The cell-centered and linearity-preserving finite volume scheme for diffusion problems on general meshes

Zhiming Gao

Institute of Applied Physics and Computational Mathematics, Beijing, China.

Third Russian-Chinese Workshop on Numerical Mathematics and Scientific Computing, Moscow, 2013

Joint work with J.-M. Wu and Z.-H. Dai (IAPCM)

くしゃ 本語を 本語を 本語を 本日を

Outline

Problem statement

Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

Outline

Problem statement

2 Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

3 Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

EL OQO

Let Ω be a bounded polygonal domain in \mathbb{R}^d , d=2,3

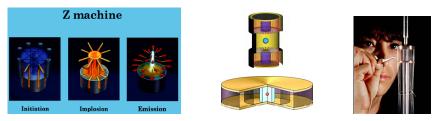
$$\begin{aligned} -\operatorname{div}(\Lambda \nabla u) &= f \quad \text{ in } \Omega, \\ u &= g_D \quad \text{ on } \partial \Omega, \end{aligned}$$

- Λ : $d \times d$ diffusion tensor.
- *f*: the source term.
- g_D : scalar functions which are *a.e.* defined on $\partial \Omega$.

Motivation: key applications

Equations of this kind arise in a wide range of scientific fields:

Z-Pinch driven ICF (Magneto-Hydrodynamics+Radiation): diffusion operator is coupled with Lagrangian hydrodynamics.



(a) A cylindrically symmetrical annulus is prepared with current to flow in the vertical (Z) direction. The implosion shows the resultant plasma shrinking and getting hotter. The plasma becomes very, very hot as it stagnates on the cylindrical axis of symmetry, releasing energy outward in the form of X-rays.

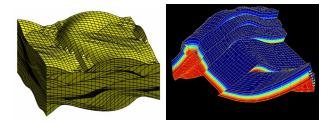
(b) Schematic of Double-ended hohlraum and dynamic hohlraum ICF concepts.

(c) Technician D. Graham uses tweezers to build an array of wires, each 1/10 the diameter of a human hair. (courtesy of http://www.sandia.gov/)

イロト (母) (ヨト (ヨト)ヨヨ ののの

Equations of this kind arise in a wide range of scientific fields:

- Z-Pinch driven ICF (Magneto-Hydrodynamics+Radiation): diffusion operator is coupled with Lagrangian hydrodynamics.
- Reservoir simulation: the complexity of the heterogeneous porous medium: layers, faults, fractures.

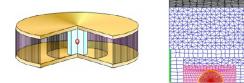


In the above applications, we face a number of challenges:

- Mesh issues: large distortion, high aspect ratio, degeneration, concavity, violation of traditional mesh regular or quasi-uniform or quasi-parallelogram assumptions in FEM (rough meshes)
- Discontinuity and nonlinearity: multi-material, shocks (moving discontinuity), diffusion tensor being highly anisotropic or heterogeneous, strongly nonlinear

In the above applications, we face a number of challenges:

- Mesh issues: large distortion, high aspect ratio, degeneration, concavity, violation of traditional mesh regular or quasi-uniform or quasi-parallelogram assumptions in FEM (rough meshes)
- Discontinuity and nonlinearity: multi-material, shocks (moving discontinuity), diffusion tensor being highly anisotropic or heterogeneous, strongly nonlinear



A configuration of Z-pinch driven ICF (left) and a possible 2D mesh (right).

An ultimate scheme ?

A desirable scheme must meet the above challenges and should

- be local conservative
- be cell-centered
- be linearity-preserving: exact for linear solutions
- be easy to code for both 2D and 3D cases
- lead to a symmetric and positive definite linear system
- be extremum-preserving or respect the physical bounds
- have theoretical fundations: stability, convergence, error estimates

Unfortunately, there exists no ultimate scheme that satisfies all the above properties !

An ultimate scheme ?

A desirable scheme must meet the above challenges and should

- be local conservative
- be cell-centered
- be linearity-preserving: exact for linear solutions
- be easy to code for both 2D and 3D cases
- lead to a symmetric and positive definite linear system
- be extremum-preserving or respect the physical bounds
- have theoretical fundations: stability, convergence, error estimates

Unfortunately, there exists no ultimate scheme that satisfies all the above properties !

Incomplete lists of finite volume schemes

- Multi-point flux approximation (I. Aavatsmark et.al., 2002)
- Control volume distributed (M.Edwards, 2002)
- Mimetic finite differnece (Breil et.al., 07; Lipnikov, et.al., 09)
- Scheme Using Stabilization and Harmonic Interfaces (Eymard, Gallouet, Herbin, 2008)
- Cell-centered nine-point scheme (Li et.al.,1980; Y.Coudiere et. al. 1999; Bertolazzi-Manzini, 00s; Yuan, 2008; J.Wu et.al.,2010)
- Mixed finite volume (J.Droniou, R.Eymard, 2006)
- Hybrid finite volume (R.Eymard, T.Gallouet, R.Herbin,2008)
- Discrete Duality finite volume (F.Hermeline 2000's)
- Linearity-preserving schemes (Wu & Gao, 2005–2012)
- Monotone schemes (Le Potier 2005,2013; Lipnikov, Yuri, 2009; Yuan et.al., 2008; Gao & Wu, 2013)

Design a simple scheme that can be uniformly coded for both 2D and 3D problems, and maintain, as many as possible, the nice properties described before.

- A linear version with stability and error estimate in H₁-norm under standard assumptions.
- A nonlinear version having a small stencil and satisfying discrete minimum principle and maximum principle simultaneously.

Design a simple scheme that can be uniformly coded for both 2D and 3D problems, and maintain, as many as possible, the nice properties described before.

- A linear version with stability and error estimate in H₁-norm under standard assumptions.
- A nonlinear version having a small stencil and satisfying discrete minimum principle and maximum principle simultaneously.

Design a simple scheme that can be uniformly coded for both 2D and 3D problems, and maintain, as many as possible, the nice properties described before.

- A linear version with stability and error estimate in H₁-norm under standard assumptions.
- A nonlinear version having a small stencil and satisfying discrete minimum principle and maximum principle simultaneously.

Outline

Problem statement

Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

3 Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

E SQC

Outline

Problem statement

Cell-centered scheme Construction of the scheme

- A linear version
- A nonlinear version

3 Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

E SQC

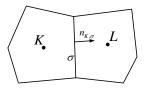
• Flux balance: Green's formula for diffusion equation on each cell K

$$\forall K: \sum_{\sigma \in \mathcal{E}_K} F_{K,\sigma} = \int_K f$$

with $\mathcal{E}_K = \text{edges}/\text{facets on } \partial K$ and $F_{K,\sigma} = -\int_{\sigma} \Lambda \nabla u \cdot \boldsymbol{n}_{K,\sigma}$.

• Flux conservativity (continuity)

$$\forall \sigma = K | L : F_{K,\sigma} + F_{L,\sigma} = 0.$$



• Cell-centered scheme: remains to decide how to express the fluxes in term of cell-centered unknowns ?

Z.M. Gao (IAPCM)

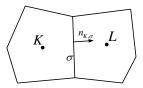
• Flux balance: Green's formula for diffusion equation on each cell K

$$\forall K: \sum_{\sigma \in \mathcal{E}_K} F_{K,\sigma} = \int_K f$$

with $\mathcal{E}_K = \text{edges}/\text{facets on } \partial K$ and $F_{K,\sigma} = -\int_{\sigma} \Lambda \nabla u \cdot \boldsymbol{n}_{K,\sigma}$.

• Flux conservativity (continuity)

$$\forall \sigma = K | L: F_{K,\sigma} + F_{L,\sigma} = 0$$



• **Cell-centered scheme**: remains to decide how to express the fluxes in term of cell-centered unknowns ?

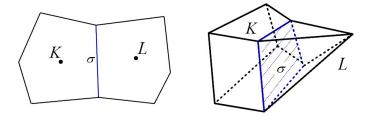
Z.M. Gao (IAPCM)

Moscow 2013 12 / 47

Mesh topology involved in our scheme

In our scheme, we only need to know two informations:

- Each cell is composed of facets: line segments (2D), polygons (3D).
- Each interior facet is shared by two cells.



Outline

Problem statement

Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

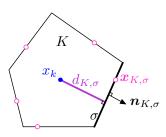
3 Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

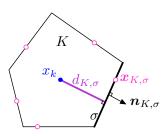
E SQC

Step 1: Specify cell-centers and interpolation points



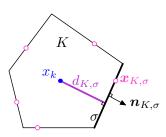
- \boldsymbol{x}_K : cell-center of cell K.
- u_K : the primary unknown at cell center x_K .
- *x*_{K,σ}: harmonic-averaging point (L.Agelas, R.Eymard, R.Herbin, 2009).
- $u_{K,\sigma}$: the auxiliary unknown at $oldsymbol{x}_{K,\sigma}$
- $d_{K,\sigma}$: the distance from \boldsymbol{x}_K to the edge σ .
- $n_{K,\sigma}$: the unit vector normal to σ outward to K.

Step 1: Specify cell-centers and interpolation points



- $\boldsymbol{x}_{\boldsymbol{K}}$: cell-center of cell K.
- u_K : the primary unknown at cell center x_K .
- *x*_{K,σ}: harmonic-averaging point (L.Agelas, R.Eymard, R.Herbin, 2009).
- $u_{K,\sigma}$: the auxiliary unknown at $x_{K,\sigma}$
- $d_{K,\sigma}$: the distance from x_K to the edge σ .
- $n_{K,\sigma}$: the unit vector normal to σ outward to K.

Step 1: Specify cell-centers and interpolation points

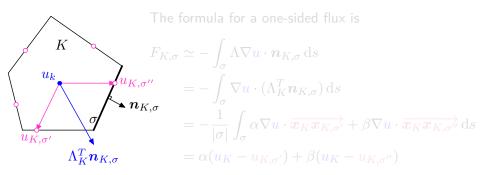


- $\boldsymbol{x}_{\boldsymbol{K}}$: cell-center of cell K.
- u_K : the primary unknown at cell center x_K .
- *x*_{K,σ}: harmonic-averaging point (L.Agelas, R.Eymard, R.Herbin, 2009).
- $u_{K,\sigma}$: the auxiliary unknown at $x_{K,\sigma}$
- $d_{K,\sigma}$: the distance from \boldsymbol{x}_K to the edge σ .
- $n_{K,\sigma}$: the unit vector normal to σ outward to K.

Step 2: Construct the one-sided flux

Consider the co-normal $\Lambda_K^T n_{K,\sigma}$ and its decomposition on two vectors $\overrightarrow{x_K x_{K,\sigma'}}$ and $\overrightarrow{x_K x_{K,\sigma''}}$

$$\left|\sigma|\Lambda_{K}^{T}\mathbf{n}_{K,\sigma}=\alpha(\boldsymbol{x}_{K,\sigma'}-\boldsymbol{x}_{K})+\beta(\boldsymbol{x}_{K,\sigma''}-\boldsymbol{x}_{K})\right|$$



Step 2: Construct the one-sided flux

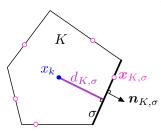
Consider the co-normal $\Lambda_K^T n_{K,\sigma}$ and its decomposition on two vectors $\overrightarrow{x_K x_{K,\sigma'}}$ and $\overrightarrow{x_K x_{K,\sigma''}}$

$$\begin{aligned} \left| \sigma | \Lambda_{K}^{T} \mathbf{n}_{K,\sigma} &= \alpha (\boldsymbol{x}_{K,\sigma'} - \boldsymbol{x}_{K}) + \beta (\boldsymbol{x}_{K,\sigma''} - \boldsymbol{x}_{K}) \right| \\ & \text{The formula for a one-sided flux is} \\ & F_{K,\sigma} &\simeq -\int_{\sigma} \Lambda \nabla \boldsymbol{u} \cdot \boldsymbol{n}_{K,\sigma} \, \mathrm{d}s \\ & u_{k} & u_{K,\sigma''} &= -\int_{\sigma} \nabla \boldsymbol{u} \cdot (\Lambda_{K}^{T} \boldsymbol{n}_{K,\sigma}) \, \mathrm{d}s \\ & = -\int_{\sigma} \nabla \boldsymbol{u} \cdot (\Lambda_{K}^{T} \boldsymbol{n}_{K,\sigma}) \, \mathrm{d}s \\ & = -\frac{1}{|\sigma|} \int_{\sigma} \alpha \nabla \boldsymbol{u} \cdot \overline{\boldsymbol{x}_{K} \boldsymbol{x}_{K,\sigma'}} + \beta \nabla \boldsymbol{u} \cdot \overline{\boldsymbol{x}_{K} \boldsymbol{x}_{K,\sigma''}} \, \mathrm{d}s \end{aligned}$$

Step 3: Construct a unique edge flux

The total unique edge flux is the linear combination of one-sided flux

$$\tilde{F}_{K,\sigma} = \mu_{K,\sigma} F_{K,\sigma} - \mu_{L,\sigma} F_{L,\sigma}, \quad \tilde{F}_{L,\sigma} = \mu_{L,\sigma} F_{L,\sigma} - \mu_{K,\sigma} F_{K,\sigma}$$



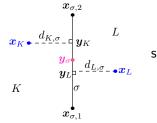
Where the coefficients $\mu_{K,\sigma}$ and $\mu_{L,\sigma}$:

$$\begin{split} \mu_{K,\sigma} &= \frac{a_{L,\sigma}}{a_{K,\sigma} + a_{L,\sigma}}, \quad \mu_{L,\sigma} = \frac{a_{K,\sigma}}{a_{K,\sigma} + a_{L,\sigma}} \\ \text{with} \\ & a_{K,\sigma} = \mathbf{n}_{K,\sigma}^T \Lambda_K \mathbf{n}_{K,\sigma} / d_{K,\sigma} \end{split}$$

$$a_{L,\sigma} = \mathbf{n}_{L,\sigma}^T \Lambda_L \mathbf{n}_{L,\sigma} / d_{L,\sigma}$$

Step 4: Interpolation of the auxiliary unknowns

Define the interpolation points with harmonic averaging point $y_{\sigma} \in \bar{\sigma}$ (L.Agelas, R.Eymard, R.Herbin, 2009)



 $\boldsymbol{y}_{\sigma} = \mu_{L,\sigma} \boldsymbol{x}_{K} + \mu_{K,\sigma} \boldsymbol{x}_{L} + \frac{\left(\Lambda_{K}^{T} - \Lambda_{L}^{T}\right) \boldsymbol{n}_{K,\sigma}}{a_{K} + a_{L}}$ such that the following properties hold • $u(\boldsymbol{x})$ is linear in K and L• $u(\boldsymbol{x})$ is continuous at interface σ • $u(\boldsymbol{x})$ has continuous flux across σ

The edge unknowns can be expressed as linear combinations of two cell-centered unknowns u_K and u_L

$$u_{K,\sigma} = u_{L,\sigma} = u(\boldsymbol{y}_{\sigma}) \simeq \mu_{L,\sigma} u_{K} + \mu_{K,\sigma} u_{L}$$

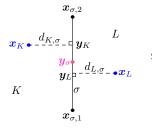
which gives an accurate approximation of u at the interface σ .

Z.M. Gao (IAPCM)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ●○○

Step 4: Interpolation of the auxiliary unknowns

Define the interpolation points with harmonic averaging point $y_{\sigma} \in \bar{\sigma}$ (L.Agelas, R.Eymard, R.Herbin, 2009)



 $oldsymbol{y}_{\sigma} = \mu_{L,\sigma} oldsymbol{x}_K + \mu_{K,\sigma} oldsymbol{x}_L + rac{\left(\Lambda_K^T - \Lambda_L^T
ight) oldsymbol{n}_{K,\sigma}}{a_K + a_T}$ $\begin{array}{c} \boldsymbol{x}_{K} \bullet \overset{d_{K,\sigma}}{=} \overset{d_{L,\sigma}}{=} \boldsymbol{y}_{K} \\ \boldsymbol{x}_{K} \bullet \overset{d_{K,\sigma}}{=} \overset{d_{L,\sigma}}{=} \overset{d_{L,\sigma}}{\bullet} \boldsymbol{x}_{L} \\ \boldsymbol{x}_{K} & \overset{\boldsymbol{y}_{\sigma}}{=} \overset{d_{L,\sigma}}{=} \overset{\boldsymbol{x}_{L}}{\bullet} \\ \boldsymbol{x}_{K} & \overset{\boldsymbol{y}_{\sigma}}{=} \overset{d_{L,\sigma}}{\bullet} \overset{\boldsymbol{x}_{L}}{\bullet} \\ \boldsymbol{x}_{K} & \overset{\boldsymbol{y}_{\sigma}}{=} \overset{\boldsymbol{y}_{\kappa}}{\bullet} \overset{\boldsymbol{x}_{K}}{\bullet} \\ \boldsymbol{y}_{\kappa} & \overset{\boldsymbol{y}_{\sigma}}{\bullet} \overset{\boldsymbol{x}_{K}}{\bullet} \\ \boldsymbol{y}_{\kappa} & \overset{\boldsymbol{y}_{\sigma}}{\bullet} \overset{\boldsymbol{x}_{K}}{\bullet} \\ \boldsymbol{y}_{\kappa} & \overset{\boldsymbol{y}_{\sigma}}{\bullet} \overset{\boldsymbol{y}_{\kappa}}{\bullet} \\ \boldsymbol{y}_{\kappa} & \overset{\boldsymbol{y}_{\sigma}}{\bullet} \\ \boldsymbol{y}_{\kappa} & \overset{\boldsymbol{y}_{\kappa}}{\bullet} & \overset{\boldsymbol{y}_{\kappa} & \overset{\boldsymbol{y}_{\kappa}}{\bullet} \\ \boldsymbol{y}_{\kappa} & \overset{\boldsymbol{y}_{\kappa}}{\bullet} \\ \boldsymbol{y}_{\kappa} & \overset{\boldsymbol{y}_{\kappa}}{\bullet} & \overset{$ such that the following properties hold • u(x) is continuous at interface σ • $u(\boldsymbol{x})$ has continuous flux across σ

The edge unknowns can be expressed as linear combinations of two cell-centered unknowns u_K and u_L

$$u_{K,\sigma} = u_{L,\sigma} = u(\boldsymbol{y}_{\sigma}) \simeq \mu_{L,\sigma} u_{K} + \mu_{K,\sigma} u_{L}$$

which gives an accurate approximation of u at the interface σ .

ヨト ヨヨ ののの

choose harmonic averaging points y_σ on material interfaces.
 Define one-sided fluxes

$$F_{K,\sigma} \simeq \alpha(u_K - u_{K,\sigma'}) + \beta(u_K - u_{K,\sigma''})$$

O Define the unique edge flux

 $\tilde{F}_{K,\sigma} = \mu_{K,\sigma}F_{K,\sigma} - \mu_{L,\sigma}F_{L,\sigma}$ with $\mu_{K,\sigma} + \mu_{L,\sigma} = 1$

Eliminate the auxiliary edge unknowns

 $u_{K,\sigma} = u_{L,\sigma} = u(\boldsymbol{y}_{\sigma}) \simeq \mu_{L,\sigma} \boldsymbol{u}_{K} + \mu_{K,\sigma} \boldsymbol{u}_{L}$

$$\sum_{\sigma \in \mathcal{E}_K} \tilde{F}_{K,\sigma} = \int_K f \,\mathrm{d}x$$

choose harmonic averaging points y_σ on material interfaces.
 Define one-sided fluxes

$$F_{K,\sigma} \simeq \alpha(u_K - u_{K,\sigma'}) + \beta(u_K - u_{K,\sigma''})$$

Optime the unique edge flux

 $\tilde{F}_{K,\sigma} = \mu_{K,\sigma}F_{K,\sigma} - \mu_{L,\sigma}F_{L,\sigma}$ with $\mu_{K,\sigma} + \mu_{L,\sigma} = 1$

Eliminate the auxiliary edge unknowns

 $u_{K,\sigma} = u_{L,\sigma} = u(\boldsymbol{y}_{\sigma}) \simeq \mu_{L,\sigma} \boldsymbol{u}_{K} + \mu_{K,\sigma} \boldsymbol{u}_{L}$

$$\sum_{\sigma \in \mathcal{E}_K} \tilde{F}_{K,\sigma} = \int_K f \,\mathrm{d}x$$

choose harmonic averaging points y_σ on material interfaces.
 Define one-sided fluxes

$$F_{K,\sigma} \simeq \alpha(u_K - u_{K,\sigma'}) + \beta(u_K - u_{K,\sigma''})$$

O Define the unique edge flux

$$\tilde{F}_{K,\sigma} = \mu_{K,\sigma}F_{K,\sigma} - \mu_{L,\sigma}F_{L,\sigma}$$
 with $\mu_{K,\sigma} + \mu_{L,\sigma} = 1$

Eliminate the auxiliary edge unknowns

 $u_{K,\sigma} = u_{L,\sigma} = u(\boldsymbol{y}_{\sigma}) \simeq \mu_{L,\sigma} \boldsymbol{u}_{K} + \mu_{K,\sigma} \boldsymbol{u}_{L}$

$$\sum_{\sigma \in \mathcal{E}_K} \tilde{F}_{K,\sigma} = \int_K f \,\mathrm{d}x$$

choose harmonic averaging points y_σ on material interfaces.
 Define one-sided fluxes

$$F_{K,\sigma} \simeq \alpha(u_K - u_{K,\sigma'}) + \beta(u_K - u_{K,\sigma''})$$

Of Define the unique edge flux

$$ilde{F}_{K,\sigma} = \mu_{K,\sigma}F_{K,\sigma} - \mu_{L,\sigma}F_{L,\sigma}$$
 with $\mu_{K,\sigma} + \mu_{L,\sigma} = 1$

Eliminate the auxiliary edge unknowns

 $u_{K,\sigma} = u_{L,\sigma} = u(\boldsymbol{y}_{\sigma}) \simeq \mu_{L,\sigma} u_{K} + \mu_{K,\sigma} u_{L}$

$$\sum_{\sigma \in \mathcal{E}_K} \tilde{F}_{K,\sigma} = \int_K f \, \mathrm{d}x$$

choose harmonic averaging points y_σ on material interfaces.
 Define one-sided fluxes

$$F_{K,\sigma} \simeq \alpha(u_K - u_{K,\sigma'}) + \beta(u_K - u_{K,\sigma''})$$

O Define the unique edge flux

$$ilde{F}_{K,\sigma} = \mu_{K,\sigma}F_{K,\sigma} - \mu_{L,\sigma}F_{L,\sigma}$$
 with $\mu_{K,\sigma} + \mu_{L,\sigma} = 1$

Eliminate the auxiliary edge unknowns

 $u_{K,\sigma} = u_{L,\sigma} = u(\boldsymbol{y}_{\sigma}) \simeq \mu_{L,\sigma} u_{K} + \mu_{K,\sigma} u_{L}$

$$\sum_{\sigma \in \mathcal{E}_K} \tilde{F}_{K,\sigma} = \int_K f \, \mathrm{d}x$$

H_1 -Stability for the linear scheme in 2D

Assume that, for all $K \in \mathcal{M}$ and $\sigma \in \mathcal{E}$,

• (Mesh regularity)

$$|K| \geq \alpha h^2, |\sigma| \geq \beta h, n_K \leq \gamma$$

• The symmetric part of cell matrix is positive definite

$$\mathbf{v}^T \left(\mathbb{A}_K + \mathbb{A}_K^T \right) \mathbf{v}/2 \ge \tau_K \|\mathbf{v}\|$$

• (Geometrical assumption)

$$|\sigma|/d_{\sigma} \leq q^{\star}, d_{\sigma} = d_{K,\sigma} + d_{L,\sigma} \text{ or } d_{\sigma} = d_{K,\sigma}.$$

Then

$$\|u_h\|_{1,\mathcal{M}} \le \frac{C_P q^\star}{\min\{\tau_K \mu_{K,\sigma}^2\}} \|f\|_{0,\Omega}$$

Assume that $u \in C^2(\overline{\Omega})$ and, for all $K \in \mathcal{M}$ and $\sigma \in \mathcal{E}$,

•
$$\mathbf{v}^T \left(\mathbb{A}_K + \mathbb{A}_K^T \right) \mathbf{v}/2 \ge \tau_K \|\mathbf{v}\|;$$

• $|\sigma|/d_{\sigma} \le q^*, d_{\sigma} = d_{K,\sigma} + d_{L,\sigma}$ or $d_{\sigma} = d_{K,\sigma};$
• $\|\mathbb{A}_K \mathbf{v}\| \le \eta \|\mathbf{v}\|;$

• $\boldsymbol{y}_{\sigma} \in \bar{\sigma}$.

Then we have the following H_1 error estimate

 $\|\Pi_h u - u_h\|_{1,\mathcal{M}} \le Ch.$

where Π_h is a piecewise constant interpolation operator.

Outline

Problem statement

Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

3 Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

E SQC

- **()** choose harmonic averaging points y_σ on material interfaces.
- 2 Define one-sided fluxes

 $F_{K,\sigma} \simeq \alpha (u_K - u_{K,\sigma'}) + \beta (u_K - u_{K,\sigma''}), \quad \alpha > 0, \beta > 0$

Object to the second second

白 ト イヨト イヨト ヨヨ うくで

- **()** choose harmonic averaging points y_σ on material interfaces.
- 2 Define one-sided fluxes

 $F_{K,\sigma} \simeq \alpha (u_K - u_{K,\sigma'}) + \beta (u_K - u_{K,\sigma''}), \quad \alpha > 0, \beta > 0$

Offine unique edge flux

- **(**) choose harmonic averaging points y_{σ} on material interfaces.
- 2 Define one-sided fluxes

$$F_{K,\sigma} \simeq \alpha (u_K - u_{K,\sigma'}) + \beta (u_K - u_{K,\sigma''}), \quad \alpha > 0, \beta > 0$$

Offine unique edge flux

$$ilde{F}_{K,\sigma} = \mu_{K,\sigma}F_{K,\sigma} - \mu_{L,\sigma}F_{L,\sigma}$$
 with $\mu_{K,\sigma} + \mu_{L,\sigma} = 1$

- **()** choose harmonic averaging points y_σ on material interfaces.
- 2 Define one-sided fluxes

$$F_{K,\sigma} \simeq \alpha (u_K - u_{K,\sigma'}) + \beta (u_K - u_{K,\sigma''}), \quad \alpha > 0, \beta > 0$$

Offine unique edge flux

$$ilde{F}_{K,\sigma} = \mu_{K,\sigma}F_{K,\sigma} - \mu_{L,\sigma}F_{L,\sigma}$$
 with $\mu_{K,\sigma} + \mu_{L,\sigma} = 1$

For the previous linear scheme, we have chosen

$$\mu_{K,\sigma} = \frac{a_{L,\sigma}}{a_{K,\sigma} + a_{L,\sigma}}, \quad a_{K,\sigma} = \frac{1}{d_{K,\sigma}} \mathbf{n}_{K,\sigma}^T \Lambda_K \mathbf{n}_{K,\sigma}$$

- **(**) choose harmonic averaging points y_{σ} on material interfaces.
- 2 Define one-sided fluxes

$$F_{K,\sigma} \simeq \alpha (u_K - u_{K,\sigma'}) + \beta (u_K - u_{K,\sigma''}), \quad \alpha > 0, \beta > 0$$

• Define unique edge flux with nonlinear coefficients

$$ilde{F}_{K,\sigma} = ilde{\mu}_{K,\sigma}(u)F_{K,\sigma} - ilde{\mu}_{L,\sigma}(u)F_{L,\sigma} \quad ext{with} \quad ilde{\mu}_{K,\sigma}(u) + ilde{\mu}_{L,\sigma}(u) = 1$$

- **()** choose harmonic averaging points y_σ on material interfaces.
- 2 Define one-sided fluxes

$$F_{K,\sigma} \simeq \alpha (u_K - u_{K,\sigma'}) + \beta (u_K - u_{K,\sigma''}), \quad \alpha > 0, \beta > 0$$

• Define unique edge flux with nonlinear coefficients $\tilde{F}_{K,\sigma} = \tilde{\mu}_{K,\sigma}(u)F_{K,\sigma} - \tilde{\mu}_{L,\sigma}(u)F_{L,\sigma}$ with $\tilde{\mu}_{K,\sigma}(u) + \tilde{\mu}_{L,\sigma}(u) = 1$

The nonlinear coefficients

$$\tilde{\mu}_{K,\sigma}(u) = \frac{|\bar{F}_{L,\sigma}| + \epsilon}{|\bar{F}_{K,\sigma}| + |\bar{F}_{L,\sigma}| + 2\epsilon} \text{ with } F_{K,\sigma} = \underbrace{\gamma a_{\sigma\sigma}^{K}(u_{K} - u_{\sigma})}_{"good"} + \underbrace{\bar{F}_{K,\sigma}}_{"bad"}$$

A small parameter $\epsilon > 0$, $\gamma \in [0, 1]$.

- **()** choose harmonic averaging points y_σ on material interfaces.
- 2 Define one-sided fluxes

$$F_{K,\sigma} \simeq \alpha (u_K - u_{K,\sigma'}) + \beta (u_K - u_{K,\sigma''}), \quad \alpha > 0, \beta > 0$$

Obtained Define unique edge flux with nonlinear coefficients $\tilde{F}_{K,\sigma} = \tilde{\mu}_{K,\sigma}(u)F_{K,\sigma} - \tilde{\mu}_{L,\sigma}(u)F_{L,\sigma}$ with $\tilde{\mu}_{K,\sigma}(u) + \tilde{\mu}_{L,\sigma}(u) = 1$

Eliminate the auxiliary edge unknowns

$$u(\boldsymbol{y}_{\sigma}) \simeq \mu_{L,\sigma} u_K + \mu_{K,\sigma} u_L, \quad \sigma = K|L.$$

Insert the nonlinear fluxes into mass balance equation:

$$\sum_{\sigma\in\mathcal{E}_K}\tilde{F}_{K,\sigma}=\int_K f\,\mathrm{d} x$$

Characteristics of the linear scheme

- locally conservative and cell-centered
- linearity-preserving: exact for linear solutions
- reliable on unstructured anisotropic meshes that may be distorted;
- allow heterogeneous full diffusion tensors;
- have higher than the first-order accuracy for smooth solutions;
- 2D & 3D implementation almost in an uniform code
- Stability and error estimates in H_1 -norm.

Characteristics of the nonlinear scheme

- locally conservative and cell-centered
- linearity-preserving: exact for linear solutions
- reliable on unstructured anisotropic meshes that may be distorted;
- allow heterogeneous full diffusion tensors;
- have higher than the first-order accuracy for smooth solutions;
- 2D & 3D implementation almost in an uniform code

- satisfy discrete minimum principle and maximum principle
- small stencil: 4-point stencil for triangle mesh, 5-point for structured quad mesh, 7-point for structured hexahedral meshes.

Outline

Problem statement

2 Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

3 = 1 - 1 A A

Methodology for convergence analysis

• The discrete L_2 -norm of solution errors

$$E_u = \left(\sum_K |K|(u(x_K) - u_K)\right)^{1/2}$$

The L_2 -norm of its gradient errors E_q can be defined analogously.

• The rate of convergence

$$R_{\alpha} = \frac{\log[E_{\alpha}(h_2)/E_{\alpha}(h_1)]}{\log(h_2/h_1)}, \quad \alpha = u, q,$$

where h_1, h_2 denote the mesh sizes of the two successive meshes.

 Most of tests can be found in the 5th and 6th Conference on Finite Volumes for Complex Applications - FVCA 5 & 6.

Outline

Problem statement

2 Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

EL OQO

- Dirichlet B.V.P. in $\Omega = [0,1]^2$
- diffusion tensor

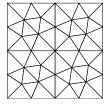
$$K = \begin{pmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{pmatrix}$$

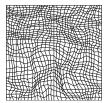
• exact solution $0 \le u(x, y) \le 1$:

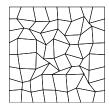
$$u(x,y) = \frac{1}{2} \left[\frac{\sin((1-x)(1-y))}{\sin(1)} + (1-x)^3(1-y)^2 \right],$$

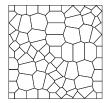
• Slight modification of Test 1.2 in FVCA5.

(P1) Smooth solution: convergence analysis









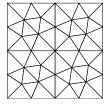
Mesh	Scheme	umin	umax	Stencil	Rates(<u>u</u>)	Rates(abla u)
Mesh1	nonlinear	2.80E-03	0.754	4	1.929	1.025
WICSHI	linear	3.06E-03	0.754	10	1.983	1.089
Mesh2	nonlinear	1.17E-03	0.825	5	2.305	1.046
MESHZ	linear	1.32E-03	0.825	13	2.525	1.070
Mesh3	nonlinear	1.84E-03	0.810	5	1.986	1.027
MESHJ	linear	1.93E-03	0.810	13	1.984	1.030
Mesh4	nonlinear	4.19E-04	0.906	7	1.814	1.240
10165114	linear	4.42E-04	0.906	19	1.810	1.236

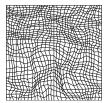
Z.M. Gao (IAPCM)

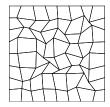
Moscow 2013 29 / 47

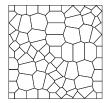
3 1

(P1) Smooth solution: convergence analysis





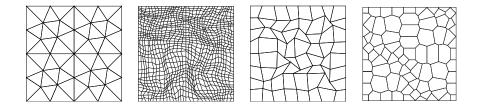




Mesh	Scheme	umin	umax	Stencil	Rates(<u>u</u>)	Rates(abla u)
Mesh1	nonlinear	2.80E-03	0.754	4	1.929	1.025
INICOLL	linear	3.06E-03	0.754	10	1.983	1.089
Mesh2	nonlinear	1.17E-03	0.825	5	2.305	1.046
Mesnz	linear	1.32E-03	0.825	13	2.525	1.070
Mesh3	nonlinear	1.84E-03	0.810	5	1.986	1.027
MESHJ	linear	1.93E-03	0.810	13	1.984	1.030
Mesh4	nonlinear	4.19E-04	0.906	7	1.814	1.240
10162114	linear	4.42E-04	0.906	19	1.810	1.236

3 1

(P1) Smooth solution: convergence analysis



Percentage of harmonic averaging points that are outside mesh edges

Mesh	h_1	h_2	h_3	h_4	h_5
Mesh1	0	0	0	0	0
Mesh2	0	0.18%	0.19%	0.18%	0.15%
Mesh3	0	0	0	0.02%	0.03%
Mesh4	8.61%	10.71%	7.56%	5.44%	3.36%

(P2) Discontinuous anisotropy: description

- Dirichlet B.V.P. in the unit square domain
- Λ changes the eigenvalues and orientation of eigenvectors across the line x=0.5,

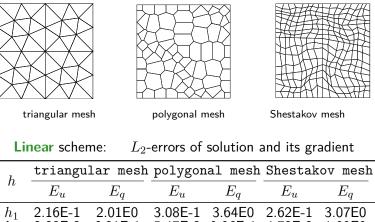
$$\Lambda = \begin{pmatrix} 10 & 2 \\ 2 & 5 \end{pmatrix}, x \le 0.5; \qquad K = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, x > 0.5.$$

exact solution

$$u(x,y) = \begin{cases} \left[1 + (x - 0.5) \left(.1 + 8\pi(y - 0.5)\right)\right] e^{-20\pi(y - 0.5)^2}, x \le 0.5, \\ e^{x - 0.5} e^{-20\pi(y - 0.5)^2}, & x > 0.5. \end{cases}$$

■Ref.: Younes A, Fontaine V., Int. J. for Numer. Meth. in Engrg. 2008 (76) 314-336.

(P2) Discontinuous anisotropy: convergence analysis

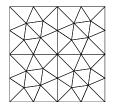


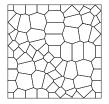
	E_u	E_q	E_u	E_q	E_u	E_q	
h_1	2.16E-1	2.01E0	3.08E-1	3.64E0	2.62E-1	3.07E0	
h_2	2.33E-2	6.31E-1	5.47E-2	9.06E-1	4.72E-2	1.09E0	
h_3	4.72E-3	2.63E-1	9.39E-3	2.38E-1	1.13E-2	3.73E-1	
h_4	1.17E-3	1.13E-1	2.53E-3	9.22E-2	3.87E-3	1.99E-1	
h_5	2.93E-4	5.34E-2	1.29E-3	4.87E-2	1.30E-3	1.06E-1	
Rates	2.381	1.309	2.064	1.588	2.780	1.776	= 4

Z.M. Gao (IAPCM)

Moscow 2013 31 / 47

(P2) Discontinuous anisotropy: convergence analysis





31 / 47

triangular mesh

polygonal mesh

Shestakov mesh

Nonlinear scheme: L_2 -errors of solution and its gradient

h	triangular mesh		polygor	al mesh	Shestakov mesh		
п	E_u	E_q	E_u	E_q	E_u	E_q	
h_1	2.51E-1	2.18E0	3.07E-1	3.70E0	2.70E-1	3.18E0	
h_2	4.23E-2	8.58E-1	5.13E-2	8.98E-1	5.22E-2	1.21E0	
h_3	1.36E-2	4.28E-1	8.49E-3	2.41E-1	1.75E-2	5.47E-1	
h_4	3.82E-3	1.70E-1	2.32E-3	9.65E-2	8.66E-3	3.26E-1	
h_5	1.03E-3	6.88E-2	1.12E-3	5.31E-2	3.44E-3	1.88E-1	
Rates	1.981	1.246	2.068	1.563	2.295	1.491	
Z.M. Gao	(IAPCM)	Cell-cent	ered linearity-p	reserving FV.		Moscow 2013	

Outline

Problem statement

2 Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

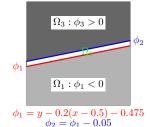
Discussion

E SQC

(P3) Oblique barrier (Test 7 in FVCA5)

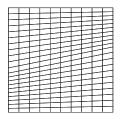
Image: The domain Ω is composed of three subdomains
 Image: Exact solution (parallel to boundaries of subdomains)

$$u(x,y) = \begin{cases} -\phi_1(x,y) & \text{on } \Omega_1, \\ -100\phi_1(x,y) & \text{on } \Omega_2, \\ -\phi_2(x,y)-5 & \text{on } \Omega_3, \end{cases}$$



 ${\scriptstyle \rm I\!\!I\!\!I}$ The permeability tensor Λ

$$\Lambda = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}, \text{ with } \alpha = \begin{cases} 1 & \text{ on } \Omega_1 \cup \Omega_3, \\ 0.01 & \text{ on } \Omega_2. \end{cases}$$

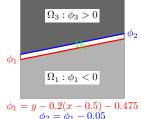


▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ 三日 ● の Q @

(P3) Oblique barrier (Test 7 in FVCA5)

 \square The domain Ω is composed of three subdomains Exact solution (parallel to boundaries of subdomains)

$$u(x,y) = \begin{cases} -\phi_1(x,y) & \text{on } \Omega_1, \\ -100\phi_1(x,y) & \text{on } \Omega_2, \\ -\phi_2(x,y)-5 & \text{on } \Omega_3, \end{cases}$$

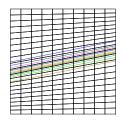


 \sim The permeability tensor Λ

$$\Lambda = \begin{pmatrix} lpha & 0 \\ 0 & lpha \end{pmatrix}, ext{ with } lpha = egin{cases} 1 & ext{ on } \Omega_1 \cup \Omega_3, \ 0.01 & ext{ on } \Omega_2. \end{cases}$$

Relative error of solution and gradient S.

Scheme	uemin	uemax	umin	umax	$Sol.(L_2)$	$Sol.(H_1)$
Linear	-5.575	0.575	-5.537	0.537	7.96E-16	3.02E-15
Nonlinear	-5.575	0.575	-5.537	0.537	6.51E-16	2.98E-15
Z.M.	Cell	-centered	linearity-preserv	ing FV.		



◆母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の Q @

33 / 47

Moscow 2013

Outline

Problem statement

2 Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

E SQC

(P4) oblique flow (Test 3 in FVCA5)

- Unit square $\Omega = [0,1]^2$
- Anisotropic diffusion tensor

$$\Lambda = R_{\theta} \begin{pmatrix} 1 & 0 \\ 0 & 10^{-4} \end{pmatrix} R_{\theta}^{-1}, \quad \theta = 40^{\circ}$$

- $\bullet \ \, {\rm Source \ term} \ \, f=0$
- Dirichlet B. C.: g_D continuous and piecewise linear

$$g_D(x,y) = \begin{cases} 1 \ \text{on} (0,0.2) \times \{0\} \cup \{0\} \times (0,0.2), \\ 0 \ \text{on} (0.8,1) \times \{1\} \cup \{1\} \times (0.8,1), \\ 0.5 \text{ on} (0.3,1) \times \{0\} \cup \{0\} \times (0.3,1), \\ 0.5 \text{ on} (0,0.7) \times \{1\} \cup \{1\} \times (0,0.7). \end{cases}$$

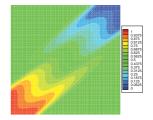
EL OQA

(P4) oblique flow (Test 3 in FVCA5)

- Unit square $\Omega = [0,1]^2$
- Anisotropic diffusion tensor

$$\Lambda = R_{\theta} \begin{pmatrix} 1 & 0 \\ 0 & 10^{-4} \end{pmatrix} R_{\theta}^{-1}, \quad \theta = 40^{\circ}$$

• Source term f = 0



• Dirichlet B. C.: g_D continuous and piecewise linear

$$g_D(x,y) = \begin{cases} 1 \text{ on } (0,0.2) \times \{0\} \cup \{0\} \times (0,0.2), \\ 0 \text{ on } (0.8,1) \times \{1\} \cup \{1\} \times (0.8,1), \\ 0.5 \text{ on } (0.3,1) \times \{0\} \cup \{0\} \times (0.3,1), \\ 0.5 \text{ on } (0,0.7) \times \{1\} \cup \{1\} \times (0,0.7). \end{cases}$$

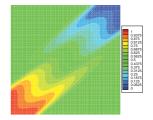
IS This test represents a flow with boundary conditions such that the pressure driven flow "would like" to go from vertex (0,0) to (1,1) ,and the solution features a Z across the y = x axis.

(P4) oblique flow (Test 3 in FVCA5)

- Unit square $\Omega = [0,1]^2$
- Anisotropic diffusion tensor

$$\Lambda = R_{\theta} \begin{pmatrix} 1 & 0 \\ 0 & 10^{-4} \end{pmatrix} R_{\theta}^{-1}, \quad \theta = 40^{\circ}$$

• Source term f = 0

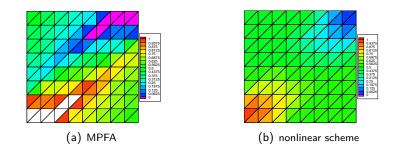


• Dirichlet B. C.: g_D continuous and piecewise linear

$$g_D(x,y) = \begin{cases} 1 \ \text{on} (0,0.2) \times \{0\} \cup \{0\} \times (0,0.2), \\ 0 \ \text{on} (0.8,1) \times \{1\} \cup \{1\} \times (0.8,1), \\ 0.5 \ \text{on} (0.3,1) \times \{0\} \cup \{0\} \times (0.3,1), \\ 0.5 \ \text{on} (0,0.7) \times \{1\} \cup \{1\} \times (0,0.7). \end{cases}$$

Maximum principle is not always easy to verify for such a solution !

(P4) oblique flow: solution profiles

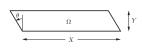


- 128 cells.
- white color: u > 1.
- magenta color: u < 0.

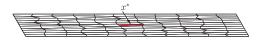
Scheme	min. sol.	Max. sol.	
MPFA	-0.22	1.22	
Nonlinear scheme	0.0302	0.97	

-

(P5) Perturbed parallelograms (Test 8 in FVCA5)



 $\begin{array}{c} & \mathbb{I} & X = 1, \ Y = 1/30, \ \theta = 30^{\circ} \\ & \searrow & \text{Diffusion tensor } \Lambda = \text{Id} \\ & \to & f = 0 \text{ in all cells except cell } x^* = (6,6) \text{ where } \\ & \int_{\text{cell}(6,6)} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = 1. \end{array}$



- perturbed parallelogram mesh with 11×11 cells. The height is 3 times the real height of the mesh.
- The solution should be a function with a maximum in cell x^* . If the solution shows internal oscillations or is negative, Hopf's first lemma is violated.

(P5) Perturbed parallelograms: min. and max. solutions [Herbin-Hubert, Table 12 in FVCA5]

Scheme	umin	umax	Scheme	umin	umax
Fine grid	1.07E-24	4.10E-01	FVHYB	-3.38E-02	1.12E-01
CMPFA	-2.31E-02	1.03E-01	FVSYM	-7.21E-02	1.52E-01
CVFE	-1.23E-03	4.24E-02	FVPMMD	1.22E-09	3.99E-01
DDFV-BHU	-1.25E-03	8.22E-02	MFD-BLS	-1.03E-01	1.85E-01
DDFV-HER	-1.61E-03	8.99E-02	MFD-FHE	-6.54E-02	1.44E-01
DDFV-MNI	-1.46E-03	6.69E-02	MFD-MAR	-2.62E-02	9.07E-02
DDFV-OMN	-1.77E-03	8.36E-02	MFV	-8.08E-03	5.81E-02
DG-C	-7.33E-03	1.05E-01	NMFV	3.05E-15	9.42E-02
DG-W	-9.03E-03	6.57E-02	SUSHI-NP	-1.19E-03	5.65E-02
FEQ1	-4.17E-03	4.90E-02	SUSHI-P	3.26E-06	6.77E-03
Linear	-7.51E-04	7.19E-02	Nonlinear	1.58E-09	8.03E-02

3 5

(P5) Perturbed parallelograms: min. and max. solutions [Herbin-Hubert, Table 12 in FVCA5]

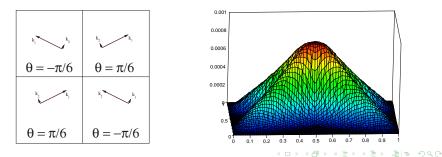
Scheme	umin	umax	Scheme	umin	umax
Fine grid	1.07E-24	4.10E-01	FVHYB	-3.38E-02	1.12E-01
CMPFA	-2.31E-02	1.03E-01	FVSYM	-7.21E-02	1.52E-01
CVFE	-1.23E-03	4.24E-02	FVPMMD	1.22E-09	3.99E-01
DDFV-BHU	-1.25E-03	8.22E-02	MFD-BLS	-1.03E-01	1.85E-01
DDFV-HER	-1.61E-03	8.99E-02	MFD-FHE	-6.54E-02	1.44E-01
DDFV-MNI	-1.46E-03	6.69E-02	MFD-MAR	-2.62E-02	9.07E-02
DDFV-OMN	-1.77E-03	8.36E-02	MFV	-8.08E-03	5.81E-02
DG-C	-7.33E-03	1.05E-01	NMFV	3.05E-15	9.42E-02
DG-W	-9.03E-03	6.57E-02	SUSHI-NP	-1.19E-03	5.65E-02
FEQ1	-4.17E-03	4.90E-02	SUSHI-P	3.26E-06	6.77E-03
Linear	-7.51E-04	7.19E-02	Nonlinear	1.58E-09	8.03E-02

JI NOR

 $\begin{array}{l} \hline \blacksquare & \text{Dirichlet B.V.P. in } \Omega = [0,1]^2 \text{ with four square subdomains } \Omega_i \\ \hline \blacksquare & \text{Diffusion tensor } \Lambda = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta \cos \theta \end{pmatrix}. \\ \hline \blacksquare & \text{Source term } f = \frac{81}{4} \text{ in } \boldsymbol{x} \in \left[\frac{7}{18}, \frac{11}{18}\right]^2; f = 0 \text{ otherwise.} \end{array}$

Results on randomly distorted quadrilateral mesh in two cases.

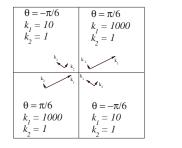
Source term $f = \frac{81}{4}$ in $\boldsymbol{x} \in \left[\frac{7}{18}, \frac{11}{18}\right]^2$; f = 0 otherwise. **Results on randomly distorted quadrilateral mesh in two cases.** (1) various angle θ and $k_1 = 1000$, $k_2 = 1$: min u = 1.18E-10

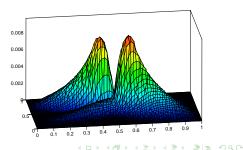


Z.M. Gao (IAPCM)

Cell-centered linearity-preserving FV.

Source term $f = \frac{81}{4}$ in $\boldsymbol{x} \in \left[\frac{7}{18}, \frac{11}{18}\right]^2$; f = 0 otherwise. **Results on randomly distorted quadrilateral mesh in two cases.** (2) various angle θ , chess board distribution of k_1 , k_2 : min u=6.2E-10





Source term $f = \frac{81}{4}$ in $\boldsymbol{x} \in \left[\frac{7}{18}, \frac{11}{18}\right]^2$; f = 0 otherwise. **Results on randomly distorted quadrilateral mesh in two cases.** (1) various angle θ and $k_1 = 1000$, $k_2 = 1$: $\min u = 1.18E-10$ (2) various angle θ , chess board distribution of k_1 , k_2 : $\min u = 6.2E-10$

Our nonlinear FV scheme can handle strong jumps of full diffusion tensor with different couples of principle directions and eigenvalues !

ののの 正直 イヨト イヨト 人名ト

Outline

Problem statement

2 Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

E SQC

Linear scheme (3D): meshes with planar facets

- Dirichlet B.V.P. in $\Omega = [0,1]^3$
- diffusion tensor

$$\Lambda = \begin{pmatrix} 1.5 & 0.5 & 0 \\ 0.5 & 1.5 & 0.5 \\ 0 & 0.5 & 1.5 \end{pmatrix}$$

exact solution

$$u(x, y, z) = 1 + \sin(\pi x) \sin\left(\pi \left(y + \frac{1}{2}\right)\right) \sin\left(\pi \left(z + \frac{1}{3}\right)\right)$$

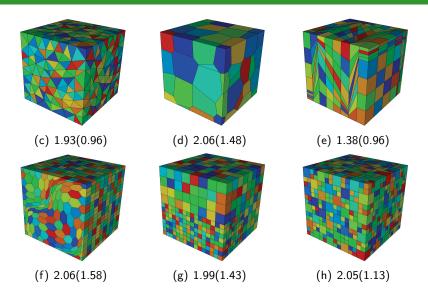
• meshes: all six typical mesh types in the sixth conference on finite volumes for complex applications

W. W. Sun, J. M. Wu, X.P. Zhang, A family of linearity-preserving schemes for anisotropic diffusion problems on arbitrary polyhedral grids, 2013, CMAME.

Z.M. Gao (IAPCM)

Moscow 2013 41 / 47

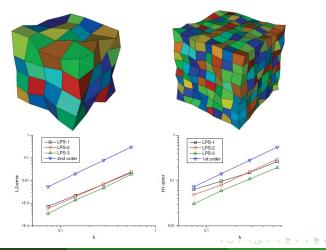
Linear scheme (3D): meshes with planar facets



E SQC

Linear scheme (3D): meshes with non-planar facets

 $\begin{array}{ll} & \quad \ \ \, \Lambda = {\rm diag}(1,1,1000), \ \ \, {\rm a \ strongly \ anisotropic \ tensor} \\ & \quad \ \ \, {\rm exact \ solution} \ \ \, u(x,y,z) = \sin(\pi x)\sin(\pi y)\sin(\pi z) \\ \end{array}$



Z.M. Gao (IAPCM)

Cell-centered linearity-preserving FV.

Outline

Problem statement

2 Cell-centered scheme

- Construction of the scheme
- A linear version
- A nonlinear version

3 Numerical examples

- Convergence analysis (P1-P2)
- Linearity-preserving test (P3)
- Discrete extremum principle (P4-P6)
- 3D test

Discussion

E SQC

Cell-centered FV scheme: linear version, nonlinear version.

- cell-centered and locally conservative
- robust, reliable for strongly anisotropic heterogeneous diffusion.
- 2nd order accuracy on most polygonal or polyhedral meshes
- uniformly coding for both 2D and 3D models
- Linear scheme: stability and error estimate in H₁-norm under general and standard assumpations on polygonal meshes.
- Nonlinear scheme: small stencil and extremum-preserving
- Solution: How to solve $y_{\sigma} \notin \bar{\sigma}$?
- Application: Z-pinch ICF simulation and some related fields

Z.-M. Gao, J.-M. Wu

A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes. Journal of Computational Physics, 250 (2013), 308-331.

J.-M. Wu, Z.-M. Gao, Z.-H. Dai

A stabilized linearity -preserving scheme for the heterogeneous and anisotropic diffusion problems on polygonal meshes. *Journal of Computational Physics*, 231 (2012), 7152-7169.

Thank you !

- AUTHOR: Gao Zhi-Ming
- ADDRESS: Institute of Applied Physics and Computational Mathematics Beijing, 100088, China
- EMAIL: gao@iapcm.ac.cn

3 5