# Image segmentation techniques for biomedical modeling

Alexander Danilov

14 June 2017

Institute of Numerical Mathematics, Russian Academy of Sciences Moscow Institute of Physics and Technology

#### Bioimpedance and ECG modeling technology



A. A. Danilov, et al. Modelling of bioimpedance measurements: unstructured mesh application to real human anatomy. RJNAMM, 2012.

# Image segmentation

#### User-guided segmentation

# ITK-SNAP – free software for Visualization and Segmentation www.itksnap.org



#### User-guided segmentation

# ITK-SNAP – free software for Visualization and Segmentation www.itksnap.org



#### High resolution segmented model of VHP torso



567  $\times$  305  $\times$  843 voxels 1  $\times$  1  $\times$  1 mm 26 organs and tissues



Total 146m voxels, 68m material voxels









### Personalized segmentation



# Mesh generation

#### Unstructured tetrahedral meshes

CGAL Mesh (www.cgal.org) – Delaunay mesh generation Ani3D (sf.net/p/ani3d) – mesh cosmetics



413 508 vertices, 2 315 329 tetrahedra, 84 430 boundary faces

#### Full body male and female models



3m tetrahedra

effective resolution: 1 × 1 × 1 mm 30 tissues



#### 3D model of heart, atria and ventricles

# **Biomedical applications**

#### Bioimpedance measurements model



lung hydration



sensitivity areas of segmental scheme

#### Forward ECG calculation



VHP model, CGAL Mesh + Ani3D/AniMBA, Ani3D/AniFEM + Chaste Leads  $s = \phi_h \cdot \mathbf{p}_h$ ,  $\phi_h$  - cardiac potential,  $\mathbf{p}_h$  - precalculated

## Dynamic left ventricle model

#### Problem

- Aim: hemodynamics modeling in heart ventricles
- Equations: 3D Navier-Stokes, Arbitrary Lagrange-Euler
- Domain: left ventricle, valves boundary conditions
- Dynamics: ventricle walls reconstructed from ceCT images
- Data: ceCT, 100 images, 1.27 seconds
- + Resolution: 512  $\times$  512  $\times$  480, raw data 24 Gb
- Patient: anonymized, female, 50 years old
- Problem: generation of dynamic mesh from ceCT images



Initial ceCT image Nº50



Smoothed ceCT image №50



Manual segmentation №50



Automatic segmentation №80

#### Dynamic left ventricle model



## Blood vessels segmentation

#### Automatic patient-specific segmentation



Coronary arteries segmentation

#### Automatic patient-specific segmentation



#### Cerebral arteries segmentation

#### Automatic patient-specific segmentation



Overview of pipeline

A. Danilov, et al. Methods of graph network reconstruction in personalized medicine. IJNMBE, 2015.

#### Aorta segmentation

- 1. Hough circleness transform
- 2. Thresholding
- 3. Fast isoperimetric distance trees
- Mathematical morphology operations



L. Grady. Fast, quality, segmentation of large volumes - isoperimetric distance trees. Computer Vision - ECCV 2006.

#### Coronary vessels extraction

- 1. Ostia points detection
- 2. Frangi vesselness filter
- 3. Distance ordered homotopic thinning
- 4. Skeleton cleaning



A.F. Frangi et al. Multiscale vessel enhancement filtering. MICCAI'98, 1998.

#### Coronary vessels segmentation

|                    | -<br>k ,<br>F      | S.                         |
|--------------------|--------------------|----------------------------|
|                    | Case 1             | Case 2                     |
| Resolution         | 512 × 512 × 248    | 512 × 512 × 211            |
| Spacing            | 0.37 × 0.37 × 0.40 | 0.46 	imes 0.46 	imes 0.48 |
| Aorta segmentation | 5.80 sec           | 5.19 sec                   |
| Frangi Filter      | 91.76 sec          | 73.94 sec                  |

#### Bone elimination



H.A. Gratama van Andel. Removal of bone in CT angiography by multiscale matched mask bone elimination. Medical Physics, 2007.

#### Frangi filter – naive approach





Additional preprocessing is essential! Cavities and pulmonary vessels elimination

#### Aorta segmentation



Aorta automatic segmentation

#### Frangi filter – final steps



Arteries correction post-processing

Distance map is used for correct order of leaks elimination

|                       | Case 1                      | Case 2                      |
|-----------------------|-----------------------------|-----------------------------|
| Resolution            | $512 \times 512 \times 501$ | $512 \times 512 \times 451$ |
| Spacing               | $0.76\times0.76\times0.80$  | 0.62 	imes 0.62 	imes 0.80  |
| Multiscale MMBE       | 11.20 sec                   | 10.10 sec                   |
| Cavities elimination  | 7.76 sec                    | 7.04 sec                    |
| Aorta segmentation    | 16.61 sec                   | 15.33 sec                   |
| Frangi Filter         | 196.40 sec                  | 184.91 sec                  |
| Bifurcation detection | 7.61 sec                    | 6.67 sec                    |
| Leak elimination      | 7.39 sec                    | 6.76 sec                    |

#### Vessels sceletonization



Micro-CT of vascular corrosion cast of rabbit kidney provided by J. Alastruey, Department of Bioengineering, Imperial College London, UK.

#### Fast and robust centerline extraction

C. Pudney. Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images. Computer Vision and Image Understanding 1998.

#### Skeletonization

| A.                   |                             |                   |
|----------------------|-----------------------------|-------------------|
|                      | Case 1                      | Rabbit kidney     |
| Resolution           | $512 \times 512 \times 248$ | 2000 × 1989 × 910 |
| Distance map         | 0.20 sec                    | 58.12 sec         |
| Thinning             | 0.79 sec                    | 526.98 sec        |
| False twigs cleaning | 0.15 sec                    | 16.61 sec         |
| Graph construction   | 0.13 sec                    | 12.27 sec         |
| Skeleton segments    | 22 + 6                      | 4302 + 2142       |

- Developed high-resolution 3D segmented and FEM models of male and female bodies
- Proposed methods for patient-specific segmentation
- Developed numerical methods for bioimpedance and ECG modelling
- Automatic coronary and cerebral arteries segmentation
- Robust skeletonization and graph reconstruction