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1、Introduction
• Dirac equation is a relativistic wave equation 

in particle physics, formulated by Paul Dirac in 
1928,  and describes fields corresponding to 
elementary spin-½ particles (such as the 
electron) as a vector of four complex numbers 
(a bi-spinor), in contrast to the Schrödinger 
equation which describes a field of only one 
complex value. 

Paul Dirac shared the 1933 Nobel Prize for physics with Erwin Schrödinger 
"for the discovery of new productive forms of atomic theory."



1、Introduction
Dirac equation in the covariant form

where                               are four contravariant gamma matrices,  also 
known as the Dirac matrices

satisfying  the anticommutation relation：

unified form for all inertial 
coordinate

metric 
tensor



1、Introduction

where       is Pauli matrix

The matrices are all Hermitian and have squares equal to the identity 
matrix, and they all mutually anticommute:

where m is the rest mass of spin-½ particle (electron), the reduced 
Planck constant is:

2 2
4 ,  0,  0,  i i j j i i iI i jα β α α α α α β βα= = + = + = ≠

They are usually taken as

Dirac equation in the rest frame 



1、Introduction
• It is consistent with both the principles of

quantum mechanics and the theory of special
relativity, and is the first theory to account fully
for relativity in the context of quantum
mechanics.

• It implies the existence of a new form of matter,
antimatter, hitherto unsuspected and
unobserved, and actually predated its
experimental discovery.



1、Introduction
• The nonlinear Dirac (NLD) system in quantum field theory 

is used to model extended particles by the spinor field 
equation.

• To make the resulting NLD model to be Lorentz invariable, 
the so-called self-interaction Lagrangian can be built up 
from the bilinear (in the spinor) covariant which are 
categorized into five types: scalar, pseudoscalar, vector, 
axial vector and tensor. 

• Different self-interactions give rise to 
different NLD models.



1、Introduction
• For example, (1+1)-d Soler model (based on the scalar bilinear 

covariant)

which is a classical spinorial model with scalar self-interaction.

• A key feature of the NLD equation is that it allows solitary wave 
solutions or particle-like solutions: the stable localized solutions 
with finite energy and charge.

• It describes the motion of the positive & negative electrons with 
high-speed.

†
1 3 3 32 ( )t xi i mψ σ σ λ ψ σ ψ σ ψ ∂ = − ∂ + − 

M. Soler, Phys. Rev. D 1 (1970) 2766. M.F. Rañada, Phys. Rev. D 30 (1984) 1830.



1、Introduction
• Standing wave solution

M. Soler, Phys. Rev. D 1 (1970) 2766.



1、Introduction
• solitary wave solution

m=1,λ=0.5,v=0

S.H. Shao & H.Z. Tang, Phys. Lett. A, 345(2005), 119.

For 0<Λ<m/2, two-humped solition (with 
two peaks) in the charge density;
For m/2≤Λ<m, one-humped soliton; 
For Λ=m, 

2
0 01/ 1 , ( ), ( ( ))v x x x vt t t v x xγ γ γ= − = − − = − −



1、Introduction
• Motion of Dirac solitary waves

S.H. Shao & H.Z. Tang, Phys.Lett. A, 345(2005), 119.

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.



1、Introduction
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③A. Alvarez, JCP 99 (1992) 348.

Crank–Nicholson type schemes
① J. De Frutos, J.M. Sanz-serna, JCP 83 (1989) 407.

split-step spectral schemes
①Z.-Q. Wang, B.-Y. Guo, J. Comput. Math. 22 (2004) 457.

Legendre rational spectral methods
① J.L. Hong, C. Li, JCP 211(2006), 448–472.

Multi-symplectic Runge–Kutta methods
①S.H. Shao & H.Z. Tang, PLA 2005; DCDS-B 2006;    CiCP 2008.
②H. Wang & H.Z. Tang, JCP 2007.
③ J. Xu, S.H. Shao & H.Z. Tang, JCP 2013.



2、 Multi-hump solitary waves

The two-hump profile is first pointed out by Shao and 
Tang [Phys. Lett. A, 345(2005), 119] and later gotten 
noticed by other researchers e.g. [Phys. Rev. E 82, 
036604 (2010)].

Question:  Is there the multi-hump profile  in Dirac 
solitary wave?

J. Xu, S.H. Shao, H.Z. Tang, and D.Y. Wei, Multi-hump solitary waves of nonlinear Dirac 
equation, submitted, 2013.



2、 Multi-hump solitary waves

It is also subject to conservation laws for the current vector and the 
energy-momentum tensor

General linear combined self-interaction

Lagrangian L reads
Dirac Lagrangian

and is invariant under the Lorentz transformation.



2、 Multi-hump solitary waves
Consider solitary wave solution in the form



2、 Multi-hump solitary waves

J. Xu, S.H. Shao, H.Z. Tang, and D.Y.  Wei, Multi-hump solitary waves of nonlinear Dirac 
equation, submitted, 2013.

We may further analyze the hump number for the above solitary 
waves of NLD.

The physical solutions are with which the total charge Q(t) is finite. 
Therefore, the physical solutions may exist only in the situation:



2、 Multi-hump solitary waves
For a given integer k, the hump number in the charge density 
is not bigger than 4, while that in the energy density is not 
bigger than 3.

1. Those upper bounds can only be achieved in the situation 
of higher nonlinearity, namely, k ∈ {5; 6; 7; · · · } for the 
charge density and k ∈ {3; 5; 7; · · · } for the energy 
density; 

2. The momentum density has the same multi-hump 
structure as the energy density; 

3. More than two humps (resp. one hump) in the charge 
(resp. energy) density can only happen under the linear 
combination of the pseudoscalar self-interaction and at 
least one of the scalar and vector (or axial vector) self-
interactions.

Lemma:

Remarks:



2、 Multi-hump solitary waves

J. Xu, S.H. Shao, H.Z. Tang, and D.Y.  Wei, Multi-hump solitary waves of nonlinear Dirac 
equation, submitted, 2013.

3 humps 4 humps



3、RKDG method
① W.H. Reed and T. R. Hill, Los Alarnoo Scientific Laboratory, LA-UR-73-479,  1973.
② B. Cockburn and C.-W. Shu, Math. Comp., 52(1989), 411-435.
③ B. Cockburn, S.-Y. Lin and C.-W. Shu, JCP, 84(1989), 90-113.
④ B. Cockburn, S. Hou and C.-W. Shu, Math. Comp., 54(1990), 545-581.
⑤ B. Cockburn and C.-W. Shu, JCP, 141(1998), 199-224.
⑥ B. Cockburn and C.W. Shu, J. Sci. Comput., 16(2001), 173-261.

The natural features of the RKDG methods are their 
formal high order accuracy, their nonlinear stability, their 
ability to capture the discontinuities or strong gradients 
of the exact solution without producing spurious 
oscillations, and their excellent parallel efficiency. Up to 
now, the DG methods have been successfully extended 
to various problems.



3、RKDG method

• IVP of (1+1)-d Soler model

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.



3、RKDG method

For each t，find approximate solution

where                                             

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.

, ,Re( ), Im( )i h i hψ ψ ∈

1 1 1
2 2 2

1 1 1( , ), , ( ) / 2j j j j j jj j jI x x h x x x x x+ + ++ + += = − = +

denotes the space of the real-valued polynomials 
on          of degree at most q.

For any given partition of the domain 



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.

,ˆ( ) ( , )i j i h jx tψ ψ≈



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.

• Numerical flux

For example：



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.

• In practical computation, the solution may be 
written as

satisfying



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.



3、RKDG method

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.

where



4、Moving mesh method
• It is also known as r-method (redistribution), 

and relocates mesh / gird points having a 
fixed number of nodes in such a way that the 
nodes remain concentrated in regions of 
rapid variation of the solution.    

http://www.math.hkbu.edu.hk/~ttang/MMmovie/harmonic/Shock.html 



4、Moving mesh method
• Equi-distribution principle [C. de Boor, In Lecture Notes in 

Mathematics, vol.363, Springer-Verlag, 1973]: an appropriately 
chosen mesh should equally distribute some measure of 
the solution variation or computational error over the 
entire domain.

• Spring analogy scheme[J.T. Batina, AIAA 89-0115]: each edge of 
the mesh is represented by a spring whose stiffness is 
proportional to the reciprocal of the length of the edge.

• Grid generation based on the variational method[A. Winslow, 
JCP, 1973].

• ……
• Lagrange method in CFD.

C.J. Budd, W. Huang & R.D. Russell, Acta Numerica 18 (2009), 111-241.
W. Huang and R. D. Russell, Adaptive Moving Mesh Methods, Springer, 2011.
T. Tang & J.C. Xu, Adaptive Computations: Theory and Algorithms, Science Pub., 2007. 



4、Moving mesh method

Two decoupled steps：
– Redistribute the mesh points iteratively

• Solve  coarse mesh equation an iterative step
• Divide the coarse mesh cell into several uniform fine 

cells 
• Remap solution from the “old” fine mesh to the “new” 

– Solve NLD eq. on a fixed fine mesh

H.Z. Tang & T. Tang, SINUM, 41(2003)
H. Wang, H.Z. Tang, JCP, 222(2007)



4、Moving mesh method

H. Wang, H.Z. Tang, JCP, 222(2007)

• (1+1)-d Dirac eq.
(quasi-linear) balance law



4、Moving mesh method
• 1D (quasi-linear) balance law

( ) ( )u f u s u
t x

∂ ∂
+ =

∂ ∂

• “Initial” mesh & data

,   n
n jt x

1

1 2
1/2

/

1 ( , ) 
n
j

n
j

x

nx
j

n
j n u x t du x

h
+

+
+ ≈ ∫

nt

1nt +

n
jx

1
n
jx − 1

n
jx +

1n
jx +1

1
n
jx +
−

1
1

n
jx +
+

H.Z. Tang & T. Tang, SINUM, 41(2003)



4、Moving mesh method
• Question: How to get

• Redistribute the mesh points iteratively
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4、Moving mesh method

• Remap the solution, that is, get 

( ) ( ) ( ( 11) ( ) ( 1) )
1/ 21/ 2 1/ 2{ , } { , } { , }j j j jj jx u x u x u νν ν ν ν ν+ +
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4、Moving mesh method
• Solve Dirac eq. by finite volume method
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H.Z. Tang & T. Tang, SINUM, 41(2003)
H. Wang, H.Z. Tang, JCP, 222(2007)



4、Moving mesh method

H. Wang, H.Z. Tang, JCP, 222(2007)

• Move the coarse mesh points “O ” by solving 
iteratively the mesh equation：

• Move fine mesh points “X” by uniformly dividing 
each coarse mesh cell.



4、Moving mesh method

H. Wang, H.Z. Tang, JCP, 222(2007)

Accuracy test:



4、Moving mesh method

H. Wang, H.Z. Tang, JCP, 222(2007)

Figure：Charge and mesh densities. 𝜇𝜇=10, 30; N=800



4、Moving mesh method

H. Wang, H.Z. Tang, JCP, 222(2007)

Figure：Charge and mesh densities. 𝜇𝜇=10;   N=800



4、Moving mesh method

H. Wang, H.Z. Tang, JCP, 222(2007)

Figure：Charge and mesh densities. N=1600



4、Moving mesh method

H. Wang, H.Z. Tang, JCP, 222(2007)

Figure：Close-up of the charge densities. N=1600  vs 10000



4、Moving mesh method

H. Wang, H.Z. Tang, JCP, 222(2007)

Figure： Charge densities. 𝜇𝜇=10. 

The time evolution of the charge density N=1200 (symbol) & 10000 (solid line) 



5、 Numerical experiments
Test 1: left & 
right two-
humped solitons
interact with the 
one-humped

Collapsing 
phenomenon

S.H. Shao & H.Z. Tang, Phys. Lett. A, 345(2005), 119. 0.1; 0.9l r mΛ = Λ = Λ =

The time evolution of the charge density



5、 Numerical experiments

oscillating 
state with 
a long 
lifetime

S.H. Shao & H.Z. Tang, DCDS. B, 6(2006), 623.

The time evolution of the charge density

Charge and enegy densities at x = 0 as a function of time.

Test 2: two 
one-
humped 
solitons at 
rest interact 
each other 



5、 Numerical experiments
Test 3: left & 
right one-
humped 
solitons interact 
with the two-
humped

S.H. Shao & H.Z. Tang, Phys. Lett. A, 345(2005), 119.

A short-lived 
bound state in 
the ternary 
collisions

0.9; 0.1l r mΛ = Λ = Λ =
Charge density at x = 0 as a function of time.

The time evolution of the charge density



5、 Numerical experiments
Test 4: Three 
one-humped 
solitons interact 
each other

S.H. Shao & H.Z. Tang, Phys. Lett. A, 345(2005), 119.

A long-lived 
bound state in 
the ternary 
collisions

0.5l m rΛ = Λ = Λ =

The time evolution of the charge density

Charge density at x = 0 as a function of time.



5、 Numerical experiments

S.H. Shao & H.Z. Tang, CiCP., 3 (2008), 950.

The time evolution of the charge density

Test 5: 
Interaction of 
two one-
humped 
solitons with a 
phase shift

Elastic interaction

Elastic interaction

Inelastic interaction

Inelastic interaction



5、 Numerical experiments
Test 5: 
Interaction of 
two one-
humped 
solitons with a 
phase shift

phase plane method

S.H. Shao & H.Z. Tang, CiCP., 3 (2008), 950.

their relative phase 
may vary with
the interaction



5、 Numerical experiments
Test 6: 
Compara. 
of several 
methods

J. Zhao, S.H. Shao & H.Z. Tang, JCP, 245(2013), 131.

SI=semi-
implicit; 
HP=Hopscotch; 
LF=leapfrog；
OS=exponenti
al operator 
splitting



5、 Numerical experiments

Crank-Nicolson

Linearized CN1

Test 6: 
Compara. 
of several 
methods

J. Zhao, S.H. Shao & H.Z. Tang, JCP, 245(2013), 131.

Linearized CN2

l^∞ errors of 
all schemes 
increase almost 
linearly with 
the time.



5、 Numerical experiments

J. Zhao, S.H. 
Shao & H.Z. 
Tang, in 
preparation, 
2012.

Semi-implicit
fdm leapfrog

WENO5 P4-DG

J. Zhao, S.H. Shao & H.Z. Tang, JCP, 245(2013), 131.

Test 6: 
Compara. 
of several 
methods

The smaller the 
slope is, the 
longer time the 
scheme could 
simulate to.

l^∞ errors of 
all schemes 
increase with 
t too. 



5、 Numerical experiments

X. Ji, S.H. Shao & H.Z. Tang, preprint, 2012.

Test 7: 
RKDG for 
(1+2)-d 
Dirac eq.



6、Conclusions
• For (1+1)-d NLD eq. with a general self-interaction,  a linear 

combination of the scalar, pseudoscalar, vector and axial vector self-
interactions to the power of the integer k, its soliton solutions are 
analytically derived, and the number of soliton humps in the charge and 
energy densities is proved in theory: the number of soliton humps in  
charge (or energy / momentum) density is not bigger than 4 (or 3).

• Several numerical methods are discussed and compared. Interaction 
dynamics for Dirac solitons is studied. Some new phenomena are 
observed: (a) a new quasi-stable long-lived oscillating bound state from 
binary collisions of a single-humped soliton & a two-humped soliton; (b) 
collapse in binary & ternary collisions; (c) strongly inelastic interaction 
in ternary collisions; and (d) bound states with a short or long lifetime 
from ternary collisions. Phase plane method reveals that the relative 
phase of those waves may vary with the interaction.
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No.1 The Maxwell's Eqs.
No.2 Euler's Identity

No.3 Newton's 2nd 
Law of Motion

No.4  Pythagorean Theorem
No.5 Mass–energy 
Equivalence

No.6 The Schrodinger Eq.

No.7 
1+1=2

No.8 The de Broglie 
Relations

No.9 The Fourier Transform No.10 The Length of the 
Circumference of a Circle

In 2004 readers of 《Physics World》 voted for their 
favourite equation “The greatest equations ”:

电的高斯定律、磁的高斯定律、
法拉第定律以及安培定律
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