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A fundamental question, which must be answered before
computations,

mesh refinement,
error indicators, estimators, etc.

is as follows:

What the words "accurate numerical solution" mean?

or

Which error measure(s) is adequate to the problem studied?
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For linear PDEs at least one possible answer is obvious:

the Energy Norm is a right measure.
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For linear PDEs at least one possible answer is obvious:

the Energy Norm is a right measure.

However, for many nonlinear models it is still an open

question.

Below we discuss possible answers with the paradigm of

one class of nonlinear PDE’s.
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Starting from mid 80’, numerical analysis of PDEs is based on the
Adaptive Modeling conception, which cannot be realized without

indication of a posteriori errors.

Error indicators use different motivations and have different forms:
Group A. weighted sums of local residuals and interelement jumps:
I. Babuska and W. Rheinboldt +P. Clement interpolation,
further developed by
T. Oden, R. Nochetto, R. Verfurth, M. Ainsworth, T. Stroboulis, C.
Carstensen, R. Hoppe.......................

Group B. Post processing (averaging)
O. C. Zienkiewicz and J. Z. Zhu, C. Carstensen, J. Wang, X. Ye........,
mathematical justifications are based on superconvergence (first
publications A. Oganesjan and L. Rukhovetz, M. Zlamal, J. Bramble and
A. Schatz.)

S. Repin 3d Russian-Chinese Workshop, INM 2013 5



Group C. Indicators obtained with the help of adjoint problems
dual-weighted residual method
and estimates for goal-oriented quantities
R. Rannacher, C. Johnson, E. Suli, T. Oden, S. Prhudome,...
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Group C. Indicators obtained with the help of adjoint problems
dual-weighted residual method
and estimates for goal-oriented quantities
R. Rannacher, C. Johnson, E. Suli, T. Oden, S. Prhudome,...

Group D. Advanced versions of the Runge’s error indicator
Hierarchically based indicators
R. Bank, C. Schwab, ...................................

Error indicators generate suitable adaptations of meshes (or basic functions)
but in general they do not provide

guaranteed bounds of errors.
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Fully Reliable Error Control
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Fully Reliable Error Control

is a new direction (about 15-20 years). It is based on much stronger tools
of error control, which satisfy the following conditions:

For a concrete solution the estimate must give a guaranteed and
realistic estimate of the error.

Estimates must be fully computable, CPU time required for the
computation should be taken into account as a substantial parameter.

The estimate should be applicable to a wide spectrum of
approximations, i.e., it should not be based upon special properties of
approximations/method (e.g. Galerkin orthogonality);

It must not attract extra regularity or other special properties of the
exact solution.

It is clear that above requirements can be satisfied if we consider the
problem on the functional level and try to find computable estimates of

deviations from the exact solution.
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Three key steps, which lead to fully reliable a posteriori estimates
for linear PDEs:
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1. Helmgholtz type decomposition of vector (tensor) spaces

U(Ω) := L2(Ω,R d) = Q0(Ω) ⊕ H∇(Ω),

where

Q0(Ω) = {q ∈ U | div q = 0},

H∇(Ω) = {q = ∇v | v ∈
◦

H
1(Ω) =: V0}.
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1. Helmgholtz type decomposition of vector (tensor) spaces

U(Ω) := L2(Ω,R d) = Q0(Ω) ⊕ H∇(Ω),

where

Q0(Ω) = {q ∈ U | div q = 0},

H∇(Ω) = {q = ∇v | v ∈
◦

H
1(Ω) =: V0}.

Yields Prager-Synge (1947) type estimates, e.g. for ∆u + f = 0

‖q −∇u‖2 + ‖∇(v − u)‖2 = ‖∇v − q‖2 ∀v ∈ V0 + u0, q ∈ Qf ,

where
Qf = {q ∈ U | div q + f = 0}.
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U(Ω) := L2(Ω,R d) = Q0(Ω) ⊕ H∇(Ω),

where

Q0(Ω) = {q ∈ U | div q = 0},

H∇(Ω) = {q = ∇v | v ∈
◦

H
1(Ω) =: V0}.

Yields Prager-Synge (1947) type estimates, e.g. for ∆u + f = 0

‖q −∇u‖2 + ‖∇(v − u)‖2 = ‖∇v − q‖2 ∀v ∈ V0 + u0, q ∈ Qf ,

where
Qf = {q ∈ U | div q + f = 0}.

Close ideas were used in the so called "Orthogonal Projection Method":
S. Zaremba (1927), H. Weil (1940), M. Vishik (1947).
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2. Mikhlin’s identity for quadratic energy functionals

1

2
a(u − v , u − v) = Ja(v) − Ja(u),

where

Ja(v) :=
1

2
a(v , v) − (f , v)

and u is a mininimizer.
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2. Mikhlin’s identity for quadratic energy functionals

1

2
a(u − v , u − v) = Ja(v) − Ja(u),

where

Ja(v) :=
1

2
a(v , v) − (f , v)

and u is a mininimizer.

Yields "classical"duality/equilibration estimates:
S. Miklin (1962), H. Gaevskii, H. Gröger, K. Zaharias (1974),
P. Mosoalov and P. Myasnikov (1981), D. Kelly (1984),
.......................................
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3. Estimates of the distance to the set of equilibrated fields

Lemma. Let y be a vector function in H(Ω,div ), then the distance to the
set Qf can be estimated as follows

inf
q∈Qf

‖y − q‖2 ≤ C ‖div y + f ‖2,

where C is a computable global constant (e.g., Poincaré-Friedrichs
constant)
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3. Estimates of the distance to the set of equilibrated fields

Lemma. Let y be a vector function in H(Ω,div ), then the distance to the
set Qf can be estimated as follows

inf
q∈Qf

‖y − q‖2 ≤ C ‖div y + f ‖2,

where C is a computable global constant (e.g., Poincaré-Friedrichs
constant)

Yields a posteriori estimates of the functional type.
First derived in 96-97’:
Comput. Meth. Appl. Math. Engrng. 96,
Comptes Rendus. Matematique 97
J. Math. Sci. 97, consequent exposition in Math. Comput. 2000.

They provide fully guaranteed and directly computable error bounds for any
conforming approximation of a PDE.
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General divergent type elliptic problem Λ∗
AΛu + ℓ = 0

A : Y → Y positive definite with the ellipticity constant Ca, ℓ ∈ V ∗

U Hilbert space with (·, ·) and ‖ · ‖.

Λ : V → U Λ∗ : U → V ∗

< Λ∗y∗, v >= (y∗,Λv)

Let

‖w‖ ≤ CΛ‖Λw‖ ∀w ∈ V ,
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Theorem

Let V be a Hilbert space s.t. V ∈ V ∈ V ∗.
For all v ∈ V

|||Λ(u − v)|||= inf
y∈Q

{|||Λv − y |||∗ + C‖Λ∗y + ℓ‖V}

where Q := {y ∈ U, Λ∗y ∈ V} and C = CΛ
CA

.
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Theorem

Let V be a Hilbert space s.t. V ∈ V ∈ V ∗.
For all v ∈ V

|||Λ(u − v)|||= inf
y∈Q

{|||Λv − y |||∗ + C‖Λ∗y + ℓ‖V}

where Q := {y ∈ U, Λ∗y ∈ V} and C = CΛ
CA

.

Corollary 1:

M⊕(v , y) = |||Λv − y |||∗ + C‖Λ∗y + ℓ‖V

is a computable majorant of the error for any y ∈ Q.
Corollary 2:
Majorant has NO GAP!
In other words, problem is INDEED FULLY CONTROLABLE!
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Example. Stationary diffusion model

−div p = f in Ω, (1)

p = A∇u in Ω, (2)

u = u0 on Γ, (3)

where A is a symmetric matrix satisfying the condition

Az · z ≥ c1|z |
2 ∀z ∈ R

d

|||y |||2 = ‖y‖2
A :=

∫

Ω
Ay · ydx and |||y |||2∗ = ‖y‖2

A−1 :=

∫

Ω
A−1y · ydx

are the norms equivalent to the natural norm of Q(Ω) := L2(Ω,R d) and
CΛ is a constant in the inequality

‖w‖ ≤ C‖∇w‖A ∀w ∈ V0.
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Since C = c−1
1 CFΩ, if CFΩ (or a computable upper bound of it) is known,

then C is easily computable and we arrive at
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‖∇(u − v)‖A =

= inf
y∈H(Ω,div )

{∫

Ω

(
A∇v · ∇v + A−1y · y − y · ∇v

)
dx+

+ C‖f + div y‖
}
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Since C = c−1
1 CFΩ, if CFΩ (or a computable upper bound of it) is known,

then C is easily computable and we arrive at

‖∇(u − v)‖A =

= inf
y∈H(Ω,div )

{∫

Ω

(
A∇v · ∇v + A−1y · y − y · ∇v

)
dx+

+ C‖f + div y‖
}

Such type estimates has been derived and tested for
reaction-convection-diffusion,

linear elasticity,
Maxwell,

Stokes, Oseen
....................
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A systematic exposition of the variational (duality) method: Elsevier,
2004:
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Nonvariational method: Walter de Gruyter, 2008
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Numerical and algorithmic aspects: Springer (in press)
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Nonlinear Problems

Linear problems are all alike;

every nonlinear problem

is nonlinear in its own way.
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A class of nonlinear models

Consider the class of variational problems

inf
w∈V

{
G (Λw)+ < ℓ,w >

}
(A)

G : Y → R+: convex, continuous, coercive functional vanishing at zero
element of Y
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A class of nonlinear models

Consider the class of variational problems

inf
w∈V

{
G (Λw)+ < ℓ,w >

}
(A)

G : Y → R+: convex, continuous, coercive functional vanishing at zero
element of Y

V V ∗ < v∗, v > Λ : V → Y

Y Y ∗ 〈y∗, y〉 Λ∗ : V ∗ → Y ∗

< Λ∗y∗, v >= 〈y∗,Λv〉

It includes, e.g., α-Laplacian, NonNewtonian fluids, nonlinear models in the
theory of solids (e.g., deformation plasticity).
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Example. V =
◦

W 1,α(Ω), Y = Lα(Ω,R d), Y ∗ = Lα
′

(Ω,R d),
1
α

+ 1
α′ = 1, α ∈ (1,+∞)

Λ = ∇, Λ∗ = −div ,

G (y) =
1

α

∫

Ω
|y |α dx ,

J(v) =
1

α

∫

Ω
|∇v |αdx −

∫

Ω
fvdx .

Euler equation leads to α-Laplacian

div |∇u|α−2∇u + f = 0, inΩ, u = 0 on Γ.
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In order to obtain a unified theory, which encompasses linear theory as a
special case, we must use special functionals (called compound functionals)

instead of norms.

S. Repin 3d Russian-Chinese Workshop, INM 2013 22



In order to obtain a unified theory, which encompasses linear theory as a
special case, we must use special functionals (called compound functionals)

instead of norms.

Compound is defined on elements of two complementary spaces X and X ∗

Dg (ξ, ξ∗) := g(ξ) + g∗(ξ∗) − 〈ξ∗, ξ〉 ≥ 0.

g∗ is the Young-Fenchel conjugate of g .

Important property: D(ξ, ξ∗) = 0 ⇔ ξ∗ ⊂ ∂g(ξ).
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Dg (ξ, ξ∗) can be converted into a norm only in very special cases,
where Y is isometrically equivalent to Y ∗.

Example. Poisson problem ∆u + f = 0

V =
◦

H1(Ω), Y = Y ∗ = L2(Ω,R d),

g(ξ) = 1
2‖ξ‖

2, g∗(ξ∗) = 1
2‖ξ

∗‖2.

Then Dg (ξ, ξ∗) = 1
2‖ξ − ξ∗‖2.
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Theorem ( PS type identity for Problem A)

Let (u, p∗) be the exact solution and exact dual solution, v ∈ V ,
q∗ ∈ Y ∗

ℓ := {Λ∗q∗ + ℓ = 0}.
Then

DG (Λv , p∗)
︸ ︷︷ ︸

+ DG (Λu, q∗)
︸ ︷︷ ︸

= DG (Λv , q∗)
︸ ︷︷ ︸

.

measure for v measure for q∗ computable

Meaning:
Here v is a computed solution and q∗ is a computed "flux"("stress").
The left hand side is a certain measure of the distance to (u, p∗). In fact,
this measure is a proper one.
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Simplest linear case:

Λ = ∇, G (y) = 1
2

∫

Ω |y |2dx , < ℓ, v >=
∫

Ω fv dx
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Simplest linear case:

Λ = ∇, G (y) = 1
2

∫

Ω |y |2dx , < ℓ, v >=
∫

Ω fv dx

DG (Λv , p∗) = 1
2‖∇v − p∗‖2,

DG (Λu, q∗) = 1
2‖∇u − q∗‖2,

DG (Λv , q∗) = 1
2‖∇v − q∗‖2,

Theorem results in the PS identity:

‖∇v − p∗‖2 + ‖∇u − q∗‖2 = ‖∇v − q∗‖2.
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Theorem (Duality gap identity)

For v ∈ V , q∗ ∈ Y ∗
ℓ := {Λ∗q∗ + ℓ = 0}, it holds:

DG (Λv , p∗) + DG (Λu, q∗) = J(v) − I ∗(q∗)

Corollary:
Set q∗ = p∗. Then (I ∗(q∗) = J(u) !)

DG (Λv , p∗) = J(v) − J(u)

Mikhlin’s type identity holds only for the nonlinear measure DG !

S. Repin 3d Russian-Chinese Workshop, INM 2013 26



Conclusion:

µµ(v , q∗) := DG (Λv , p∗) + DG (Λu, q∗)

is an adequate "mixed measure"of the distance between (v , q∗) and (u, p∗)
on V × Y ∗

ℓ .

Motivation: If µµ(v − u, q∗ − p∗) is large, then either

J(v) >> J(u),

or I ∗(q∗) << I ∗(p∗),

or both.
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Conclusion:

µµ(v , q∗) := DG (Λv , p∗) + DG (Λu, q∗)

is an adequate "mixed measure"of the distance between (v , q∗) and (u, p∗)
on V × Y ∗

ℓ .

Motivation: If µµ(v − u, q∗ − p∗) is large, then either

J(v) >> J(u),

or I ∗(q∗) << I ∗(p∗),

or both.

In general, DG is not a convex functional, but the measure µµ(v , p∗)
generates a convex! topology at the vicinity of the exact pair (u, p∗).
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Corollary: primal and dual PS type estimates

The measure µµ(v , q∗) can be split into two separate measures µµ(v) and
µµ(q∗), for which we have guaranteed bounds.

DG (Λv , p∗) + DG (Λu, q∗) = DG (Λv , q∗)

µµ(v) := DG (Λv , p∗) ≤ DG (Λv , q∗), ∀q∗ ∈ Y ∗
ℓ (PS type estimate).

Meaning:
µµ(v) is a convex measure of the distance from Λv to p∗ is majorated by

computable quantity ,DG (Λv , q∗), where q∗ is ANY in Y ∗
ℓ .
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Dual version:

DG (Λv , p∗) + DG (Λu, q∗) = DG (Λv , q∗)

µµ∗(q∗) := DG (Λu, q∗) ≤ DG (Λv , q∗) ∀v ∈ V (dual PS estimate).

Meaning: Convex measure µµ∗(q∗) of the distance from q∗ to Λu is
majorated by computable quantity ,DG (Λv , q∗), where v is ANY in V .
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Other suitable error measures

Assume that

G is differentiable (4)

and uniformly convex, i.e.,

G (
y1 + y2

2
) + Φ(y1 − y2) ≤

1

2
G (y1) +

1

2
G (y2) ∀y1, y2 ∈ (5)

where Φ : Y → R
+ is a forcing functional.

Define

µµ+(v) :=
〈
G ′(Λu) − G ′(Λv),Λv − Λu

〉
,

µµ−(v) := Φ(Λ(v − u)).

Theorem

If G satisfies (1) and (2) then

µµ−(v) ≤ µµ(v) ≤ µµ+(v) ∀v ∈ V.
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Theorem I guarantees that:

µµ(v) = inf
q∗∈Y ∗

ℓ

D(Λv , q∗),

µµ(q∗) = inf
v∈V

D(Λv , q∗),

i.e., both estimates have no "gap".

Our goal is to deduce a fully computable majorant with the same property
defined on a mich wider set
Q∗ = {y∗ ∈ Y ∗,Λ∗y∗ ∈ U} WITHOUT EQUILIBRATION CONDITIONS.
U is a Hilbert space: V ⊂ U ⊂ V ∗.
Simple example: Q∗ = H(Ω,div ).
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Lemma (Distance to the set of "equilibrated"fields Y ∗
ℓ )

Assume that there exists a nonnegative continuous functional H : V → R+

such that

G (Λw) ≥ H(w) ∀w ∈ V (6)

where H∗ : V ∗ → R+ is the Young– Fenchel conjugate to H.
Then for any y∗ ∈ Q∗, the following estimate holds

inf
q∗∈Y ∗

ℓ

G ∗(y∗ − q∗) dx ≤ H∗(R), (7)

where R : V → R is a linear functional defined by

〈R,w〉 := 〈y∗,Λw〉− < ℓ,w > .

Note: Y ∗
ℓ contains y∗ such that 〈R,w〉 = 0 for any w ∈ V .
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Example. V =
◦

W 1,α, G (y) = 1
α
‖y‖αα, and G ∗(y∗) = 1

α′ ‖y∗‖α
′

α′ .

Since ‖w‖α ≤ CF‖∇w‖α.

1

α

∫

Ω
|∇w |α dx = G (∇w) ≥

1

αCα
F

‖w‖α = H(w).

If w∗ ∈ Lα
′

(Ω), then

H∗(w∗) = sup
w∈V

{∫

Ω
w∗w dx −

1

αCα
F

‖w‖α
}

=
Cα′

F

α′
‖w∗‖α

′

α′ .

Thus, if div y∗ + ℓ ∈ Lα
′

then

inf
q∗∈Y ∗

ℓ

G ∗(q∗ − y∗) ≤
Cα′

F

α′
‖div y∗ − ℓ‖α

′

α′ .
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Theorem (General form of the error majorant; Russ. J. Numer. Anal. 2012)

For any v ∈ V

µµ(v) = inf
y∗∈Yz
λ∈(0,1)

DG (Λv , y∗) + H∗

(
R

1 − λ

)

+ ℜ(λ, y∗),

where

ℜ(λ, y∗) = λG ∗

(
y∗

λ

)

− G ∗(y∗) + 〈y∗,Λv〉− < ℓ, v >

and µµ(v) = DG (Λv , p∗) is the above defined nonlinear measure.
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Example.

G (Λw) = 1
α

∫

Ω |∇w |α dx . G ∗(y∗) = 1
α′

∫

Ω |y∗|α
′

dx .

µµ(v) ≤

∫

Ω
(
1

α
|∇v |α +

1

α′
|y∗|α

′

−∇v · y∗)dx +

+
Cα′

F

α′(1 − λ)α′
‖div y∗ − ℓ‖α

′

α′ +

+

(
1

λα
′
− 1

)
1

α′
‖y∗‖α

′

+

∫

Ω
(y∗ · ∇v − ℓv)dx .

Conclusion:
(a) The majorant is fully computable.

(b) if ‖div y∗ + ℓ‖α′ is small then λ can be set small, three last terms are
small and the main part of the error majorant is D(∇v , y∗),

(c) in this case, D(∇v , y∗) is a good error indicator for mesh refinement.
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Decomposition Theorem (generalization of Helmgholtz decomposition) is
also expressed in terms of D.
Simplified version for Λv = ∇v :

Y ∗
Λ (Ω) := {y∗ ∈ Y ∗(Ω) | ∃ v ∈ V : D(∇v , y∗) = 0} ,

and

Y ∗
f (Ω) := {y∗ ∈ Y ∗(Ω) | ∀ v ∈ V0(Ω) :

∫

Ω
(y∗ · ∇v − fv) dx = 0} .

Theorem (St. Petersburg Math. J., 2000)

The sets Y ∗
f (Ω) and Y ∗

Λ (Ω) are closed subsets of Y ∗(Ω). The intersection
of these sets consists of the single element – solution of Problem A.
For any function y∗ ∈ Y ∗(Ω), there exists a unique decomposition

y∗ = y∗
Λ + y∗

f , y∗
f ∈ Y ∗

f (Ω) and y∗
Λ ∈ Y ∗

Λ (Ω).
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The theory is extendable to a much wider class of problems

inf
w∈V

{
G (Λw) + F (w)

}
(B)

G : Y → R+: is defined as before,
F : V → R+: convex, continuous on V .

In particular, this class includes variational inequalities.
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Example. The obstacle problem, Ω ⊂ R
2

K = Kφψ :={v ∈ V0 | φ ≤ v ≤ ψ a.e. inΩ}.

Exact solution of the problem

∫

Ω
A∇u · ∇(w − u)dx ≥

∫

Ω
f (w − u)dx ∀w ∈ Kφψ

generates three sets:

Ω u
⊕ := {x ∈ Ω | u(x) = ψ(x)} upper coincidence set,

Ω u
⊖ := {x ∈ Ω | u(x) = φ(x)} lower coincidence set

Ω u
0 := {x ∈ Ω | φ(x) < u(x) < ψ(x)} .

Open set Ω u
0 is the complementary set, where a solution satisfies the

differential equation.
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Theorem

For any v ∈ K and y ∈ H(Ω,div ),

‖∇(u − v)‖A ≤ ‖A∇v − y‖A−1 + CΩ‖ | f + divy |±v ‖ := Mobs(v , y).

| f + divy |±v :=







(f + divy)⊖ at a.e.points of Ωv
⊕,

f + divy at a.e.points of Ωv
0 ,

(f + divy)⊕ at a.e.points of Ωv
⊖,

Mobs(v , y) vanishes if and only if v = u and y coincides with the exact flux.

Mobs(v , y) is based on the coincidence set generated by known v !

S. Repin 3d Russian-Chinese Workshop, INM 2013 42



Thank you for attention
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