The micro-structure and phase transition process of macromolecular microsphere composite (MMC) hydrogel

Hui Zhang School of Mathematical Sciences, Beijing Normal University, hzhang@bnu.edu.cn

Co-workers: Chaohui Yuan, Dan Zhai and Huiliang Wang

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Outline

Background

Self-consistent Mean Field Theory (SCFT) Polymer Polymer system of SCFT and its application Incompressible SCFT Model of MMC hydrogel Macromolecular Microsphere Composite (MMC) Hydroge Incompressible SCFT Model

Results-SCMFT

The phase transition process of MMC Hydrogel TDGL equation for traditional hydrogels Entropy and Free Energy

Simulation results(MMC-TDGL)

Conclusion

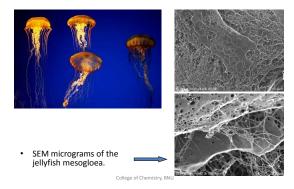
Hydrogel

School of Mathematics, BNU

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hydrogel

Jellyfish Gel and Its Hybrid Hydrogels with High Mechanical Strength



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction: What is Hydrogel?

Common uses include:

- Sustained-release drug delivery system
- Tissue engineering as scaffold
- Granule for holding soil moisture in arid areas

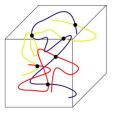
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction: What is Hydrogel?

Common uses include:

- Sustained-release drug delivery system
- Tissue engineering as scaffold
- Granule for holding soil moisture in arid areas

Hydrogel is a three-dimensional randomly crosslinked polymer network that absorb substantial amounts of aqueous solutions.



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction: What is Hydrogel?

Common uses include:

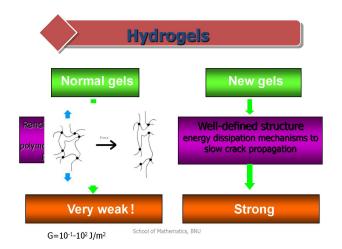
- Sustained-release drug delivery system
- Tissue engineering as scaffold
- Granule for holding soil moisture in arid areas

Hydrogel is a three-dimensional randomly crosslinked polymer network that absorb substantial amounts of aqueous solutions.

Properties

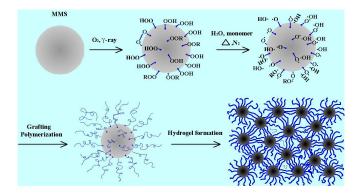
Solid & jelly-like material, highly absorbent,

Hydrogel



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

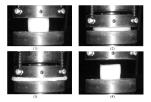
Macromolecular Microsphere Composite (MMC) Hydrogel

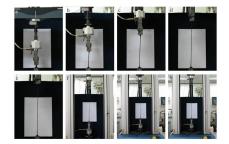


E 990

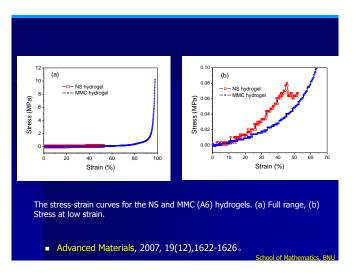
・ロト ・ 雪 ト ・ ヨ ト

new hydrogels:compressive tests



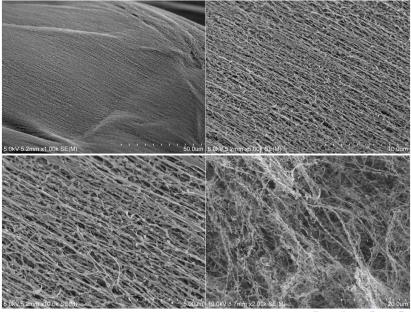


The stress-strain curves

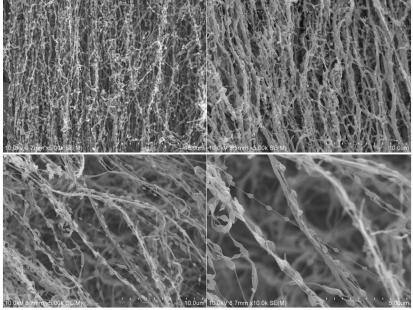


◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

microstructure



microstructure



Problems

Problems:

- Why the hydrogels have such high mechanical strengths?
 - Structure-Property relationship
 - Structural factors: nanoparticle size, grafting(接枝) density, polymer chain length, chain conformation, entanglement (纠缠), hydrogen bonding.....
- Theoretical studies may provide supports for optimizing the synthesis

School of Mathematics, BNU

Outline

Background

Self-consistent Mean Field Theory (SCFT) Polymer Polymer system of SCFT and its application

Macromolecular Microsphere Composite (MMC) Hydrogel Incompressible SCFT Model

Numerical Method-SCMFT

Results-SCMFT

The phase transition process of MMC Hydrogel TDGL equation for traditional hydrogels Entropy and Free Energy

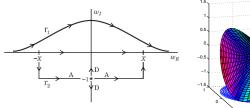
Simulation results(MMC-TDGL)

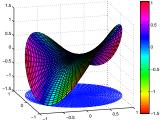
Conclusion

Introduction(SCFT)

- Ignore the local fluctuation of equilibrium
- Consider the largest probability equilibrium
- Saddle point approximation (physics)
- Laplace asymptotic theory of Integrals(mathematics)

Hamilton: $H = iw + \frac{1}{2}w^2$





・ロト・雪・・雪・・雪・・ 白・ ろくの

Introduction:Polymer

Polymer: chain molecule consisting of monomers

$$\begin{array}{c} H \\ H \\ - H$$

Figure: Homopolymer: identical monomers

Figure: Copolymer: distinct monomers

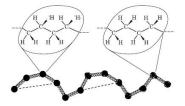


Figure: Coarse grained—Bead-spring Model

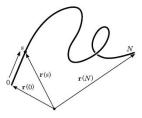
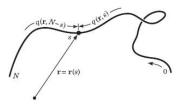


Figure: Continuous Model

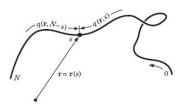
Introduction: Gaussian Random-Walk Model for a Single Polymer Chain



Idea: Polymer chain \iff Path integral by S.F.Edwards in 1965. Polymer as a flexible Gaussian chain described by curve $\mathbf{r}(s)$ in [0, N] that can be treated as path of particle doing Brown motion.

・ロト ・聞ト ・ヨト ・ヨト

Introduction: Gaussian Random-Walk Model for a Single Polymer Chain



Idea: Polymer chain \iff Path integral by S.F.Edwards in 1965. Polymer as a flexible Gaussian chain described by curve $\mathbf{r}(s)$ in [0, N] that can be treated as path of particle doing Brown motion.

Propagator $q(\mathbf{r}, s)$ in field $w(\mathbf{r})$ satisfies

$$\frac{\partial}{\partial s}q(\mathbf{r},s) = R_g^2 \nabla_{\mathbf{r}}^2 q(\mathbf{r},s) - w(\mathbf{r})q(\mathbf{r},s)$$
(1)
$$q(\mathbf{r},0) = 1$$
(2)

 $q(\mathbf{r},0) = 1. \tag{2}$

where

$$0 \le s \le N, \quad \mathbf{r} \in V$$

 $R_g^2 = \frac{b^2 N}{6}$ denotes the unperturbed radius of gyration, V represents the total domain.

Introduction: polymer system of SCFT and its application

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Figure: Polymers influencing one another

Introduction: polymer system of SCFT and its application

Figure: Polymers influencing one another

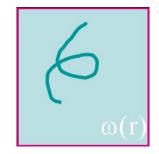


Figure: One polymer chain in one field creating by the whole system

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction: polymer system of SCFT and its application

6 ω(r)

Figure: Polymers influencing one another

Figure: One polymer chain in one field creating by the whole system

Mean field Theory: From based particles to based field Mean field Approximation: criterion of the dominant field

$$\left. \frac{\delta H[w]}{\delta w} \right|_{w^*} = 0$$

Outline

Background Self-consistent Mean Field Theory (SCFT) Polymer Polymer system of SCFT and its application

Incompressible SCFT Model of MMC hydrogel Macromolecular Microsphere Composite (MMC) Hydrogel Incompressible SCFT Model

Numerical Method-SCMFT

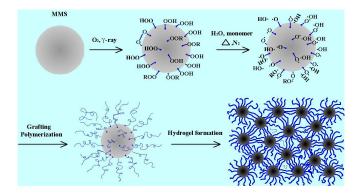
Results-SCMFT

The phase transition process of MMC Hydrogel TDGL equation for traditional hydrogels Entropy and Free Energy

Simulation results(MMC-TDGL)

Conclusion

Macromolecular Microsphere Composite (MMC) Hydrogel



E 990

・ロト ・ 雪 ト ・ ヨ ト

Incompressible SCFT Model

- > All polymer chains are modeled as flexible Gaussian chain
- Each MMS is considered as the same sphere with volume of v_M

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

> The account of polymer chains on each MMSs are the same.

Incompressible Model in canonical ensemble (n, V, T)

Consisting of n_M MMSs , n_p polymer chains Microscopic segment density:

$$\hat{\rho}_M(\mathbf{r}) = v_M \sum_{j=1}^{n_M} \delta(\mathbf{r} - \mathbf{r}_j(1)),$$
$$\hat{\rho}_p(\mathbf{r}) = v_p N \sum_{j=1}^{n_p} \int_0^1 ds \ \delta(\mathbf{r} - \mathbf{r}_j(s))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Incompressible Model in canonical ensemble (n, V, T)

Consisting of n_M MMSs , n_p polymer chains Microscopic segment density:

$$\hat{\rho}_M(\mathbf{r}) = v_M \sum_{j=1}^{n_M} \delta(\mathbf{r} - \mathbf{r}_j(1)),$$
$$\hat{\rho}_p(\mathbf{r}) = v_p N \sum_{j=1}^{n_p} \int_0^1 ds \ \delta(\mathbf{r} - \mathbf{r}_j(s))$$

Incompressible Condition:

$$\delta[\hat{\rho}_p + \hat{\rho}_M - 1].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Incompressible Model in canonical ensemble (n, V, T)

Consisting of n_M MMSs , n_p polymer chains Microscopic segment density:

$$\hat{\rho}_M(\mathbf{r}) = v_M \sum_{j=1}^{n_M} \delta(\mathbf{r} - \mathbf{r}_j(1)),$$
$$\hat{\rho}_p(\mathbf{r}) = v_p N \sum_{j=1}^{n_p} \int_0^1 ds \ \delta(\mathbf{r} - \mathbf{r}_j(s)).$$

Incompressible Condition:

$$\delta[\hat{\rho}_p + \hat{\rho}_M - 1].$$

Density as the average of microscopic segment density:

$$\rho_M(\mathbf{r}) = \langle \hat{\rho}_M(\mathbf{r}) \rangle,$$

 $\rho_p(\mathbf{r}) = \langle \hat{\rho}_p(\mathbf{r}) \rangle.$

Incompressible SCFT Model

Partition function of the system

$$\mathcal{Z} = \frac{1}{n_p! n_M! (\lambda^3)^{n_p N + n_M}} \prod_{j=1}^{n_p} \int \mathcal{D} \mathbf{r}_j \prod_{l=1}^{n_M} d\mathbf{r}_l \, \exp\left(-\beta U_0 - \beta U_1\right) \, \delta[1 - \hat{\rho}_p(\mathbf{r}) - \hat{\rho}_M(\mathbf{r})]$$

$$\propto \prod_{j=1}^{n_p} \int \mathcal{D} \mathbf{r}_j \prod_{l=1}^{n_M} d\mathbf{r}_l \, \exp\left(-\beta U_0 - \beta U_1\right) \, \delta[1 - \hat{\rho}_p(\mathbf{r}) - \hat{\rho}_M(\mathbf{r})],$$
(3)

where

$$\beta U_{0} = \sum_{j=1}^{n_{p}} \frac{3}{2Nb^{2}} \int_{0}^{1} ds \left| \frac{d\mathbf{r}(s)}{ds} \right|^{2} = \frac{1}{4R_{g}^{2}} \sum_{j=1}^{n_{p}} \int_{0}^{1} ds |\mathbf{r}'(s)|^{2},$$

$$\beta U_{1} = \rho_{0} \int d\mathbf{r} \ \chi \ \hat{\rho}_{M}(\mathbf{r}) \ \hat{\rho}_{p}(\mathbf{r}),$$

$$\beta = 1/k_{B}T.$$
(4)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Note: assuming short-range between MMSs and polymer chains interaction gives interaction potential with Flory-Huggins parameter.

Use the Hubbard-Stratonovich transformation to introduce two fields:

$$\begin{aligned} \int \mathcal{D}\rho \delta[\rho - \hat{\rho}] F[\rho] &= F[\hat{\rho}],\\ \delta[\rho - \hat{\rho}] &= \int \mathcal{D}\psi(\mathbf{r}) \ e^{i\int d\mathbf{r}\psi(\mathbf{r})[\rho(\mathbf{r}) - \hat{\rho}(\mathbf{r})]}. \end{aligned}$$

Rewrite the partition function (3) in the form of functional integral and obtain effective Hamiltonian H:

$$\mathcal{Z} \propto \int \mathcal{D}\rho_p \int \mathcal{D}\rho_M \int \mathcal{D}W_p \int \mathcal{D}W_M \int \mathcal{D}\xi \, \exp\left(-\beta H\right), \tag{5}$$
$$\frac{N\beta H}{\rho_0 V} = \frac{1}{V} \int d\mathbf{r} \left[\chi \, N\rho_M(\mathbf{r}) \, \rho_p(\mathbf{r}) - W_p(\mathbf{r}) \, \rho_p(\mathbf{r}) - W_M(\mathbf{r}) \, \rho_M(\mathbf{r}) \right.$$
$$\left. -\xi(\mathbf{r})(1 - \rho_p(\mathbf{r}) - \rho_M(\mathbf{r}))\right]$$
$$\left. - n_p \ln V Q_p - n_M \ln V Q_M, \end{aligned}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Saddle point approximation

 $\delta H=0\Longrightarrow$

$$W_p(\mathbf{r}) = \chi N \rho_M(\mathbf{r}) + \xi(\mathbf{r}), \qquad (7)$$

$$W_M(\mathbf{r}) = \chi N \rho_p(\mathbf{r}) + \xi(\mathbf{r}), \qquad (8)$$

$$\rho_M(\mathbf{r}) + \rho_p(\mathbf{r}) = 1, \tag{9}$$

$$\rho_p(\mathbf{r}) = \frac{n_p}{Q_p} \int_0^1 ds q(\mathbf{r}, s) q^+(\mathbf{r}, s), \qquad (10)$$

$$\rho_M(\mathbf{r}) = \frac{1}{Q_M} \frac{v_M}{N} q(\mathbf{r}, 0) q^+(\mathbf{r}, 1), \qquad (11)$$

where

$$Q_M = \frac{1}{V} \int d\mathbf{r} \exp\left(-v_M W_M(\mathbf{r})/N\right) q(\mathbf{r}, 1),$$

$$Q_p = \frac{1}{V} \int d\mathbf{r} q(\mathbf{r}, 1).$$
(12)

Propagator $q(\mathbf{r},s)$ and reverse propagator $q^+(\mathbf{r},s)$ satisfy respectively

$$\frac{\partial q}{\partial s} = R_g^2 \nabla^2 q - W_p(\mathbf{r}) q(\mathbf{r}, s),$$

$$q(\mathbf{r}, 0) = \exp\left(-v_M W_M(\mathbf{r})/N\right)$$
(13)

$$\frac{\partial q^{+}}{\partial s} = -R_{g}^{2} \nabla^{2} q^{+} + W_{p}(\mathbf{r}) q^{+}(\mathbf{r}, s)$$

$$q^{+}(\mathbf{r}, 1) = \frac{\sigma}{q(\mathbf{r}, 0)},$$
(14)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Boundary Condition: Periodic B.C.

where

$$Q_M = \frac{1}{V} \int d\mathbf{r} \exp\left(-v_M W_M(\mathbf{r})/N\right) q(\mathbf{r}, 1),$$

$$Q_p = \frac{1}{V} \int d\mathbf{r} q(\mathbf{r}, 1).$$
(12)

Propagator $q(\mathbf{r},s)$ and reverse propagator $q^+(\mathbf{r},s)$ satisfy respectively

$$\frac{\partial q}{\partial s} = R_g^2 \nabla^2 q - W_p(\mathbf{r})q(\mathbf{r},s),$$

$$q(\mathbf{r},0) = \exp\left(-v_M W_M(\mathbf{r})/N\right)$$
(13)

$$\frac{\partial q^{+}}{\partial s} = -R_{g}^{2} \nabla^{2} q^{+} + W_{p}(\mathbf{r}) q^{+}(\mathbf{r}, s)$$

$$q^{+}(\mathbf{r}, 1) = \frac{\sigma}{q(\mathbf{r}, 0)},$$
(14)

Boundary Condition: Periodic B.C.

highly non-linear systems with multi-solutions, non-local and multi-parameters!

Outline

Background

Self-consistent Mean Field Theory (SCFT)

Polymer

Polymer system of SCFT and its application

Incompressible SCFT Model of MMC hydrogel Macromolecular Microsphere Composite (MMC) Hydrogel Incompressible SCFT Model

Numerical Method-SCMFT

Results-SCMFT

The phase transition process of MMC Hydrogel TDGL equation for traditional hydrogels Entropy and Free Energy

Simulation results(MMC-TDGL)

Conclusion

- M.W.Matsen, M.Schick Spectral methods, PRL (1994). —-Expand the spatially varying functions
 - Need the symmetry in advance !
- ► F.Drolet,G.H.Fredrickson Combinatorial screening algorithm in real space, PRL (1999).

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Does not require a priori assumption of symmetry.
- Discover new phases.
- Rasmussen, Kalosakas Pseudo-spectral Algorithm (2002).
 - Does not require a priori assumption of symmetry.
 - Use split strategy.
 - Improve the computational efficiency based FFT.

Pseudo-spectral Algorithm

Rewrite propagator PDE as

$$q(\mathbf{r}, s + ds) = \exp\left(ds(\nabla^2 - w_p(\mathbf{r}))\right)q(\mathbf{r}, s),\tag{15}$$

Pseudo-spectral Algorithm

Rewrite propagator PDE as

$$q(\mathbf{r}, s + ds) = \exp\left(ds(\nabla^2 - w_p(\mathbf{r}))\right)q(\mathbf{r}, s),\tag{15}$$

<□ > < @ > < E > < E > E のQ @

Since

$$q(\mathbf{r}, s+ds) \approx \exp\left(-\frac{ds}{2}w_p\right) \exp\left(ds\nabla^2\right) \exp\left(-\frac{ds}{2}w_p\right)q(\mathbf{r}, s), \qquad (16)$$

Pseudo-spectral Algorithm

Rewrite propagator PDE as

$$q(\mathbf{r}, s + ds) = \exp\left(ds(\nabla^2 - w_p(\mathbf{r}))\right)q(\mathbf{r}, s),\tag{15}$$

Since

$$q(\mathbf{r}, s+ds) \approx \exp\left(-\frac{ds}{2}w_p\right) \exp\left(ds\nabla^2\right) \exp\left(-\frac{ds}{2}w_p\right)q(\mathbf{r}, s), \qquad (16)$$

Algorithm:

- Set $q_0(\mathbf{r})$.
- Compute in real space $q_1 = \exp\left(-dsw_p(\mathbf{r})/2\right)q_0$.
- Use Fourier transform for q_1 to obtain \hat{q}_1 .
- ▶ Let $\hat{q}_2 = \exp{[-ds(2\pi M/L)^d]}\hat{q}_1$, where M discrete points , L periodic lenght , d dimension.
- Take inverse Fourier transform on \hat{q}_2 to get q_2 .
- Compute in real space $q_3 = \exp(-dsw_p(\mathbf{r})/2)q_2$.
- ▶ Let q_3 be $q(\mathbf{r}, s + ds)$ to update $q_0(\mathbf{r})$, take back to step 1 until s = 1.

Iteration Method

- Set the random initial values for W_p , W_M and pressure ξ .
- Solve modified diffusion equations Eq.13 and Eq.14 numerically to calculate propagator q(r) and reverse propagator q⁺(r).
- Update density $\rho_p^n(\mathbf{r})$ and $\rho_M^n(\mathbf{r})$ by using Eq.10 and Eq.11.
- ▶ Update external field at the *n*th step iteration Wⁿ to get value at the (n+1) iteration Wⁿ⁺¹:

$$W_m^{n+1} - W_m^n = \lambda' \frac{\delta H}{\delta \rho_p^n} + \lambda \frac{\delta H}{\delta \rho_m^n},$$

$$W_p^{n+1} - W_p^n = \lambda' \frac{\delta H}{\delta \rho_m^n} + \lambda \frac{\delta H}{\delta \rho_p^n},$$
(17)

where λ' and λ are relaxation parameters, subjected to $\lambda' < \lambda$ and $\lambda > 0$.

Update the pressure field via

$$\xi^{n+1}(\mathbf{r}) = (w_p^{n+1} + w_m^{n+1})/2;$$
(18)

► Go to step 2 until convergence, ie $|H - H_0| < 10^{-6}$.

Outline

Background

Self-consistent Mean Field Theory (SCFT)

Polymer

Polymer system of SCFT and its application

Incompressible SCFT Model of MMC hydrogel

Macromolecular Microsphere Composite (MMC) Hydrogel

Incompressible SCFT Mode

Numerical Method-SCMFT

Results-SCMFT

The phase transition process of MMC Hydrogel TDGL equation for traditional hydrogels Entropy and Free Energy

Simulation results(MMC-TDGL)

Conclusion

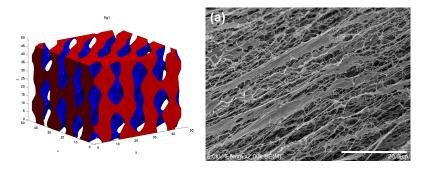


Figure: The one on the left is three-dimensional density plot of a morphological phase at volume fraction of MMSs f_m is 0.15, and $\chi N = 10.4$. The color red indicate MMSs. We can call this phase state the **strip state**. The one on the right is a snapshot extracted from experiment.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

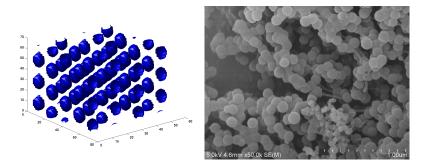


Figure: The one on the left is the density profile of MMMS with volume fraction is 0.35. We call this phase state the **sphere state**. The one on the right is a snapshot from experiment.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

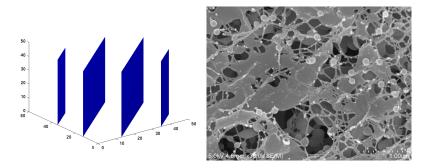


Figure: The one on the left is the density profile of polymer chains with the density is $f_p = 0.75$. We call the **lamella state**. The one on the right is a snapshot from experiment.

(日)、(四)、(E)、(E)、(E)

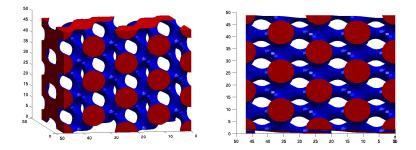


Figure: New Morphological Structure. We can call the **sphere perforate cylinder state**.

・ロト ・回ト ・ヨト ・ヨ

æ

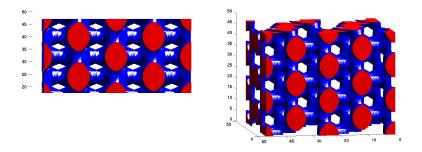


Figure: New Morphological Structure. We can call the sphere perforate cylinder state.

・ロト ・四ト ・ヨト ・ヨト

æ

Phase diagram

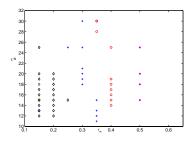


Figure: Phase diagram of MMC hydrogel as a function of interaction force χN and total fraction of MMSs f_m . The polymer chain length is N = 80. Circle denotes the **sphere** state, '+' denotes **strip** state, diamond denotes the **lamella** state and '*' denotes **disorder** state.

イロト 不得 トイヨト イヨト

Ratio of sphere

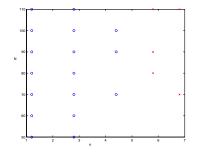


Figure: Phase diagram of MMC hydrogel as a function of parameter α , which denotes the ratio of the radius of MMS sphere and the volume of each segment of a grained polymer chain, and the parameter of polymer chain length. Circle means the ordered and lamella phases (including that sphere state, strip state and sphere perforate cylinder state) while '+' means disorder phase.

Journal of Theoretical and Computational Chemistry, 2013, DOI: 10.1142/S021963361350048X.

Outline

Self-consistent Mean Field Theory (SCFT) Polymer Polymer system of SCFT and its application Incompressible SCFT Model of MMC hydrogel Macromolecular Microsphere Composite (MMC) Hydro Incompressible SCFT Model

Numerical Method-SCMFT

Results-SCMFT

The phase transition process of MMC Hydrogel TDGL equation for traditional hydrogels Entropy and Free Energy

Simulation results(MMC-TDGL)

Conclusion

TDGL equation for traditional hydrogels

The time dependent Ginzburg-Landau(TDGL) mesoscopic simulation method is a microscale method to simulate the structural evolution of phase-separation in polymer blends and block copolymers.

$$\frac{\partial \phi(\mathbf{r},t)}{\partial t} = \nabla \cdot M_0 \nabla \frac{\delta U[\phi(\mathbf{r},t)]}{\delta \phi(\mathbf{r},t)} + \zeta(\mathbf{r},t).$$
(19)

U: the free energy

 M_0 : the mobility may depend on the order parameter ϕ . $\zeta(r,t)$: a thermal noise term with zero mean. It satisfies

$$\langle \zeta(\mathbf{r},t)\zeta(\mathbf{r}',t')\rangle = -2k_BTM_0\nabla^2\delta(\mathbf{r}-\mathbf{r}')\delta(t-t').$$

 k_B : the Boltzmann constant.

TDGL equation for traditional hydrogels

The Flory-Huggins-de Gennes free energy functional U can be expressed as:

$$\frac{U[\phi(\mathbf{r})]}{k_B T} = \int \left[\frac{U_{FH}[\phi(\mathbf{r})]}{k_B T} + \kappa(\phi) |\nabla\phi(\mathbf{r})|^2 \right] d\mathbf{r},$$
(20)

 $\kappa(\phi) = \sigma^2/36\phi(1-\phi), \ \sigma$ is the Huhn length of the polymer.

 $U_{FH}(\phi)$ is the Flory-Huggins free energy concentration of mixing, given by

$$\frac{U_{FH}(\phi)}{k_B T} = \frac{\phi}{N_A} \ln \phi + \frac{(1-\phi)}{N_B} \ln(1-\phi) + \chi \phi (1-\phi)$$

 χ : the enthalpic interaction parameter.

 N_A and N_B are the number of segments in polymer A and polymer B respectively.

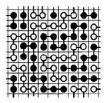
Boltzmann Entropy Theorem

S:entropy, Ω :the total microscopic state number of the system. The entropy of a system is a function of the number of microscopic states, given by

 $S = k_B \ln \Omega.$

The MMC gel has a well-defined reticular structure, so the Flory-Huggins free energy is not applicable anymore.

We introduce reticular free energy based on Boltzmann Entropy Theorem. It contains three main parts: model assumption, variable definition and model deduction.



Model assumptions

- Each solvent molecule occupies a lattice. Each polymer chain occupies N connected lattices. Each macromolecular occupies M lattices.
- The polymer chain is completely flexible, and all conformational entropies are equivalent.
- The polymerization degrees of all the polymer chains are equal.
- Large balls and polymer chains share the same properties and are independent of each other.
- All polymer chains distribute among large balls.
- The number of the graft chain around a large ball is proportional to the perimeter. Without loss of generality, we assume the proportional valve is one.

Variable definition

Variables	Definition
n_r	the number of water molecules
n_s	the number of segments in polymer
n_L	the number of MMs
М	the number of lattices occupied by MMs
N	polymerization degree
ϕ_r	$\frac{n_r}{n_r + n_s + M n_L}$
ϕ_s	$rac{n_s}{n_r+n_s+Mn_L}$
ϕ_L	$\frac{Mn_L}{n_r + n_s + Mn_L}$
R	the number of MMs around a MMs
L	the number of chain between MMs

the relationship between the two variables as follows

$$\frac{\phi_s}{N} = \frac{\phi_L \times R \times L}{2},\tag{21}$$

that is

$$\phi_s = \phi_L \cdot \frac{R \times L \times N}{2}, \quad n_s = n_L \cdot \frac{R \times L \times N}{2}.$$

Model deduction

We take the total volume of the system as $n_r + n_s + M n_L$. the change of entropy:

$$\Delta S = k_B \left[\ln \left(\frac{n_r + n_s + M n_L}{\pi \left(\frac{\sqrt{M}}{\sqrt{\pi}} + \frac{N}{2} \right)^2 n_L} \right)^{n_L} + \ln \left(\frac{n_r + n_s + M n_L}{\pi \left(\frac{\sqrt{M}}{\sqrt{\pi}} + \frac{N}{2} \right)^2 n_L} \times \frac{R \times L}{2} \right)^{\frac{n_s}{N}} \right].$$
(22)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

the entropy can be rewritten as:

$$\Delta S = -k_B V \left[\frac{\phi_s}{\tau} \ln \left(\frac{\phi_s \alpha}{\tau} \right) + \frac{\phi_s}{N} \ln \left(\frac{\phi_s \beta}{\tau} \right) \right].$$

$$V = n_r + n_s + M n_L,$$

$$\alpha = \pi \left(\frac{\sqrt{M}}{\sqrt{\pi}} + \frac{N}{2}\right)^2,$$

$$\beta = \pi \left(\frac{\sqrt{M}}{\sqrt{\pi}} + \frac{N}{2}\right)^2 \frac{2}{RL},$$

$$\tau = \frac{R \times L \times N}{2}$$

Model deduction

the interaction term:

Interaction energy = $\chi(\phi_s + \phi_L)(1 - \phi_s - \phi_L) = \chi\phi_s\rho [1 - \phi_s\rho]$.

 $\phi_L = \frac{\phi_s M}{\tau}.$ $\rho = 1 + M/\tau,$

Similarly, we get the solvent entropy,

solvent entropy =
$$(1 - \phi_s \rho) \ln (1 - \phi_s \rho)$$
.

According to the relationship between entropy S and energy F, $dS = \frac{dF}{T}$, the reticular free energy is

$$F = k_B T \left[\frac{\phi_s}{\tau} \ln \left(\frac{\phi_s \alpha}{\tau} \right) + \frac{\phi_s}{N} \ln \left(\frac{\phi_s \beta}{\tau} \right) + (1 - \phi_s \rho) \ln(1 - \phi_s \rho) + \chi \phi_s \rho (1 - \phi_s \rho) \right].$$
(23)

Outline

Background

Self-consistent Mean Field Theory (SCFT)

Polymer

Polymer system of SCFT and its application

Incompressible SCFT Model of MMC hydrogel

Macromolecular Microsphere Composite (MMC) Hydrogel

Incompressible SCFT Model

Numerical Method-SCMFT

Results-SCMFT

The phase transition process of MMC Hydrogel TDGL equation for traditional hydrogels Entropy and Free Energy

Simulation results(MMC-TDGL)

Conclusion

MMC-TDGL equation

Set $\phi = \phi_s$ the volume fraction of polymer $g = \frac{\delta F(\phi)}{\delta \phi}$ denotes the variation F with respective to ϕ . the dimensionless form of the MMC-TDGL equation Eq. (19) with the reticular free energy

$$\frac{\partial \phi(\mathbf{r},t)}{\partial t} = \nabla \cdot M_0 \nabla \left(g - \frac{1}{18\phi(1-\phi)} \nabla^2 \phi \right) + \nabla \cdot \zeta,$$

with $\langle \zeta(\mathbf{r},t) \rangle = 0$, and $\langle \zeta(\mathbf{r},t)\zeta(\mathbf{r}',t') \rangle = \varepsilon M_0 \nabla^2 \delta(\mathbf{r}-\mathbf{r}')\delta(t-t')$, where ε is the magnitude of the fluctuation.

The spectral methods

$$\Delta x = \frac{2\pi}{128}, \ \Delta t = 0.001. \ M = 0.2, \ \chi = 0.4, \ T = 300, \ N = 400.$$

Numerical results

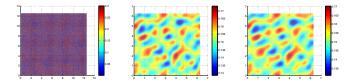


Figure: Temporal evolution of patterns for the initial volume fraction of polymer $\phi=0.3$ at time tmax=0, 0.6, 1.

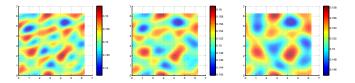


Figure: Temporal evolution of patterns for the initial volume fraction of polymer $\phi = 0.3$ at time tmax=3, 8, 20.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Numerical results

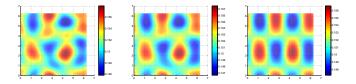


Figure: Temporal evolution of patterns for the initial volume fraction of polymer $\phi = 0.3$ at time tmax=30, 50, 120.

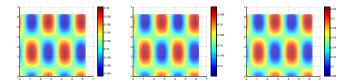


Figure: Temporal evolution of patterns for the initial volume fraction of polymer $\phi = 0.3$ at time tmax=4000,8000,10000.

Comparison with Experimental Results

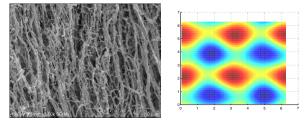


Figure: Comparison between the experimental results(left) and numerical results(right).

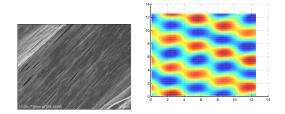


Figure: Comparison between the experimental results(left) and numerical results(right)

э

Now we expect to choose information entropy as an index to measure the overall state. It defines as

$$H(\phi) = E\left[\log\frac{1}{p_i}\right] = -\sum_{i=1}^n p_i \log p_i,$$

where p_i is the occurrence probability of the $\phi = i$ constituent in the total area. In information entropy of phase separation, p_i is defined as the probability of concentration.

Comparison with Experimental Results

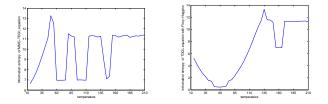


Figure: Information entropy varies with the reticular free energy (left) and the Flory-Huggins free energy(right), respectively. Temperature is from $10^{\circ}C$ to $210^{\circ}C$, horizontal axis indicate the number of steps with the temperature growth as $5^{\circ}C$ per step, N=400.

Comparison with Experimental Results

- Chemical experiments show that the optimum reaction conditions are that irradiation of the MMS emulsion in oxygen for 2h at room temperature, polymerization for 6h, and a reaction temperature of 40°C. At high temperatures (50°C, 60°C, and 65°C), gel-like materials are also obtained, but they are partly or completely dissolved in water, indicating that there is no strong interaction between the MMSs for a few reasons.
- T $\uparrow \rightarrow$ polymerize
 - $T \uparrow \rightarrow$ thermal movement \rightarrow dissolve

So the competition of them will lead to polymerize and dissolve alternately.

Zhai D., Zhang, H. Investigation on the application of the TDGL equation in macromolecular microsphere composite hydrogel, *Soft Matter*, 2013, 820-825.

Outline

Background

Self-consistent Mean Field Theory (SCFT)

Polymer

Polymer system of SCFT and its application

Incompressible SCFT Model of MMC hydrogel

Macromolecular Microsphere Composite (MMC) Hydrogel

Incompressible SCFT Model

Numerical Method-SCMFT

Results-SCMFT

The phase transition process of MMC Hydrogel TDGL equation for traditional hydrogels Entropy and Free Energy

Simulation results(MMC-TDGL)

Conclusion

Conclusion

- Structure SCMFT model for MMC hydrogel and obtain the micro-structures.
- Structure-Property relationship? Structural factors: nanoparticle size, grafting density, polymer chain length, chain conformation, entanglement?
- Introduce the reticular free energy, and obtain the phase transition.
- What effect the phase transition? Structural factors: nanoparticle size, grafting density, polymer chain length, chain conformation, entanglement,...
- Stochastic links?
- Mathematical problems? DFT and SCMFT? How many micro-structures? Computational methods? ···

All models are wrong, but some are useful!

-George Box

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ