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REPRESENTATION PROBLEM FOR
MULTI-INDEX ARRAYS

Going to consider an array a(i1, . . . , id) of size

n × . . .× n︸ ︷︷ ︸
d times

.

We have no hope to store all nd elements.

For any practical computation we need
special structure and condensed representations
of d -arrays.
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REDUCTION OF DIMENSIONALITY

i1i2i3i4i5i6

i1i2 i3i4i5i6

i1 i2 i3i4 i5i6

i3 i4 i5 i6
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HOW RANK-ONE DECOMPOSITION
BECOMES TENSOR TRAIN

Consider a rank-one separation of variables

a(i1, i2, i3) = g1(i1) g2(i2) g3(i3).

Now, consider g1(i1), g2(i2), g3(i3) as matrices of
agreed sizes so that the product is a scalar. Then

a(i1, i2, i3) =

r1∑
α1=1

r2∑
α2=1

g1(i1, α1) g2(α1, i2, α2) g3(α2, i3).
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TENSOR TRAIN (TT) DECOMPOSITION

a(i1, . . . , id) =
∑ d∏

k=1

gk(αk−1, ik , αk)

Assume summation over repeated indices.

1 6 ik 6 nk for 1 6 k 6 d

1 6 αk 6 rk for 0 6 k 6 d and r0 = rd = 1

rk are called TT ranks
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2D TENSOR TRAIN EXAMPLE

a(i1, i2) =
∑

g1(i1, α1) g2(α1, i2)

This is the skeleton (dyadic) decomposition
of a matrix!

A = G1 G2

A is n1 × n2, G1 is n1 × r1, G2 is r1 × n2

r1 > rankA
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3D TENSOR TRAIN EXAMPLE

a(i1, i2, i3) =
∑

g1(i1, α1) g2(α1, i2, α2) g3(α2, i3)
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TENSOR TRAIN IS EASY TO GET

For a 3-tensor we need two skeleton (dyadic)
decompositions for associated unfolding matrices:

I a(i1, i2i3) =
∑

g1(i1, α1) a1(α1, i2i3)

I a1(α1i2 , i3) =
∑

g2(α1i2 , α2) g3(α2, i3)

For a d -tensor we need d − 1 skeleton (dyadic)
decompositions.
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IF WE APPROXIMATE USING SVD THEN
LOCAL ERROR IN EACH SKELETON
DECOMPOSITION DOES NOT BLOW UP

THEOREM.

If the Frobenius-norm error for kth skeleton
decompostion is εk , then the overall error E is upper
bounded by

E 6

√√√√d−1∑
k=1

ε2
k .

I. Oseledets, E. Tyrtyshnikov, TT-cross approximation for

multidimensional arrays, Linear Algebra Appl., 432 (2010), pp. 70–88.
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TWO TYPES OF OPTIMIZATION PROBLEMS

I Given a functional f (x), find its approximate
minimizer in the tensor train format.

I DMRG algorithm (White’1993)
I AMEn algorithm (Dolgov-Savostyanov’2013)

I Given a functional f (x), chase its global
minimum using tensor trains.

I Application to the docking problem
as an alternative to genetic algorithms.
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GLOBAL SEARCH

A general heuristic scheme includes:
I Choose a reasonably small set M of optima
suspects.

I Inflate M to a reasonably larger set M ′
I e.g. by mutation and crossover operations in the genetic or

simulating annealing algorithms

I Assign some probabilities to the points of M ′ and
deflate it to M ′′ of the same cardinality as M.

I Set M := M ′′ and repeat.
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GLOBAL SEARCH IN A LOW-RANK MATRIX

I Find a low-rank skeleton representation or
approximation

I e.g. by the cross interpolation algorithm

I Find the maximal element using the skeletons
I e.g. by reducing to the eigenvalue problem for a structured

diagonal matrix
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COLUMN-AND-ROW INTERPOLATION OF
MATRICES

A =

[
A11 A12

A21 A22

]
A11 is r × r

A can be interpolated on the first r columns and
rows by [

A11

A21

]
A−1

11

[
A11 A12

]
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COLUMN-AND-ROW INTERPOLATION OF
MATRICES

[
A11 A12

A21 A22

]
−
[
A11

A21

]
A−1

11

[
A11 A12

]

=

[
0 0
0 A22 − A21A−1

11 A12

]
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MAXIMAL VOLUME PRINCIPLE

THEOREM (Goreinov, Tyrtyshnikov) Let

A =

[
A11 A12

A21 A22

]
,

where A11 is a r × r block with maximal determinant
in modulus (volume) among all r × r blocks in A.
Then the rank-r matrix

Ar =

[
A11

A21

]
A−1

11

[
A11 A12

]
approximates A with the Chebyshev-norm error at
most in (r + 1)2 times larger than the error of best
approximation of rank r .
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MAXIMIZATION VIA CROSS INTERPOLATION

DEFINITION

We call r × r submatrix A� of rectangular m × n
matrix A maximum volume submatrix, if it has
maximum determinant in modulus among all possible
r × r submatrices of A.
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MAXIMIZATION VIA CROSS INTERPOLATION

DEFINITION

We call r × r submatrix A� of rectangular n × r
matrix A of full rank dominant, if all the entries of
AA−1
� are not greater than 1 in modulus.

DEFINITION

We call r × r submatrix A� of rectangular m × n
matrix A dominant, if it is dominant in the columns
and rows it occupies.
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MAXIMIZATION VIA CROSS INTERPOLATION

THEOREM

If A� is a dominant r × r submatrix of a m × n
matrix A of rank r , then

|A�| ≥ |A|/r 2.
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MAXIMIZATION VIA CROSS INTERPOLATION

THEOREM

If A� is maximum-volume r × r (nonsingular)
submatrix of m × n matrix A, then

|A�| ≥ |A|/(2r 2 + r).

S. Goreinov, I. Oseledets, D. Savostyanov, E. Tyrtyshnikov, N.

Zamarashkin, How to find a good submatrix, Matrix Methods: Theory,

Algorithms and Applications. Devoted to the Memory of Gene Golub (eds.

V.Olshevsky and E.Tyrtyshnikov), World Scientific Publishers, Singapore,

2010, pp. 247–256.
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MINIMIZATION VIA MAXIMIZATION

Φn(x) := exp{−n(f (x)− fn)}
Assume that

Φn(xn+1) >
1
C

Φ(xmin).

Then

exp{−n(fn+1 − fn)} > 1
C

exp{−n(fmin − fn)} ⇒

fn+1 − fmin 6
logC
n
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MATRIX CROSS ALGORITHM

I Given initial column indices j1, ..., jr .
I Find good row indices i1, ..., ir in these columns.
I Find good column indices in the rows i1, ..., ir .
I Proceed choosing good columns and rows until
the skeleton cross approximations stabilize.

E.E.Tyrtyshnikov, Incomplete cross approximation in the mosaic-skeleton

method, Computing 64, no. 4 (2000), 367–380.
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TENSOR-TRAIN CROSS ALGORITHM
Let a1 = a(i1, i2, i3, i4). Seek crosses in the unfolding matrices.
On input: r initial columns in each. Select good rows.

A1 = [a(i1 ; i2, i3, i4)], J1 = {i (β1)
2 i (β1)

3 i (β1)
4 }

A2 = [a(i1, i2 ; i3, i4)], J2 = {i (β2)
3 i (β2)

4 }

A3 = [a(i1, i2, i3 ; i4)], J3 = {i (β3)
4 }

rows matrix skeleton decomposition
I1 = {i (α1)

1 } a1(i1 ; i2, i3, i4) a1 =
∑
α1

g1(i1;α1) a2(α1; i2, i3, i4)

I2 = {i (α2)
1 i (α2)

2 } a2(α1, i2 ; i3, i4) a2 =
∑
α2

g2(α1, i2; α2) a3(α2, i3; i4)

I3 = {i (α3)
1 i (α3)

2 i (α3)
3 } a3(α2, i3 ; i4) a3 =

∑
α3

g3(α2, i3; α3) g4(α3; i4)

Finally

a =
∑

α1,α2,α3,α4

g1(i1, α1) g2(α1, i2, α2) g3(α2, i3, α3) g4(α3, i4)
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TENSOR TRAIN FROM CROSSES IN
UNFOLDING MATRICES

A(i1 . . . id) =
d∏

k=1

A(J6k−1, ik , J>k) [A(J6k , J>k)]−1

I. Oseledets, E. Tyrtyshnikov, TT-cross approximation for

multidimensional arrays, Linear Algebra Appl., 432 (2010), pp. 70–88.
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QUASIOPTIMALITY THEOREM
FOR TENSOR TRAINS

THEOREM (Savostyanov’2013)

Assume that a d-tensor A is approximated by Ã on
the maximal volume crosses in the unfolding matrices,
and let the error is upper bounded by ε ||A||C in each
matrix. Then for sufficiently small ε we have

||A− Ã||C 6 2drε||A||C .
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DIRECT DOCKING IN THE DRUG DESIGN

ACCOMMODATION OF LIGAND INTO PROTEIN

LIGAND
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DIRECT DOCKING IN THE DRUG DESIGN

ACCOMMODATION OF LIGAND INTO PROTEIN

LIGAND
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MATHEMATICAL COMPONENTS
OF THE DOCKING PROBLEM

I Define which degrees of freedom describe the
ligand and the target protein and parametrize all
possible interactions between them.

I Define the scoring function to be optimized.

I Find an efficient optimization algorithm over all
selected degrees of freedom.
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DOCKING AS A GLOBAL OPTIMIZATION
PROBLEM

DIFFICULTIES:

I Degrees of freedom amount to 20-30 and higher.

I Many local minima.

I Singularities with large values of energy.

I High complexity of evaluation of the energy
function.
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OPTIMIZATION USING TT

INPUT: f (x1, . . . , xd) and n × · · · × n grid.
OUTPUT: approximation to the global minimum.
IN THE LOOP:

Step 1: Transformation of the functional s.t.
arg max g(x) = arg min f (x). E.g.
g(x) = arcctg(f (x)− f̃∗).

Step 2: TT-CROSS interpolation with the
adaptive choice of pseudo-max nodes.

Step 3: Local optimizations of pseudo-max nodes.

Step 4: Renewal of f̃∗.
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TTDock vs SOL: chk1_8

Eugene Tyrtyshnikov TENSORS AND COMPUTATIONS



TTDock vs SOL: urokinase_7
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TTDock vs SOL: erk2_000124
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DOCKING PROGRAM SOL (DIMONTA)
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COMPARISON OF SOL AND TT-DOCK
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TENSOR TRAIN DOCKING (TTdock)

I Tensor Train Decomposition opens new prospects
in Global Minimum Search

I TTdock more than 10 times faster than SOL

I Direct docking: direct calculaion of all
interactions between ligand and protein atoms

I Tensor Train Mining Minima: Global + Local
Minima

D.Zheltkov, E.T. in collaboration with V.Sulimov and DIMONTA
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WHY SHOULD WE USE TENSOR TRAINS
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