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1. Variational inequality with a nonlinear diffusion-
convection differential operator

/a(x)gl(Vu) V(v —u)dr+ /b(ﬂ:)gg(u, Vu)(v —u)de+

+ ¢(|Vv|) — ¢(|Vul|) > /f(v —u)der YveV,ueV. (1)
Q

Here QO C R? is a bounded domain with a piecewise smooth
boundary 9Q, Hi(Q) € V C HYQ), H(Q) and H}(Q) are
Sobolev spaces; f € Lo(f2), a,b € Ly(2) and a(x) = ag >
0V € €.

Let the operator P : V — V* be defined by the left-hand side
of (1):

(Pu,v) = /a(m)gl(Vu) -Vvdx + /b(az)gg(u, Vu)vdz.
Q Q
The main assumptions:

P is uniformly monotone.
¢ is a proper, convex and lower semicontinuous function.



The sufficient conditions to ensure continuity and uniform monotonicity

of P are:

g1(t) and go(s, ) are continuous and |g1(t)| < clt],
(91(t1) = g1(t2), T — t2) = aolts — 12, 00 >0, (2)
|g2(s1, 1) — g2(s2, T2)| < Buls1 — sa| + Balts — Ta],

agog — bﬁlc?c — bﬁQCf =0 >0,
where b = sup |[b(x)|, ¢y is the constant from Friedrichs inequality.
x€l)

Classical examples of function ¢:

1) ¢(|Vu]) = / Vuldr,

2) ¢(|Vul) is ?he indicator function of the convex and closed

set K ={ue H}(Q): |Vu(z)] <1Vz € Q}.

Under aforementioned assumptions for the operator P and the
functional ¢ variational inequality (1) has a unique solution.

Further for the definiteness we consider variational inequality
(1) in the case V = H}(Q) and ¢(]Vul) is the indicator function
of K.

Remark 1 The result on the existence of a unique solution
for variational inequality (1) remains valid if the operator P is
continuous and uniformly monotone only on the set K = {u €
Hi(Q) : |Vu(z)| < 1Vz € Q}. Because of this, the assumptions
(2) can be satisfied only for t € R? : |t] < 1.



2. Approximation of the variational inequality

1-st order f.e.m. on the triangle grids in the case of a polygonal
Q.

T, = {e}, Ue = , is a conforming triangulation of Q0 into
triangle finite elements e,

Vi, C Hj () is the space of the continuous and piecewise linear
functions,

U, € Ly(92) is the space of the piecewise constant functions,

Ky ={up € Vi : |[Vuy| < 1Vx € Q} is the convex and closed
set in Vh,

fn = (mease)™! [ f(t)dt and similar for a;, and by,
tee

Discrete variational inequality, approximating (1):

/ ang (V) -V (vn — wp) de + / bugs (1, V) (0 — up) dx >
Q Q

= /fh(vh — uh) dx Yvy, € Ky, uy, € Ky, (3)

The operator defined by the left-hand side of this variational
inequality inherits the properties of P, so, (3) has a unique solution.



Matrix (operator)-vector form of the discrete variational
inequality.

w € R and v € R are the vectors of nodal values of the
functions wy, € Uy, and uy, € Vj, respectively:

Uhauh(@wER anthauh@ueRN

If G = (qin,q2n) € Up x Uy then q, < ¢ € R™, N, = 2N,
q—= ((11176121, <o q1iy 4245 - - - ,Q1Ne,(12Ne)-

(Further by (.,.) and ||.|| we mean the Euclidian scalar products and norms in

the corresponding spaces.)

Define the matrices L € RYN«*No M, € RN N M, € RN N

and the operators:

(L, q) = / Vun(2) - Gn(x)dz, (Myp,q) = / P(2) - Gula)d.

(Myu,v) = /uh(a:)vh(x)dx,

Q
ki RN — RNy, S{ah(x) (2)) - gn(x)dex,
) =

ko : RNVe x RNy — RN (kg u,p),v) = [ bp(x)g2(un, pr(x))vn(z)de.
Q

Finally, denote by 6 : R — R the indicator function of the set
K={p: p%j +p§j_1 < 1Vj=1,...N.}. Using the notations
variational inequality (3) can be written as follows:

(LT ky (L) +ky(u, Lu), (v—u))+0(Lv) —0(Lu) > (f,v—u). (4)



The equivalent form of writing for discrete variational inequality
is the inclusion

LTk (Lu) + ko(u, Lu) + LT00(Lu) > f, (5)

which we will solve.

Properties of the matrices and operators:

Matrices LT L, M,, and M, are symmetric and positive definite,
M, has block diagonal form with 2 x 2 blocks (N, blocks
corresponding to the finite elements).

The operator £y is continuous and uniformly monotone, while
ko is Lipschitz-continuous:

(k1(p) — k1(@), p — @) = aooollp — qll3
[k2(u, p)) = ka(v, @)l armr < bB1|lw — vl[a, + 0B2llp — allas,.

k1 has the block diagonal form with 2 x 2 blocks.
00 is a maximal monotone operator  subdifferential of the

proper, convex and lower semicontinuous function 6 - and it has
the block diagonal form with 2 x 2 blocks as k; and M,



Construction of the saddle point problem

Consider inclusion (5):
LTk (Lu) + ky(u, Lu) + LT00(Lu) > f.

Define the auxiliary vectors p = Mp_l/2Lu and \ € kl(M]}/Qp) +
80(M;/2p). Then the triple (u, p, \) satisfies the following system:

o (u, M)/?p) +L7X 30,
k1 (M)?p) + 00(M)p) —M,"X 5 0, (6)
Lu — M]}/Qp =0.

The operator Ay (u) = (kz(u,p)> is not monotone and this
p ki(p)

impedes the application of the iterative solution methods.
We make the equivalent transformations of the system by using
the equation M;/Qp — Lu = 0 to get a monotone operator:

rL" Lu — v L" M)?p + ks(u, M)/?*p) + L") = 0,
ki (M,?p) + 00(M)2p) — MY?X 3 0, (7)
Lu — M;/Qp = 0.

Lemma 1 If

0<rm<r< ro, T2 = 2a¢000 — bﬁQCf F 2\/agog0

then
u rL Lu —rL7p + ky(u p)) S
the operator A = ’ 15 uniforml
P <p> ( k1(p) formly
monotone,

problem (7) has a solution (u,p, \) with the unique component
(u, p).



4. Iterative solution method for saddle point problem
(7):
kl(M;/Qle_l) + ag(M]}/ka—&-l) . M;/QA]C = 0’
TLTL,UIIC+1 . T,LTkarl + kQ(Uk, M]}/kaJrl) 4 LT)\k — O, (8)
AL — Ak T(M]}/ka—kl — Lul+h)
with an initial guess (A%, u).

Further for the definiteness we take r = 2agog — bB2cy — the
midpoint of the admissible interval for r.

Implementation of the method:

1) solve the inclusion
1/2, k+1 1/2 k+1 k_ arl/2yk.
ke (M)Y2pM) + 00(M)?pM) 5 FF = MI2AF;
2) solve the system of linear equations
?,,LTLukJrl — T'LTkarl . ]{2(’U,k, M;/ka+1) . LT)\k7

3) update A: ¥ = \F 4 T(Z\@}mplerl — Lufth),

Owing to block diagonal form of the operators k; and 96 the
inclusion is splitted into N, two-dimensional problems for the
coordinates of vector p**! corresponding to the finite elements.

Thus, the method is very easy to implement.



Some other (well-known) iterative methods.
Uzawa-type method for solving saddle point problem (7):
kl(M;/kaH) n 89(Mpl/2pk+1) _ Mpl/Q)\k 50,
rLTLuF Y = r LR 4 gy (a1, M;/kaﬂ) LLTN =0, (9)
AL — Ak T(M;ﬂpkﬂ - Luk+1)
(JA. Lapin, 2010 and | E. Laitinen, A. Lapin and S. Lapin, 2012])

We can also use another transformation of the system (6) (similar
to augmented Lagrangian technique; see [M. Fortin and R. Glowinski
Augmented Lagrangian methods — 1983| and |R. Glowinski and P.
LeTallec Augmented Lagrangian and operator-splitting methods
in nonlinear mechanics — 1989]) and obtain the following saddle
point problem:

rLT Lu — TLTMI}Q]) + ko(u, M;/Zp) + LA =0,
—rLu+rM)?p + ki (M)?p) + 00(M,/*p) — M)/*A > 0,

Lu — M;/zp =0.
For any r > 0 this problem has a solution (u, p, A) with the unique
component (u,p). Iterative method for its solving (Algorithm 2
due to the terminologie of R. Glowinski):
—TL’U,k + ’I”M;/ka—’_l + kl(M;/ka+1) + ae(M;/ka-l-l) . MZ}/2>\/€ 5 O,

TLTLUk+1 . ,’,_LTka—Fl 4+ kQ('U;k+1, M;/Zpk-i-l) 4+ LT)\/{; — 0’
)\k—&-l — )\k 4+ T(Mpl/2pk+1 . Luk+1)
(10)

with an initial guess (A", u°);

Implementation: on every iteration of methods (9) and (10)
we solve the inclusion as in method (8) and the system of nonlinear
equations

TLTLUk+1 i kQ(Uk+1, M]}/ka—‘rl) — —LTA]C 4+ TLTp]H_l.

This is the most time consuming step in the implementation of
these methods.



Convergence of the iterative methods follows from the following
general result on the convergence of the iterative method for constrained
saddle point problem.

5. Iterative solution methods for the constrained saddle
point problem

(- ()-()
Assumptions:

operator A : RY> — R™ is continuous, strictly monotone and coercive,
B € RM*Ne g g full column rank matrix: rank B = N, < NN,,
¥ : RY — R is a proper, convex and lower semi-continuous function,
int domy N{z € RN : Bx = g} # 0.
(12)

Further we suppose that the following representation takes place:
Az = A(z, x), where A(z,y) : RM xR — R is a continuous operator.
A vparticular case of this representation is A = A; + Ao with the continuous
operators A; : RNe — RN=
[terative method for solving system (11):
AP 2Ry 4 o2 — BTA 5 f,
1
D\ AW 4 BaMt =g D= DT > 0.

-
Theorem 1 Let assumptions (12) be fulfilled, then saddle point
problem (11) has a solution (x,\) with a unique component x.

(13)

If, in addition, there exist a number o > 1 and a non-negative
and continuous function p(t) : R — R, p(0) =0, such that

i

(A(z1,y1)—A(z2,y2), T1—22) = D7 'B(x1—12), B(x1—12))+

+ p(@1 — 22) — p(y1 — y2) Vi, ys € R", (14)

then iterative method (13) converges starting from any initial
guess (2% \Y).



Theorem 2 [terative method (8) converges if T < r = 2ago9—
bﬁQCf.

For the proof we use theorem 1 with
B=(L ~M”), D=E, and ¥(z) = 0(p)

and

Alo,y) = (rLTLu _ T/;f(;]; + kz(v,p)) for o — (Z) = (z) |

B = (L —M;/2> , D=F, and ¢(z) = 0(p).

Inequality (14):

aT
(A(x1,y1)—A(z2,y2), T1—22) = >

+ p(l'l o 33'2) _ p(yl - y2) vxzayz € Rn?
is satisfied with p(z) = fic} /2| Lul*.

(D 'B(z1—29), B(x1—23))+

Remark 2 The convergence of methods (9) and (10) can be
proved by using theorem 1 as well.

Two-stage iterative method
Let now, when implementing method (8), we solve equation
TLTLUk+1 — TLTM}}/kaH—l . kg(uk, M;/ka-i-l) . LT)\k =F

for u**! by an "inner"iterative method with initial guess u*. Denote

by u,, the m-th iteration of this method, then
Uy — uk+1 _ Tm(uk . uk+1) — uk+1 _ (E . Tm)il(um . Tmuk),

where T, is the corresponding matrix of this method. Whence,
Uy, satisfies the equation

rL"L(E —T,,) Y (up, — Tpu®) = F.

10



If we take u,, as a new, k + 1-th, iteration of method (8), then it
becomes
rL"L(E — T,,) " — v LTL(E — T,,) " Tub — v LMY pH 4
—i—kg(uk,MI}ﬂpk—’—l) + LT\ = f,
ke (M)PpFH) + 00(M)PpM ) — M)A 5 0,
ML — Ak T(M;/2pk+1 o Luk+1)'

(15)
with initial guess (A\°, u?).
Theorem 3 [terative method (15) converges if
IL(E = )™ Toul* < vl Lull?, (16)
T < (1 —4yY?)r, (17)

where v > 0 is small enough.

We use theorem 1 with A(z,y) = Ai(z,y) + As(z,y), where for

u . (%
i) 0= gy

—r LMY ?p + ky(v, MY 2p>)

Al(x7y) - ( kl(M;}hp)

T Nl T oyl
and As(z, y) = (TL L(E—-T,) 'u O?"L L(E—T,) va> .
The inequality (14) of theorem 1 is valid with

r
271/2

Remark 3 If T,, commutes with the matriz Ag = LTL, then
assumption (16) is fulfilled when

p(x) = bPrcy/2|| Lull* + IL(E = T) ™ T,

0
14+
This is the situation e.qg. of the conjugate gradient method.

1Tl < (18)

11



Another variational inequality

Let V = H}(Q), K = {u: |Vu| < 1} and differential operator
P :V — V* be defined by :

(Pu,v) = /a(u)gl(Vu) -Vvdz.
0

We suppose that g(s,t) satisgies the monotonicity prooperty:

(9(s;t1) — g(s,t2), t1 — t2) = ooty — 52\2, oo > 0.

After approximation of the corresponding variational inequlity
we get the inclusion

L k(u, Lu) + LT00(Lu) > f, k(u.Lu) = a(u) g (Lu)
Saddle point problem

rL"Lu—rL"M)Pp+ L") =0,
k(u, MY?p) + 90(M,*p) — M\ 5 0,
Lu— M)*p=0
has a solution if 0 < r < 40y.

[terative method (with an initial guess (p°, A%))

rLTLuftt — r LT pF + LTNF = 0,

a(uk—i_l)gl(MZ}/ka—’_l) 4 ae(M]}/ka-l-l) . M]}/Q)\k =) 0’

)\k+1 — )\k + T(M;mpk—&-l _ Luk—i—l)

is easily implementable and converges for 7 < 7(r).

12



Numerical experiments
We solved variational inequality (1) with a(z) = b(z) = 1,
f(z) =10 and

Vu if [Vu| <1/2
g(Vu) = _Vu if V| > 1/27 9

V2| Vu|

In Q = (0,1) x (0,1) the finite difference approximation on the
uniform grid with steps from 0.01 to 0.002 was used.

We controlled the Lo-norm of the residual M;/ka“ — LuMt,

(u, Vu) = k sin u%

(9961
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Puc. 2: residual for convection coeflicient k=1
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Puc. 3: Black:k=1, Red:k=10
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Puc. 4: residual for coefficient k—10
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