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A model for free-surface viscous fluid flow

Fluid domain: Q(t) € R3 with boundary 9Q(t) = p U (t)
[ p: solid part, I(¢): free surface

Fluid equations:

p(g—?+(u-V)u)—diVT+Vp:f
V-u=20

in Q(t),

Newtonian fluid constitutive law

7 = puDu

. Viscosity parameter,

p. density of fluid, u: velocity vector, p: kinematic pressure,
Du: rate of strain tensor,

7. deviatoric part of the stress tensor



A model for free-surface viscoplastic fluid flow

Fluid domain: Q(t) € R3 with boundary 9Q(t) = p U (t)
[ p: solid part, I(¢): free surface

Fluid equations:

p(g—?+(u-V)u)—diVT+Vp:f
V-u=20

in Q(t),

The Herschel-Bulkley constitutive law

T = (K |Du|”_1 + Tleul_l) Du < |1| > 75,
Du=0 & || < 7.

K > 0: consistency parameter, 7> 0: vield stress parameter,
p. density of fluid, u: velocity vector,

Du: rate of strain tensor,

7. deviatoric part of the stress tensor

n > 0: flow index,
p: Kinematic pressure,



A model for free-surface viscoplastic fluid flow

Fluid domain: Q(t) € R3 with boundary 9Q(t) = p U (t)
[ p: solid part, I(¢): free surface

Fluid equations:

p(g—?+(u-V)u)—diVT+Vp:f
V-u=20

in Q(t),

The Herschel-Bulkley constitutive law

T = (K |Du|”_1 + Tleul_l) Du < |1| > 75,
Du=0 & || < 7.

Note: Mathematically sound formulations are written in terms of variational inequalities
(Duvaut, Lions 1976).

K > 0: consistency parameter, 715> 0: vield stress parameter, n > 0: flow index,

p. density of fluid, u: velocity vector, p: Kinematic pressure,
Du: rate of strain tensor,

7. deviatoric part of the stress tensor



A model for free-surface viscoplastic fluid flow

Fluid domain: Q(t) € R3 with boundary 9Q(t) = p U (t)
[ p: solid part, I(¢): free surface

Fluid equations (regularization):

p(%—?—l—(u-V)u) —divu-Du+Vp=f~
V-u=0

in Q(t),

with the shear-dependent effective viscosity

pe = K|Dul ' +7/DulzY,  [Dul. = \/|DuP + <

K > 0: consistency parameter, 75> 0: yield stress parameter,
p. density of fluid, u. velocity vector,
Du: rate of strain tensor, g. regularization parameter

n > 0: flow index,
p: Kinematic pressure,



A model for free-surface viscoplastic fluid flow

Fluid domain: Q(t) € R3 with boundary 9Q(t) = p U (t)
[ p: solid part, I(¢): free surface

Fluid equations (regularization):

p(%—?—l—(u-V)u) —divu-Du+Vp=f~
V-u=0

in Q(t),

with the shear-dependent effective viscosity

pe = K|Dul ' +7/DulzY,  [Dul. = \/|DuP + <

Modeling error:
luo — uel|m < Ve

K > 0: consistency parameter, 75> 0: yield stress parameter,
p. density of fluid, u. velocity vector,
Du: rate of strain tensor, g. regularization parameter

n > 0: flow index,
p: Kinematic pressure,



A model for free-surface viscoplastic fluid flow

Fluid domain: (t) € R3 with boundary 9Q(t) =T p U (¢)
[ p: solid part, I(¢): free surface

Fluid equations (regularization):

p(%—?—l—(u-V)u) —divu-Du+Vp=f~
V-u=0

in Q(t),

with the shear-dependent effective viscosity

pe = K|Dul ' +7/DulzY,  [Dul. = \/|DuP + <

Initial and boundary conditions:

Q) =y, ult=o=up and u=g onlp.

K > 0: consistency parameter, 75> 0: yield stress parameter,
p. density of fluid, u. velocity vector,
Du: rate of strain tensor, g. regularization parameter

n > 0: flow index,
p: Kinematic pressure,



A model for free-surface viscoplastic fluid flow

Fluid domain: Q(t) € R3 with boundary 9Q(t) = p U (t)
[ p: solid part, I(¢): free surface

Fluid equations (regularization):

p(g—?—l—(u-V)u) —divp:-Du+Vp=1f

V-u=20
pe = K [Du[* ! + 7,|Dul;?

in Q(t),

\
Q) =y, ult=o=uy and u=g onlp.
Balance of the surface tension and stress forces:

(ueDu — pI)nr = ¢xnr — pextnr on (),
and kinematic condition on (%)

vr = u‘r o A

K > 0: consistency param., 715> 0: vield stress param., n > 0: flow index,

p. density of fluid, u: velocity vector, p: Kinematic pressure,

Du: rate of strain tensor, g: regularization param., nr: normal vector for I (¢),
vr: normal velocity of I'(t), «: surface tension coef., k. sum of principal curvature



Interface capturing: Level set approach

Computational
Idea:(Sethian, Osher '87) domain

[(t) = zero-level of a scalar function

The level set function p(x,t)

(%)

<0 for z in fluid domain (%)
d(x,t) =< >0 forxin R3\ Q%)
= 0 at the free surface

should be an U
“approximate signed distance function’ .

x(t) el = o(x(t),t) =0.

Level set equation

h+1u-Vo = 0 in R3




A model for free-surface viscoplastic fluid flow

Fluid domain: Q(t) € R3 with boundary 9Q(t) = p U (t)
[ p: solid part, I(¢): free surface

Fluid + level set equations 4+ b.c. 4 i.c. (coupling between fluid and level
set egs. are in red):
4
ou .
p(a—l-(u-V)u) —divuDu+Vp=f~

V-u=20
pe = K [Du|?"! + 75| Dul;*

in Q(t),

\

ult=o =up and u=g onlp, (wDu—pDnr=cknr on (t)

@+ﬁ.v¢:o in R® x (0,7

ot
¢(O) — ¢07

with nr = qu/qu , and Kk =V -nr.

Distance property: |V¢| = 1.

K > 0: consistency param., 715> 0: vield stress param., n > 0: flow index,

p. density of fluid, u: velocity vector, p: Kinematic pressure,

Du: rate of strain tensor, g: regularization param., nr: normal vector for I (¢),
vr: normal velocity of I'(t), «: surface tension coef., k. sum of principal curvature



Numerical method

Loop:
1. Level set part: Q(t) — Q(t + At)
2. Remeshing
3. Re-interpolation
4. Fluid part: {u(t),p(t)} — {u(t + At),p(t + At)}

end of the loop.



Numerical method

Loop:

1. Level set part: Q(t) — Q(t + At)

(a) Extend the velocity along normals to I'(t), u(t)|qq) — u(t)|rs:

Y =x, y""T =y"—ag(y")Ver(y"), until [y"T —y" <e
set up(x) = up(y"1).
(b) Semi-Lagrangian step for %—‘f +u-Vo=0

(c) Volume correction: Solve for §: meas{x : ¢(x) < §} = Voleference and
correct o™ = ¢ — o

(d) Update ¢ to satisfy |V¢| = 1: Invokes The Marching Cubes method
(Lorensen & Cline, 1987)

2. Remeshing
3. Re-interpolation
4. Fluid part: {u(t),p(t)} — {u(t + At),p(t + At)}

end of the loop.



Numerical method

Loop:
1. Level set part: Q(t) — Q(t + At)
(a) Extend the velocity along normals to '(t), u(t)|qu) — u(t)|rs
(b) Semi-Lagrangian step for 2 4+ 1 - V¢ =0

Zalesak's test: advection by a prescribed velocity field
2-nd order semi-Laaranaian and enhanced with particle-level set
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(c) Volume correction: Solve for §: meas{x : ¢(x) < §} = Voleference and
correct o™ = ¢ — o

(d) Update ¢ to satisfy |V¢| = 1: Invokes The Marching Cubes method
(Lorensen & Cline, 1987)

2. Remeshing

3. Re-interpolation

4. Fluid part: {u(t),p(t)} — {u(t + At),p(t + At)}
end of the loop.



Numerical method

Loop:
1. Level set part: Q(t) — Q(t + At)

2. Remeshing:.

(a) Graded octree cartesian mesh gradely adapted to I'(t 4+ At) location.

(b) 2D Illustration:

3. Re-interpolation

4. Fluid part: {u(t),p(t)} — {u(t + At), p(t + At)}

end of the loop.



Numerical method

Loop:
1. Level set part: Q(t) — Q(t + At)
2. Remeshing

3. Re-interpolation
(a) trilinear interpolation in cubic cells

(b) Semi-Lagrangian methods and upwind differences also use higher or-
der interpolation

4. Fluid part: {u(t),p(t)} — {u(t + At),p(t + At)}

end of the loop.



Numerical method

Loop:
1. Level set part: Q(t) — Q(t + At)
2. Remeshing

3. Re-interpolation

4. Fluid part: {u(t),p(t)} = {u(t + At),p(t + At)}
(a) Staggered location of pressure-velocity nodes
(b) Chorin-Yanenko type splitting:

e Semi-Lagrangian meth. for advection

e For (explicit) visco-plastic step we discretize

div u.Du = % (div p-Vu + (Vu)TVug) (holds if V-u=0)
by a hybrid of meshless finite point and finite difference approaches.
e Curvature evaluation Kk =V - V¢/|V9|
e Standard projection (pressure-correction) step with

p(t+ At) =kt + At) +pext on I['(t+ At)

end of the loop.



Computations for Newtonian fluid

Freely oscillating droplet problem.

Initial shape:
—_ T
r = ’l“o(]. —|— 652(5 — 9)),
S>. second spherical harmonic, ro = 1,

Surface tension: ¢ =1, e =0.3, K =1/150.

Energy balance for Newtonian fluid:

2
here | (t)| = meas(I(t)).

e =

==

t
1/ |u(t)|2dx—|—K/ / Dul2dxdt’ + | (t)| = 1/ [u(0)[*dx + [ (0)],
Q) 0 Jaw) 2 Ja®)

1.25
For the Newtonian case: L2y

1.15¢
Top tip trajectories on z axes 1l
and Né 1.05}
. . 17
fitting curve z = ro + cexp(—+ ol
with § = 16.2 = numerical dissipa- '097
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Computations for Herschel-Bulkley fluid, n = 1 = Bingham

1

Freely oscillating droplet problem. [

Viscoplastic case, 7 > 0

Y

Finite cessation times? [

l

|
1)1

N

The Kinetic energy decay (left) and top tip trajectories (right) for different
stress yield parameter values, 75 € {0, 0.02, 0.03, 0.04}.
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Numerical analysis challenge:

For the explicit time stepping treatment of visco-plastic term
divusDu one might expect stability condition:
h2

At < —min__ (in practice max |ue| > 107).
max |pe|

Was not observed in practice!

Observed stability can be related with the non-linear dependence
of ue on u (for large ue the solution is constrained)...
More rigorous explanation would be very desirable.



New advances in discretization of NS equations on octree meshes

e FV on staggered grids with high order FD for diffusion and advection
fluxes

e Interpolation operators with compact stencils

e Damping divergence free parasitic modes by a low-pass filter

4 O Vv -component nodes ® u-component nodes

(]

1
- ) if I_07
G ou(x) = 4;u(x) ITxX el .f

u(x) otherwise, - l

e+ Gou” - vur . . .
divergence free mode

Y.V.,M.O.,K. T., Computers and Fluids, 84 (2013) 231-246.



3D cavity

problem, Re = 1000

Spanwise vorticity for the midplane y = 0.5
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3D cavity problem, Re = 1000

The centerline ((0.5,0.5, 2),

Black: Wong-Backer
Green: 64x64x64

Pink: refinement 128-16
Blue: refinement 128-32

0 <2z<1), ug-velocities



3D flow around a square cylinder, Re=100

0.41

—

_ -
4 — ~ Inflow

0.41



3D flow around a square cylinder, Re=100

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Pmin hmaz Cldrag Clift St
1/256 1/256 6.204 0.07631 ¥
1/512  1/256 5.222 0.04407 0.326
1/1024 1/256 4.679 0.02697 0.297
1/2048 1/256 4.484 0.03166 0.307

Schafer & Turek 4.32—4.677 0.015—0.05" 0.27—0.35"
1/1024 1/32 4.671 0.02666 0.306

* Solution has not attained a periodic regime for t € [0, 16].
T Reference intervals may be not very accurate.




3D flow around a square cylinder, Re=100

-10.8
-14.4
-18

Cutplane vortexy
18

14.9

— 108
— 7.2
— 38
0

-3.6
7.2

-10.8 !
-144 !
-18 S

Advective terms: FV versus semi-Lagrangian method (linear interpolation).

Spanwise vorticity at time t=16 for the midplane y = 0.205, hmax = 1/256,



Newtonian
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Herschel-Bulkley fluid

Sayano-Shushenskaya Dam Landslide
(real-life topography)

V>

v
e

e vﬂr

o 20 40 60 80 100 120 140 160
time



Much more (papers, flows animations) on:

www.inm.ras.ru/research /freesurface

Research project MSE on mathematical modeling of natural disasters and
technical hazards (2011-2013)



Fundamentals

Energy inequality:

1

t
—/ p|u(t)|2dx—l—/ K|Du|*™" 4+ 7,|Du| dx dt’ + <|(t)]
2 Jaw 0o Jo()

1 t
s—/ p|u<o>|2dx+// fudxdt’ +<|r(0)],
2 Jaw 0 JQ(@)

here | (t)| = measgr:(I"(t)).

Note: This becomes energy equality (energy balance) for € > 0, with
fg fQ(t) pe|Dul? standing for the dissipation term.

Mass conservation.
Volume conservation.

Plug and yield regions.(?)



New advances in discretization of NS equations on octree meshes

“Instability’” of Helmholtz decomposition

4 - -
—divVp = divf,
divu = 0, = { Z =y
u-n|39 = f-n|aQ. 811 052
u=1f—Vp.
2m(e* — 1 27 (e — 1 1 r
u = sin m(e ) 1 — cos m(e ) ¢ :
e—1 et — 1 2r(e—1)
2m(e* — 1 27 (e — ay
v=|1--cos m(e ) sin m(e AN ¢ :
e — e — 1 27 (e — 1)
2n(e* — 1) 27 (e — 1) et
p = a COS CcoS ,
e—1 e — 1 (e—1)(er—1)
quantity mesh size h
1/8 1/16 1/32 1/64 1/8 1/16 1/32 1/64
uniform mesh locally refined mesh
lu—upl|z~ | 1.1e-1 2.9e-2 1.1e-2 3.8e-3 | 1.4e-1 7.0e-1 3.5e-1 1.8e-1




New advances in discretization of NS equations on octree meshes

O V-component nodes B u-component nodes

A4

©

divergence free mode

Low-pass filter

f = (I —ah’Ar)u+ Vp,
divu = 0,
u - n|39 = f . n|aQ.

Ar is the vector Laplace-Beltrami op. [

quantity mesh size h
1/8 1/16 1/32 1/64 1/8 1/16 1/32 1/64
no filter low-pass filter
|lu—up||z~ | 1.4e-1 7.0e-1 3.5e-1 1.8e-1 | 1.2e-1 4.9e-1 2.2e-2 1.0e-2
1 4
— i) if er,
Gou(x) = 42:21“(}() TXETes o+ Gou™-vurtt..

u(x) otherwise,



