Novel analytical approach to the synthesis of optimal multiband electrical filters

Andrei Bogatyrëv¹

Institute for Numerical Math., Russian Academy of Sciences, Moscow MIPT, MSU

Russian-German-American seminar, Moscow, Russia June, 13-14, 2017

¹supported by RSCF 16-11-10349

History and background

E.I. Zolotarev (1847-1878, Russia) invented 'Zolotarev fractions', analogy of Chebyshev polynomials in the realm of rational functions.

W.Cauer (1900-1945, Germany) invented low and high pass 'Cauer electrical filters'

Bell Labs (1925 - 2016, USA) implemented filters to practice of electrical engineering

Setting optimization problem

Given: $E = E^+ \cup E^- \subset \mathbb{R}$ being finite set of disjoint segments $E^{\pm} = \bigcup_j E_j^{\pm}$ pass (+) and stop (-) bands. Competition among real rational functions R(x) = P(x)/Q(x) of bounded degree deg $R \le n$. Goal function

1.

$$\frac{\max_{x \in E^+} |R(x)|}{\min_{x \in E^-} |R(x)|} \longrightarrow \min =: \theta^2$$

2.

$$\max\{\max_{x\in E^+} |R(x)|, \max_{x\in E^-} 1/|R(x)|\} \longrightarrow \min =: \theta$$

3. Minimize θ under conditions

$$\min_{x\in E_-}|Q_n(x)|\geq \theta^{-1}, \quad \max_{x\in E_+}|Q_n(x)|\leq \theta.$$

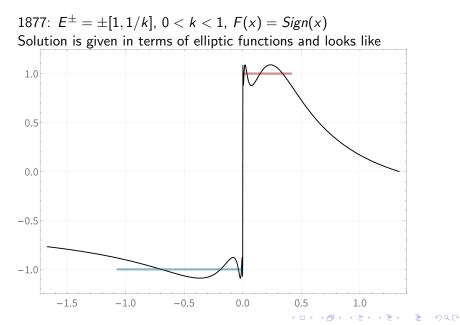
- 4. Define the ideal transfer function $F(x) = \pm 1$ when $x \in E^{\pm}$ $||R_1 - F||_{C(E)} := \max_{x \in E} |R_1(x) - F(x)| \rightarrow \min =: \mu.$
- $1/\mu = (\theta + 1/\theta)/2.$

Study of optimization problem

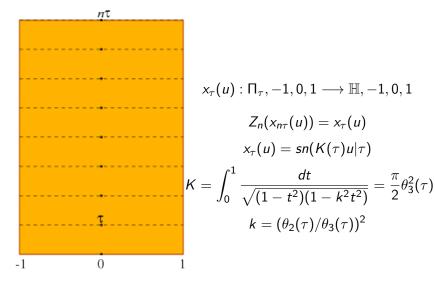
- Projective invariance
- N.I.Akhiezer 1928; R.A.-R.Amer, H.R.Schwarz, 1964; V.N.Malozemov, 1978
- ▶ Many minima; classes: fix Sign $Q(x)|_{E_i^+}$; Sign $P(x)|_{E_i^-}$
- Solution characterized by alternation (=equiripple) property: The error δ(x) = R(x) − F(x) has 2n + 2 'alternation' points x_s ∈ E: δ(x_s) = ±||δ||_E

In a sense the solution for this problem is simple – just manifest function with suitable equiripple property

Example: Zolotarev fraction



Example: Zolotarev fraction



Ad: Z_n has lots of interesting properties!

Genesis: signal processing

Analogue	Digital
Function $x(t), t \in \mathbb{R}$	Sequence $x(n), n \in \mathbb{Z}$
x(t) ightarrow RCLMscheme $y(t)$	$y(n+1) = \sum_{j=0}^{N} p_j x(n-j)$
$P_{\mathcal{N}}(D)[x(t)] = Q_{\mathcal{M}}(D)[y(t)]$	$+\sum_{j=1}^{M}q_{j}y(n-j)$
Fourier (Laplace) transform	Z-transform (generating function)
$\hat{h}(\omega)=P_{N}(i\omega)/Q_{M}(i\omega)$	$\hat{h}(z)=P_N(z)/Q_M(z)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In both cases the operator $x(\cdot) o y(\cdot)$ is

- linear and real
- commutes with time shifts
- causal

Filtering

Therefore signal processing is just a convolution with h, response to the impulse δ -input. In any case the spectrum of the output is that of input multiplied by rational function \hat{h} . For multiband filtering the magnitude response function

$$\left|rac{\hat{y}(\omega)}{\hat{x}(\omega)}
ight|^2 = |\hat{h}(\omega)|^2 = \hat{h}(\omega)\hat{h}(-\omega) = H(\omega^2)$$

should uniformly approximate 0 at the stopbands and 1 at the passbands. Two problems arise:

- Find the minimal degree filter meting given filter specification
- Given the degree, the pass- and stop- bands find filter with minimal uniform deviation.

Example Zolotarev fraction is used as a magnitude response function for the Cauer (elliptic) filters.

Approaches to optimization

Direct numerical optimization based on Remez-type methods.
 Built-in instability, problems with initial approximation.

Degree	Mantissa	Source
$n\sim 10$	1. <i>E</i> – 15	Matlab toolbox
$n\sim 100$	1.E - 2500	S.Suetin
$n\sim 1000$	1.E - 150000	Yu.Matiyasevich

- Electrical engineers: decompose problem into many simple ones and use one-band (Cauer) filters. Substantial loss of degree (and therefore size, cost of production, energy consumption, cooling...)
- Ansatz method explicit analytical formula generalizing Zolotarev fractions. [B., 2010]; [B., Goreinov, Lyamayev, 2017]

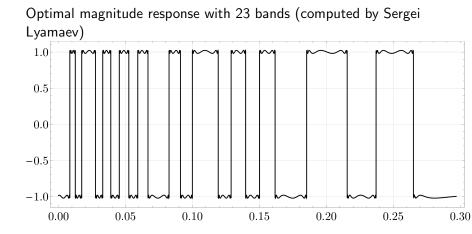
Novel approach

Use equiripple property of the solution: 2n + 2 alternation points is roughly equal to the number 2n - 2 of critical points of degree *n* rational function. This means that almost all (with g - 1 properly counted exceptions) critical points are simple with the values in a 4-element set, e.g. $\pm \theta, \pm 1/\theta$ in the settings 1,2,3 or $\pm 1 \pm \mu$ in setting 4). This very rare property eventually gives the few-parametric representation of the solution

$$R(x) = \operatorname{sn}\left(\int_{e}^{x} d\zeta + A(e) \,\middle|\, \tau\right), \tag{1}$$

where τ is related to μ and $d\zeta$ is a holomorphic differential on a (beforehand unknown) hyperelliptic Riemann surface of genus g. The arising surface is not arbitrary: it is so called Calogero-Moser curve describing the dynamics of points on a torus interacting with potential $\wp(u)$.

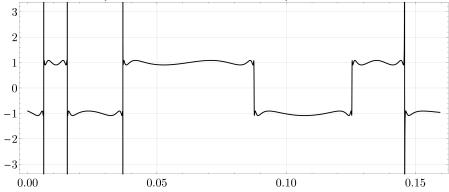
Example of filter design



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - ▲

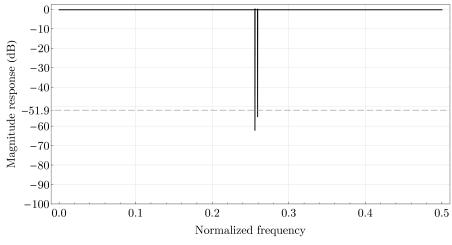
Example of filter design 2

Optimal magnitude response with 7 bands, class admits poles in transient bands (computed by Sergei Lyamaev)

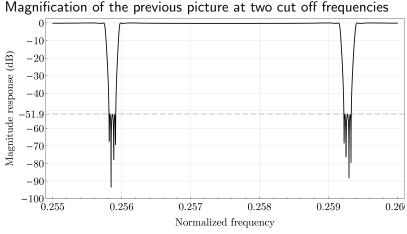


Comparison to other approach

Magnitude response of a double notch filter of degree n = 16 (S.Lyamaev).



Comparison to other approach, cont'd



Same specification composite filter has degree n = 62

 $C\pi acu\delta o \zeta a bHumaHue!$ Vielen Dant! Thanks for the patience!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?