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1 I Introduction

There is broad recognition that uncertainty is an essential aspect of the eco-
nomics of climate change. The real option analysis deals with the decision mak-
ing problem by learning more about the uncertainty over the time and exercising
the option at the most favorable time, which is important in strategic and finan-
cial analysis because traditional valuation tools such as net present value (NPV)
ignore the value of flexibility. Here we will employ the real option analysis to
solve optimally the problem related to rebuilding the defense higher and wider.
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2 The real option model for the defense

Assuming that the sea level now is h; and the height of defense is hy, we might
widen the defense and increase its height in the future when the sea level reach
and exceed the critical value hy, where it is reasonable to presume that iy <
hi < ho.

e The underlying assets

The sea level and the atmospheric temperature are two important indexes of
climate change, which are the underlying assets in our real option model.
Following Bloch (2010), we can model the global mean temperature level

(Y?)¢>0 be a one-dimensional Markov process under the historical measure P:

dY; = 0(Y — Y,)dt + oydWy, 2.1)

where Y () is the equilibrium or mean value, oy is the volatility caused by
shocks and # > 0 is the rate by which these shocks dissipate and the variable

reverts towards the mean.
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According to Rahmstorf (2007), we consider the sea level process (X;):>( to be

a function of the temperature process by assuming the rate of change of the sea

level to be proportional to the temperature increase under the P-measure:

dX; = n(Y; — Yo)dt + ox X, dWy.

e The valuation equation
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Denote by F'(X, Y, t) the real option dependent on the sea level X and the tem-

perature Y. Then, the change in the real option can be described by the Ito’s

lemma:
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from which we can obtain the relative change by dividing on both sides by F":
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For simplicity, we define

Introduction

aF 3 aF =5 8F 1 aQF 1 82F The real option model.. ..
k: TR Y_Y— QYt_Y_ _2X2— _2— F ower penalty metho
( at + 77( t O>8X + ( ( ) t) aY + 20_X aX2 + 20-Y8Y2> / ’ /:'I:)eﬁtte:ﬁnit::/olur:e.d..
8 F a F Numerical examples
I X— | /F, 8= — [V
= (oxx3z) /7 s=(ovgp)/
Brennan and Schwartz (1979) proposed a method to form a portfolio P by in-
vesting amounts of x1, x5 and x3 in three bonds of maturity 7, 7 and 73, re-
spectively. The rate of return on this portfolio is —
dP A
? = [$1/{? + a9k + xgk’]dt Sk [513151 + 29571 + ngl]dWX EIII
A KBRS
+[CL’1S2 + 2955 + IgSQ]dWy.
The rate of return on the portfolio will be non-stochastic if the portfolio pro-
portions are chosen so that the coefficients of dWX and dWy are zero. That 1s
%
2151 + 251 + 2351 = 0,
B (2.3)

2159 + 259 + 2355 = 0.
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To prevent arbitrage the return on this portfolio must be risk-less over short time
intervals, this is to say, the rate of the return is equal to 7, the instantaneous
risk-free interest rate. As a consequence, the portfolio risk premium is zero:

CL'1(]€(’7’1) — 7") + 5172(]{?(7'2) — 7") 4 xg(k(Tg) — 7”) =0. (24)

The no arbitrage condition Eq.(2.4) and the two zero risk conditions Eq.(2.3)

will have a solution only if
k—r = AxS1+ Ay Sy, (2.5)

where Ay and Ay are the market price per unit of sea level and temperature,

respectively, from which we can obtain

OF OF s OF 1 ,0°F 1 , °F

oF oF
:>\X (UxXa )/F )\Y (O'Yay) /F
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By simplifying and moving all terms to the left hand side, we finally get the

valuation equation as follows:

oF oF

— + (Vs = Yo) — AxoxX) ==+ (0(Y (t) — ¥2) — Ayoy) oF

ot - - 0X oY (2.6)
axz T2%gyz TN T
e Final and boundary conditions
At expiration, the value of the real option will be
F(X,Y,T) =max(V(Xr) — K,0) (2.7)

where V' (X') denotes the function of avoided damages caused by sea level rise
by increasing the defense in height and it is an increasing function about X, and
K denotes the cost of increasing the defense to a specific height.
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To solve the above equation, we need the following two classic value-matching

and smooth-pasting boundary conditions:

F(X*(t),Y,t) = V(X*(t)) - K, (2.8)

OF(X*(1),Y,1)
0X
where X*(¢) is the critical value on which point the investment is triggered.

If X(t) > X*(t), we should commit the investment immediately. If X () <
X*(t), it is advisable to delay the decision to investment.

=V (X*(t)), (2.9)

The lowest sea level results in a call option being worthless. Therefore, a prac-

tical Dirichlet boundary condition is
F(Xmin, Y, 1) =0, (2.10)

and the boundary condition at X = X,,,,, 1s simply taken to be the extension of

the final condition at the point, i.e.,

F(Xmaz, Yo t) = F(Xmaw, Y, T) = V(Xnaz) — K, 2.11)
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and
F(X7 sznat) — gl(Xa t)7 F(X7 Ymaxat) - g2(X7 t)a (212)

where g, and g» will be determined by solving the one-dimensional equation
obtained by taking the third and the fifth terms of (2.6) to equal to zero for two
particular values Y = Y,,,;, and Y = Y),,4..

We restate our partial differential equation of real option as follows:

OF - OF =
- 1 (a(Ye = Yo) = Axox) 50+ (0(Y (1) = Yi) = Avoy) =
1 ,0°F 1 ,0°F

5% 553 + 5% gy — 1F = 0,26)

with the boundary conditions

oF
oy

F(Xmma Y) t) — 07 F(Xmaa:: Y; t) - V(Xma:c) - K7

F(X7sznat) — gl(Xat)7 F(X7 Ymaw> ) - gQ(Xa t)a
OF(X*(1),Y, 1)
0X

F(X*(t),Y,t) = V(X*(1)) - K, =V (X*(t),

and the final condition

F(X,Y,T) = max(V(Xr) — K,0).
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3 A power penalty method

We formulate the above free boundary problem as a linear complementarity

problem, and solve it by a power penalty method.

e Reformation of the problem

Let F'(X,Y,t) represent the value of the real option with expiry date 7', if we
define

SR O*F O*F OF OF

LF = | ox X +ov—— | - | (X, Y, )= + g(Y, 1) = | +r'F
(UX aXQ—l_OYayg) (( ) 7)6X+g( 7)8Y TrL,

(3.1)

where h(X,Y,t) = n(Y; — Yy) — Axox X and g(Y,t) = (Y1 — Y;) — A\yoy, the
real option F' satisfies the following partial differential complementarity prob-

lem:
>

BE 0,
{ gl e > () (3.2)
IEN () = 0,

\
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for (X,Y,t) € Q x [0,T) with the boundary conditions

F(Xmma Y7 t) — 07 F(Xmaa:a Ya t) - V(Xma:c) - Ka
F(X7 Yminat) = 91(X, t), F(X, Ymamat) — QQ(X, t),

(3.3)

and terminal condition
F(X,Y,T)=F*(X,Y), (3.4)

where
F*(X,Y) =max(V(X) — K,0)

is the payoff function.
For the convenience of theoretical analysis, we rewrite (3.1) as the following

conservative form

LF = _%_1; — V- (AVF +bF) + ¢F (3.5)
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where

A:(all a12>:<%o§( 0 )
as1 a2 0 %0'}2/ 7
_ ) (3.6)
b by _ a(Y; — iio) — AxoxX —oxX
- b2 (Y1 —Y;) — Ayoy ’

ZT—)\XO'X_O'%(—Q.

@]

Let Fy(X,Y) be a twice differentiable function satisfying the boundary condi-
tions in (3.3). We introduce a new function

U(Xa Y, t) = eﬂt(FO - F)7 (3.7)

where 3 = %(0_%( + 0%). Taking LF; away from both sides of the first inequality
of (3.2) and transforming F' in (3.2) into the new function u, we have

.

Lu < f,
X u—u* <0, (3.8)
| (Lu—[)- (u—u") =0,
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where

Lu=—u — V- (AVu + bu) + cu,

(3.9)
c=c¢+ B, ur =Pl (Fy — F*), f(X,Y,t) = ' LE,.

e Variational inequality of the problem

Let 2 = [Xmin, Ximaz] X [Ymin, Yimaz) and let I' denote the boundary of €. Set
Hy() ={v:ve H(Q), v[r=0},

K = {v(t) : v(t) € Hy(Q),v(t) < u(t), ae. in(0,T)},
where u*(t) is defined by (3.9).
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Now, we define the following variational inequality problem.
Problem 1 Find « € K such that, for all v € I,

(_g_?, v — u) + B(u,v —u;t) > (f,v—u), ae in(0,T7),  (3.10)

where B(u,v;t) is a bilinear form defined by
B(u,v;t) = (AVu + bu, Vo) + (cu,v), u,v € Hy(). (3.11)

Theorem 1 Problem 1 is the variational form of the complementarity problem
(3.8).

Lemma 1 There exist positive constants C and M, independent of v and w, such
that for any v, w € H}(),

B(v,v;t) > Cvl[?, (coerciveness)

Bv,w;t)| < MJo], Jwl,. (continuity)

Theorem 2 There exists a unique solution to Problem 1.
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e The power penalty approach

To derive the power penalty approach, we first consider the following nonlinear

variational inequality problem:
Find u) € H&(Q) such that, for all v € H&(Q),

0 :
(—%,v — U)\> + B(ux, v—uy;t)+j(v)—j(uy) > (f,v—uy), a.e. in (0,T)
(3.12)
where g
j(v) = ——(max(v — u*,O))%, k > 0, =N (3.13)
b7 ek
Moreover, (3.12) is equivalent to the following problem:
Problem 2 Find u) € H} () such that, for all v € Hj (),
aU)\ ./ )
v+ B(uy,v;t) + (5'(uy),v) = (f,v), ae. in (0,7), (3.14)
where

j'(v) = A(max(v — u*, 0))~. (3.15)
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The strong form of (3.12)-(3.15), which defines the penalized equation approx-
imating (3.8), is given by

Luy + A(max(v — u*,0))% = f, (z,y,t) € Q2 x[0,7T), (3.16)
with the given boundary and final conditions
ux(z,y,t)|r =0 and uy(z,y,T) = v (z,y,T). (3.17)

e Convergent analysis

Lemma 2 Let u) be the solution to Problem 2. If u) € LP(O), then there exists
a positive constant C', independent of u) and A, such that

. C
Imax(uy —u*, 0)|[1oe) < 3
* * C_
[max(uy — u a0)||Loo(o,T;L2(Q)) + [|max(uy — u >O)||L2(0,T;H3(Q)) s 2\e/2
(3.18)

where k is the power of the power penalty function and p = 1 + 1/k, and
©=Q x[0,7T].
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Using Lemma 2, we are able to show that the solution to Problem 2 converges to
that of Problem 1 at the rate of order A~*/2, which is stated in the next theorem.

Theorem 3 Let v and u), be the solutions to Problem 1 and Problem 2, respec-
tively. If uy € LP(©) and % € L**1(©), then there exists a positive constant
C, independent of uy and )\, such that

lu — u/\||L°°(0,T;L2(Q)) + [Ju — UA||L2(0,T;H01(Q)) < k72 (3.19)

where k is the power of the power penalty function.

4 I The fitted finite volume method

A fitted finite volume method will be employed to solve the above penalty prob-

lem.
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Under (3.7), (3.16)-(3.17) can be rewritten as

=0, (X,Y,t)eQx[0,T) (4.1)

+ i

—F,—V - (AVF+bF)+4¢cF — \F*—F]
with the corresponding boundary and final conditions, and
Xmin:X0<X1 < e <XNX :Xmaxandymin:}/() <Yi < e <YNy:Ymax-

is a partition of €). Let

Xi— i i '

:1—+X, X, =2y =
2 2 2 2

be the second mesh.

Integrating (4.1) over R, ; = [X,_1, XH%] x Y,

=3

] Y
i+s O Xi+% Yg+%
/ / —dXdY / / V- (AVF +bF)dXdY
X, 4 X, 3

Y+ Yin

X. 1 =
2 2

71—

N[

Y; 1], we have

Y
d= % J

1
) 3
YJ+% 1
/ / eFdXdY — )\/ / [F*—F]j_dXdYZO,
X, 1 1 1
-3 -3 -3

Yi-g

fori=1,2,--- Nx—1,7=1,2,--- Ny — 1.
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Applying the mid-point quadrature rule to the first, the third and the last terms,
we obtain from the above

OF; ; .
a 815,] Hij = /R ‘ V- (AVF +bF)dXdY + ¢ ;Fi R, ; — A[f7; — Fi ;L R j =@.2)

fori=1,2,--- ,Nx —1,j=1,2,--- , Ny — 1, where R; ; = (XZ,_%,XH%) v
Y1, Y1), &y = (X5, Y5,0), By = F(X;,Y;,8), and FfY; = F*(X;, Y}, ).

J—3
Consider to approximate the second term in (4.2): Integrating by parts and using
the definition of flux AV F + bF’', we have

/ V. (AVF + bF)dXdY = / (AVF + bF) - nds
(Xi+%’Yj+%) 1

(0% X?Fx + (a(Y; = Yy) — Axox X — 0% X)F)dY

I
— <

(X 1Y 1) 2
(Xi_%aYH%) 1
— / (0% X*Fx + (a(Y; = Yy) — Axox X — o5 X)F)dY
(X, 1Y) 2
2 1732
(X 1Y, 1)
+/ o (la%Fy +g(Y,t)F)dX
(X 1Y) 2
2 JT32
(XH%an_%) 1
— / (02 Fy + g(Y, ) F)dX. (4.3)
(XZ._%,Y;._%) 2
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Deal with the terms above one by one: For the first term, we have

(X1 1Y)
/( (anFX aF blF)dY ~ (allFX =4 blF)|(XH_%,Y}) . hyj,

lajl)

and we approximate the term a1 F’x + b1 F' by solving the following two-point
boundary value problem

(aX*Fx +bF) =0 (4.4)

e — F ., F(X..,Y) = B 4.5)
where a = 10%, b = n(Y; — ¥5) — Axox X — 0% X and s = b(a:H%,j), and

¥ ; 2ig C C .4
F=eX / oo = L gee (4.6)
Therefore,
_&L %,
(& Xit1 7 1 e_TiFIL.’ )
Rl e el IO C)

&gy
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Similarly, the other three terms in (4.3) can be approximated by

_%%ZF —
e i j—e Nt
(allFX+b1F)|(Xi_%,yj) hyj ~ bi—%,j _%‘Z—Z,j — =17 1. hY}: 4.8)
e Xi —e X
1, N Y P ) o
(§UYFY + g(Y)F)kX“}/J"'%) . hXZ ~ (bi’j+2 eazJY3+1 — eazJY ) hXZ’
4.9)

abi=ly; l a 1Y 1
(1 oy Py +9(Y)F)lx.y ) hx = | b \° —]FZ’J M IE R -hy,
2 vl+) i b=y e%ij-1Y; — eQij-1Yj-1 v

(4.10)

fort =0,1,--- ,Nxy —land j = 0,1,--- ,Ny—l,wherea:am,l_)i’ﬂ% =

b. . 1
— 13.7+
bQ(X“ Y;-I— ) and Q5 = 2,

@22
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Using (4.3), and (4.7), (4.8), (4.9), (4.10), we obtain the following equation:

OF;
- at’jR b T € gFi-15 7+ ezg 1Fig-1t+ e ’JF ij T ezg+1F,J+1
+ el Fing — Ay — FyliRij =0, (4.11)

fort=1,2,--- ,Nx —1landj=1,2,--- , Ny — 1, where

. b,_1.e Sithy b, -_;eo‘” 15— “hy,
el = —— e = ——=2 (4.12)
o TS VAT WA KRS B 1Y c0ij—1Y;1’ :
e Xi —e i1
_ Y _ %1
. . X‘ . . X‘
i Divlge Nhy o biise %hy,
€ij = _oig % Y a1y
e Sit1 — e X e Xi —e Xi1
7 & 7 Qi i1Y;
b’]+16 i, ]hX bi,j—le i,j—1 JhXi
e®iiYit1 — o0iY; = o0ij1Y; _ o0y 1Yj 1
+ ¢ iR, (4.13)
_ _ %54
Oé, i+1
) b7J+16 “hy, ij iy e Tty (4.14)
’.7"'1 eaz’]Y}_H _ edi’jy eZ+17] _&L _(ﬂ’ :

ande)] =0ifm#i—1,ii+1landn#j—1,7,j+ L
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LetT =ty > ty,---,> ty = 0 be a partition of [0, T']. Applying the two-level
implicit time-stepping method with a splitting parameter 6 € [3,1] to (4.11) on
this mesh, we get the following full discrete system:

(QE™ + G™F™ + D(F™) = (G™ — (1 — 0)E™)F™ — (1 — ) D(F™).
(4.15)
Theorem 4 For any given m = 1,2, --- /M — 1, if |At,,| is sufficiently small,

c > 0, and (4.15) is solved by Newton’s method, then its system matrix is an

M -matrix.
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Theorem 5 Let F' and F}, be the exact and the semi-discrete solutions. Then we

have
| F' = Fylln < Ch,

| - ||, is @ weighted discrete H'-norm.

5 I The numerical example

American option with the parameters: X,,;, = 20, X0 = 190, Y = 0.9,
Yiar=31,1n=03,0=001,T=90,r=0.1,Yy =0.5,Y; = 1.5,0x = 0.2,
oy = 0.3, K =100, A = 10.
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exercise boundary at Ymin
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Thank you very much !
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