

b(q, u∗
h,int) = l(q) ,

where

l(q) = −
∫

Ω
fq dx

for any v ∈Wh and q ∈ Qh.
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Discontinuous Galerkin on quadrilateral meshes
(Kuznetsov, 2007)

Then, the Discontinuous Galerkin method with PWC fluxes reads
of follows:

Find uh ∈Wh, ph ∈ Qh such that

a(uh, v) + b(p, v) = 0,

b(q, uh) = l(q)

for any v ∈Wh, q ∈ Qh.
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Error estimate for PWC fluxes (Kuznetsov, 2011)

Using the previously described operations, we can easily prove that

a
(
u∗ − uh, u

∗
h,int − uh

)
= 0 ,

which is equivalent to

‖u∗h − uh‖2D−1 = a (u∗h − u∗, u∗h − uh)

and results in the estimate

‖u∗ − uh‖D−1 ≤ 2‖u∗ − u∗
h,int‖D−1 .

Remark: The latter estimation was extended to the above two
macro-hybrid methods with both RT0 and PWCF methods inside
macro-cells.
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Error estimate for PWC fluxes (Kuznetsov, 2011)

Mesh cells in 2D
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Drawback of the above methods

The methods with constant normal fluxes on the interfaces
between macro-cells don’t work in two important cases:

− strongly “broken” interfaces;

− mixed macro-cells with several contrast materials on
interfaces.
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Numerical Example

Parameters

Domain: Ω = (−1, 1)× (0, 2)
Mesh: Ωh 25× 25 cells hx = hy = 0.8
Time Step: δt = 0.005

Subdomains: interleaving strips with k1 = 10−12 and k2 = 1
Problem:

−∇
(
K∇T k

)
+
T k

4t
=
T k−1

4t
,

T = 1 on ∂Ω ∩ (y = 0),

T = 0 on ∂Ω ∩ (y = 2),

(K∇T ) · n = 1 on ∂Ω ∩ (x = −1), ∂Ω ∩ (x = 1),

T 0 = 0 on Ω.
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Square mesh with mixed macro-cells

Yuri Kuznetsov Nonconforming mixed FEM on polyhedral meshes. 38/51



Old conforming approximation
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New nonconforming method

Vs,h for Es are the same, s = 1, N . The new FE space is based on
the continuity of the total fluxes on the interfaces between
macro-cells:

Vh =
{
v = (v1, v2, . . . , vN ) : vs ∈ Vs,h, s = 1, N,∫

Γs,t

vs · ns +

∫
Γs,t

vt · nt = 0 a.e. on Γs,t, s 6= t
}
,

Qh is the same.
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New nonconforming approximation
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Accuracy of solutions
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Non-conforming meshes

In theoretical research, a mesh is said to be conforming if any two
adjacent mesh cells satisfy the condition:

“vertex-to-vertex”;

“edge-to-edge”;

“face-to-face”.

Otherwise, the meshes are said to be non-conforming. For instance,
non-matching meshes,generally speaking, are non-conforming ones.
In practice, very often we have to use non-conforming meshes
ΩH =

⋃m
s=1Es such that either |Es ∩ Et| 6= 0 for some s 6= t or

ΩH 6= Ω, or both.
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An Example of the Original Conforming Mesh
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Figure: An example of the initial conforming mesh
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An example of a non-conforming mesh
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Figure: An example of a non-conforming mesh
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“Logically” Conforming Meshes

An example:

Γ
st

Γ
ts

n
st

n
ts

E
s

E
t

Flux matching conditions:∫
Γst

(∇us) · nst dl +

∫
Γts

(∇ut) · nts dl = 0.
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Relative Errors

Table: Relative error in PWC discrete solution wPWC
h , %, for angle

α = 45◦, conforming mesh

G1 G2 G3

4h 6.47516 5.9941 5.98602

2h 3.23569 2.02823 2.98601

h 1.61761 0.842736 1.49213

Table: Relative error in PWC discrete solution wPWC
h , %, for angle

α = 45◦, non-conforming mesh

G1 G2 G3

4h 6.47512 5.9229 5.98567

2h 3.23567 1.96789 2.98584

h 1.6176 0.812716 1.49205
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Domain G and Mesh Gh for Mesh Step Size 4h,
(xC , yC) = (−1.475, 0.05)
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Figure: Domain G and mesh Gh for mesh step size 4h,
(xC , yC) = (−1.475, 0.05)
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Mesh Cell Inside Gh,2 for Angle α = 85◦ and Mesh Step
Size 2h, Non-Conforming Mesh
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Figure: Mesh cell inside Gh,2 for angle α = 85◦ and mesh step size 2h,
non-conforming mesh
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Relative Errors (2)

Table: Relative error in PWC discrete solution wPWC
h , in %, for angle

α = 85◦, conforming mesh

G1 G2 G3

4h 5.11235 9.58808 4.74141

2h 2.54404 2.98806 2.35079

h 1.27059 1.06517 1.17285

Table: Relative error in PWC discrete solution wPWC
h , in %, for angle

α = 85◦, non-conforming mesh

G1 G2 G3

4h 5.11111 8.61626 4.73696

2h 2.54334 2.02273 2.34864

h 1.27043 0.905955 1.1724
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