TENSORS AND COMPUTATIONS

Eugene Tyrtyshnikov

Institute of Numerical Mathematics of Russian Academy of Sciences eugene.tyrtyshnikov@gmail.com

11 September 2013

REPRESENTATION PROBLEM FOR MULTI-INDEX ARRAYS

Going to consider an array $a\left(i_{1}, \ldots, i_{d}\right)$ of size

We have no hope to store all n^{d} elements.
For any practical computation we need special structure and condensed representations of d-arrays.

REDUCTION OF DIMENSIONALITY

HOW RANK-ONE DECOMPOSITION BECOMES TENSOR TRAIN

Consider a rank-one separation of variables

$$
a\left(i_{1}, i_{2}, i_{3}\right)=g_{1}\left(i_{1}\right) g_{2}\left(i_{2}\right) g_{3}\left(i_{3}\right) .
$$

Now, consider $g_{1}\left(i_{1}\right), g_{2}\left(i_{2}\right), g_{3}\left(i_{3}\right)$ as matrices of agreed sizes so that the product is a scalar. Then

$$
a\left(i_{1}, i_{2}, i_{3}\right)=\sum_{\alpha_{1}=1}^{r_{1}} \sum_{\alpha_{2}=1}^{r_{2}} g_{1}\left(i_{1}, \alpha_{1}\right) g_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right) g_{3}\left(\alpha_{2}, i_{3}\right) .
$$

TENSOR TRAIN (TT) DECOMPOSITION

$$
a\left(i_{1}, \ldots, i_{d}\right)=\sum \prod_{k=1}^{d} g_{k}\left(\alpha_{k-1}, i_{k}, \alpha_{k}\right)
$$

Assume summation over repeated indices.
$1 \leqslant i_{k} \leqslant n_{k}$ for $1 \leqslant k \leqslant d$
$1 \leqslant \alpha_{k} \leqslant r_{k}$ for $0 \leqslant k \leqslant d$ and $r_{0}=r_{d}=1$
r_{k} are called TT ranks

2D TENSOR TRAIN EXAMPLE

$$
a\left(i_{1}, i_{2}\right)=\sum g_{1}\left(i_{1}, \alpha_{1}\right) g_{2}\left(\alpha_{1}, i_{2}\right)
$$

This is the skeleton (dyadic) decomposition of a matrix!

$$
A=G_{1} G_{2}
$$

A is $n_{1} \times n_{2}, \quad G_{1}$ is $n_{1} \times r_{1}, \quad G_{2}$ is $r_{1} \times n_{2}$
$r_{1} \geqslant \operatorname{rank} A$

3D TENSOR TRAIN EXAMPLE

$$
a\left(i_{1}, i_{2}, i_{3}\right)=\sum g_{1}\left(i_{1}, \alpha_{1}\right) g_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right) g_{3}\left(\alpha_{2}, i_{3}\right)
$$

TENSOR TRAIN IS EASY TO GET

For a 3-tensor we need two skeleton (dyadic) decompositions for associated unfolding matrices:

- $a\left(i_{1}, i_{2} i_{3}\right)=\sum g_{1}\left(i_{1}, \alpha_{1}\right) a_{1}\left(\alpha_{1}, i_{2} i_{3}\right)$
- $a_{1}\left(\alpha_{1} i_{2}, i_{3}\right)=\sum g_{2}\left(\alpha_{1} i_{2}, \alpha_{2}\right) g_{3}\left(\alpha_{2}, i_{3}\right)$

For a d-tensor we need $d-1$ skeleton (dyadic) decompositions.

IF WE APPROXIMATE USING SVD THEN LOCAL ERROR IN EACH SKELETON DECOMPOSITION DOES NOT BLOW UP

THEOREM.

If the Frobenius-norm error for k th skeleton decompostion is ε_{k}, then the overall error E is upper bounded by

$$
E \leqslant \sqrt{\sum_{k=1}^{d-1} \varepsilon_{k}^{2}}
$$

I. Oseledets, E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl., 432 (2010), pp. 70-88.

TWO TYPES OF OPTIMIZATION PROBLEMS

- Given a functional $f(x)$, find its approximate minimizer in the tensor train format.
- DMRG algorithm (White'1993)
- AMEn algorithm (Dolgov-Savostyanov'2013)
- Given a functional $f(x)$, chase its global minimum using tensor trains.
- Application to the docking problem as an alternative to genetic algorithms.

GLOBAL SEARCH

A general heuristic scheme includes:

- Choose a reasonably small set M of optima suspects.
- Inflate M to a reasonably larger set M^{\prime}
- e.g. by mutation and crossover operations in the genetic or simulating annealing algorithms
- Assign some probabilities to the points of M^{\prime} and deflate it to $M^{\prime \prime}$ of the same cardinality as M.
- Set $M:=M^{\prime \prime}$ and repeat.

GLOBAL SEARCH IN A LOW-RANK MATRIX

- Find a low-rank skeleton representation or approximation
- e.g. by the cross interpolation algorithm
- Find the maximal element using the skeletons
- e.g. by reducing to the eigenvalue problem for a structured diagonal matrix

COLUMN-AND-ROW INTERPOLATION OF MATRICES

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad A_{11} \text { is } r \times r
$$

A can be interpolated on the first r columns and rows by

$$
\left[\begin{array}{l}
A_{11} \\
A_{21}
\end{array}\right] A_{11}^{-1}\left[\begin{array}{ll}
A_{11} & A_{12}
\end{array}\right]
$$

COLUMN-AND-ROW INTERPOLATION OF MATRICES

$$
\begin{gathered}
{\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]-\left[\begin{array}{l}
A_{11} \\
A_{21}
\end{array}\right] A_{11}^{-1}\left[\begin{array}{ll}
A_{11} & A_{12}
\end{array}\right]} \\
\quad=\left[\begin{array}{lc}
0 & 0 \\
0 & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right]
\end{gathered}
$$

MAXIMAL VOLUME PRINCIPLE

THEOREM (Goreinov, Tyrtyshnikov) Let

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} is a $r \times r$ block with maximal determinant in modulus (volume) among all $r \times r$ blocks in A.
Then the rank-r matrix

$$
A_{r}=\left[\begin{array}{l}
A_{11} \\
A_{21}
\end{array}\right] A_{11}^{-1}\left[\begin{array}{ll}
A_{11} & A_{12}
\end{array}\right]
$$

approximates A with the Chebyshev-norm error at most in $(r+1)^{2}$ times larger than the error of best approximation of rank r.

MAXIMIZATION VIA CROSS INTERPOLATION

DEFINITION

We call $r \times r$ submatrix A_{\square} of rectangular $m \times n$ matrix A maximum volume submatrix, if it has maximum determinant in modulus among all possible $r \times r$ submatrices of A.

MAXIMIZATION VIA CROSS INTERPOLATION

DEFINITION

We call $r \times r$ submatrix A_{\square} of rectangular $n \times r$ matrix A of full rank dominant, if all the entries of $A A_{\square}^{-1}$ are not greater than 1 in modulus.

DEFINITION

We call $r \times r$ submatrix A_{\square} of rectangular $m \times n$ matrix A dominant, if it is dominant in the columns and rows it occupies.

MAXIMIZATION VIA CROSS INTERPOLATION

THEOREM

If A_{\square} is a dominant $r \times r$ submatrix of a $m \times n$ matrix A of rank r, then

$$
\left|A_{\square}\right| \geq|A| / r^{2}
$$

MAXIMIZATION VIA CROSS INTERPOLATION

THEOREM

If A_{\square} is maximum-volume $r \times r$ (nonsingular) submatrix of $m \times n$ matrix A, then

$$
\left|A_{\square}\right| \geq|A| /\left(2 r^{2}+r\right)
$$

E
S. Goreinov, I. Oseledets, D. Savostyanov, E. Tyrtyshnikov, N.

Zamarashkin, How to find a good submatrix, Matrix Methods: Theory,
Algorithms and Applications. Devoted to the Memory of Gene Golub (eds.
V.Olshevsky and E.Tyrtyshnikov), World Scientific Publishers, Singapore, 2010, pp. 247-256.

MINIMIZATION VIA MAXIMIZATION

$$
\Phi_{n}(x):=\exp \left\{-n\left(f(x)-f_{n}\right)\right\}
$$

Assume that

$$
\Phi_{n}\left(x_{n+1}\right) \geqslant \frac{1}{C} \Phi\left(x_{\min }\right)
$$

Then

$$
\begin{gathered}
\exp \left\{-n\left(f_{n+1}-f_{n}\right)\right\} \geqslant \frac{1}{C} \exp \left\{-n\left(f_{\min }-f_{n}\right)\right\} \Rightarrow \\
f_{n+1}-f_{\min } \leqslant \frac{\log C}{n}
\end{gathered}
$$

MATRIX CROSS ALGORITHM

- Given initial column indices j_{1}, \ldots, j_{r}.
- Find good row indices i_{1}, \ldots, i_{r} in these columns.
- Find good column indices in the rows i_{1}, \ldots, i_{r}.
- Proceed choosing good columns and rows until the skeleton cross approximations stabilize.
E.E.Tyrtyshnikov, Incomplete cross approximation in the mosaic-skeleton method, Computing 64, no. 4 (2000), 367-380.

TENSOR-TRAIN CROSS ALGORITHM

Let $a_{1}=a\left(i_{1}, i_{2}, i_{3}, i_{4}\right)$. Seek crosses in the unfolding matrices. On input: r initial columns in each. Select good rows.

$$
\begin{array}{ll}
A_{1}=\left[a\left(i_{1} ; i_{2}, i_{3}, i_{4}\right)\right], & J_{1}=\left\{i_{2}^{\left(\beta_{1}\right)} i_{3}^{\left(\beta_{1}\right)} i_{4}^{\left(\beta_{1}\right)}\right\} \\
A_{2}=\left[a\left(i_{1}, i_{2} ; i_{3}, i_{4}\right)\right], & J_{2}=\left\{i_{3}^{\left.\left(\beta_{2}\right) i_{4}^{\left(\beta_{2}\right)}\right\}}\right. \\
A_{3}=\left[a\left(i_{1}, i_{2}, i_{3} ; i_{4}\right)\right], & J_{3}=\left\{i_{4}^{\left(\beta_{3}\right)}\right\}
\end{array}
$$

rows	matrix	skeleton decomposition
$I_{1}=\left\{i_{1}^{\left(\alpha_{1}\right)}\right\}$	$a_{1}\left(i_{1} ; i_{2}, i_{3}, i_{4}\right)$	$a_{1}=\sum_{\alpha_{1}} g_{1}\left(i_{1} ; \alpha_{1}\right) a_{2}\left(\alpha_{1} ; i_{2}, i_{3}, i_{4}\right)$
$I_{2}=\left\{i_{1}^{\left(\alpha_{2}\right)} i_{2}^{\left(\alpha_{2}\right)}\right\}$	$a_{2}\left(\alpha_{1}, i_{2} ; i_{3}, i_{4}\right)$	$a_{2}=\sum_{\alpha_{2}} g_{2}\left(\alpha_{1}, i_{2} ; \alpha_{2}\right) a_{3}\left(\alpha_{2}, i_{3} ; i_{4}\right)$
$I_{3}=\left\{i_{1}^{\left.\left(\alpha_{3}\right) i_{2}^{\left(\alpha_{3}\right)} i_{3}^{\left(\alpha_{3}\right)}\right\}}\right.$	$a_{3}\left(\alpha_{2}, i_{3} ; i_{4}\right)$	$a_{3}=\sum_{\alpha_{3}} g_{3}\left(\alpha_{2}, i_{3} ; \alpha_{3}\right) g_{4}\left(\alpha_{3} ; i_{4}\right)$

Finally

$$
a=\sum_{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}} g_{1}\left(i_{1}, \alpha_{1}\right) g_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right) g_{3}\left(\alpha_{2}, i_{3}, \alpha_{3}\right) g_{4}\left(\alpha_{3}, i_{4}\right)
$$

TENSOR TRAIN FROM CROSSES IN UNFOLDING MATRICES

$$
A\left(i_{1} \ldots i_{d}\right)=\prod_{k=1}^{d} A\left(J_{\leqslant k-1}, i_{k}, J_{>k}\right)\left[A\left(J_{\leqslant k}, J_{>k}\right)\right]^{-1}
$$

(I. Oseledets, E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl., 432 (2010), pp. 70-88.

QUASIOPTIMALITY THEOREM FOR TENSOR TRAINS

THEOREM (Savostyanov'2013)
Assume that a d-tensor A is approximated by \widetilde{A} on the maximal volume crosses in the unfolding matrices, and let the error is upper bounded by $\varepsilon\|A\|_{C}$ in each matrix. Then for sufficiently small ε we have

$$
\|A-\widetilde{A}\|_{C} \leqslant 2 d r \varepsilon\|A\|_{C}
$$

DIRECT DOCKING IN THE DRUG DESIGN

ACCOMMODATION OF LIGAND INTO PROTEIN

DIRECT DOCKING IN THE DRUG DESIGN

ACCOMMODATION OF LIGAND INTO PROTEIN

MATHEMATICAL COMPONENTS OF THE DOCKING PROBLEM

- Define which degrees of freedom describe the ligand and the target protein and parametrize all possible interactions between them.
- Define the scoring function to be optimized.
- Find an efficient optimization algorithm over all selected degrees of freedom.

DOCKING AS A GLOBAL OPTIMIZATION PROBLEM

DIFFICULTIES:

- Degrees of freedom amount to 20-30 and higher.
- Many local minima.
- Singularities with large values of energy.
- High complexity of evaluation of the energy function.

OPTIMIZATION USING TT

INPUT: $f\left(x_{1}, \ldots, x_{d}\right)$ and $n \times \cdots \times n$ grid.
OUTPUT: approximation to the global minimum.
IN THE LOOP:
Step 1: Transformation of the functional s.t. $\arg \max g(x)=\arg \min f(x)$. E.g. $g(x)=\operatorname{arcctg}\left(f(x)-\tilde{f}_{*}\right)$.
Step 2: TT-CROSS interpolation with the adaptive choice of pseudo-max nodes.

Step 3: Local optimizations of pseudo-max nodes.
Step 4: Renewal of \tilde{f}_{*}.

TTDock vs SOL: chk1_8

TTDock vs SOL: urokinase_7

TTDock vs SOL: erk2_000124

DOCKING PROGRAM SOL (DIMONTA)

CSAR benchmark 2012

244th American Chemical Society National Meeting August 19-23, 2012 Philadelphia, Pennsylvania

Identifying inactives (Urokinase)

COMPARISON OF SOL AND TT-DOCK

TENSOR TRAIN DOCKING (TTdock)

- Tensor Train Decomposition opens new prospects in Global Minimum Search
- TTdock more than 10 times faster than SOL
- Direct docking: direct calculaion of all interactions between ligand and protein atoms
- Tensor Train Mining Minima: Global + Local Minima
D.Zheltkov, E.T. in collaboration with V.Sulimov and DIMONTA

WHY SHOULD WE USE TENSOR TRAINS

... Surely every medicine is an innovation; and he that will not apply new remedies, must expect new evils ...

Francis Bacon (1561-1626)
OF INNOVATIONS

Thank you!

