On Modifications of the

Navier-Stokes Equations

G.M. Kobelkov
 Moscow State Univ. \& Inst. of Numer. Maths. RAS

Let Ω be a bounded domain with Lipshitz boundary in R^{3}.

We use the following notations: independent variables are denoted as $x=\left(x_{1}, x_{2}, x_{3}\right), x^{\prime}=$ (x_{1}, x_{2}); the variable x_{3} is denoted as z also. In the space of vector functions, introduce the
norms:

$$
\begin{aligned}
& \|\mathbf{f}\|^{2}=\sum_{i=1}^{3} \int_{\Omega} f_{i}^{2}(x) d x, \quad Q_{T}=\Omega \times[0, T] \\
& \left\|\mathbf{f}_{x}\right\|^{2}=\sum_{i, j=1}^{3} \int_{\Omega}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)^{2} d x \\
& \Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}, \quad \partial_{x_{i}}=\frac{\partial}{\partial x_{i}}, \quad\|\cdot\|_{q}=\|\cdot\|_{L_{q}}
\end{aligned}
$$

The system of Navier-Stokes equations describing dynamics of incompressible viscous flow is of the form

$$
\begin{align*}
& \mathbf{u}_{t}-\nu \Delta \mathbf{u}+\nu \partial_{3}^{2} \mathbf{u}+\nabla p+u_{k} \mathbf{u}_{x_{k}}=\mathbf{0}, \quad \operatorname{div} \mathbf{u}=0 \\
& \mathbf{u}(x, 0)=\mathbf{u}_{0}(x), \operatorname{div} \mathbf{u}_{0}=0,\left.\quad \mathbf{u}\right|_{\partial \Omega \times[0, T]}=\mathbf{0} \tag{1}
\end{align*}
$$

The Leray hypothesis is formulated as follows: For any $\nu>0$, arbitrary smooth initial condition \mathbf{u}_{0} and arbitrary time interval to prove existence and uniqueness of a solution $\mathbf{u} \in$ $\mathbf{H}^{1}\left(Q_{T}\right)$ to (1).

In 1966 Ladyzhenskaya suggested modified equations

$$
\begin{align*}
& \mathbf{u}_{t}-\nu \operatorname{div}\left(\left(1+\varepsilon \mathbf{u}_{x}^{2}\right) \nabla \mathbf{u}\right)+\nabla p+u_{k} \mathbf{u}_{x_{k}}=\mathbf{0} \\
& \operatorname{div} \mathbf{u}=0, \mathbf{u}(x, 0)=\mathbf{u}_{0}(x),\left.\quad \mathbf{u}\right|_{\partial \Omega \times[0, T]}=\mathbf{0}
\end{align*}
$$

For this problem the Leray hypothesis is valid.

In practice, there are problems when a viscosity coefficient is different in various directions. In particular, we consider the case when the viscosity coefficient in horizontal direction equals ν, while in the vertical direction z it equals
$\mu \geq \nu$. In this case equations (1) take the form

$$
\begin{align*}
& \mathbf{u}_{t}-\nu \Delta^{\prime} \mathbf{u}+\mu \frac{\partial^{2} \mathbf{u}}{\partial z^{2}}+\nabla p+u_{k} \mathbf{u}_{x_{k}}=0, \quad \operatorname{div} \mathbf{u}=0 \\
& \mathbf{u}(x, 0)=\mathbf{u}^{0}(x), \operatorname{div} \mathbf{u}^{0}=0,\left.\quad \mathbf{u}\right|_{\partial \Omega \times[0, T]}=0 \tag{2}
\end{align*}
$$

Consider the solvability "in the large" problem for (2). The following theorem holds:

Theorem 1. For any sufficiently smooth initial condition \mathbf{u}_{0}, any $\nu>0$ and arbitrary time interval $[0, T]$ there is $\mu>0$ such that there exists a solution to (2) "in the large", i.e. there exists $\mathbf{u} \in \mathbf{H}^{2}\left(Q_{T}\right)$ satisfying (2) in a week sense and the norm $\left\|\mathbf{u}_{x}\right\|$ is continuous in time on $[0, T]$. Moreover, in this case the following inequality holds

$$
\left\|\mathbf{u}_{t}(t)\right\| \leq\left\|\mathbf{u}_{t}(0)\right\| \quad \forall t>0
$$

Proof. To prove the theorem we use the Ladyzhenskaya inequality

$$
\begin{equation*}
\|f\|_{4}^{4} \leq c_{1}\left\|f_{x_{1}}\right\|\left\|f_{x_{2}}\right\|\left\|f_{x_{3}}\right\|\|f\| . \tag{3}
\end{equation*}
$$

being valid for any $f \in H_{0}^{1}(\Omega)$.
Take scalar product in \mathbf{L}_{2} the first equation of (2) and \mathbf{u}. As a result, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\mathbf{u}\|^{2}+\nu\left\|\mathbf{u}_{x^{\prime}}\right\|^{2}+\mu\left\|\mathbf{u}_{z}\right\|^{2}=0 \tag{4}
\end{equation*}
$$

integration in time gives

$$
\begin{equation*}
\|\mathbf{u}(t)\| \leq\left\|\mathbf{u}^{0}\right\| \equiv M \tag{5}
\end{equation*}
$$

From (4) and (5) one gets

$$
\begin{equation*}
\nu\left\|\mathbf{u}_{x^{\prime}}\right\|^{2}+\mu\left\|\mathbf{u}_{z}\right\|^{2} \leq M\left\|\mathbf{u}_{t}\right\| . \tag{6}
\end{equation*}
$$

Differentiate (2) in t :

$$
\begin{aligned}
& \mathbf{u}_{t t}-\nu \Delta \mathbf{u}_{t}+\nu \partial_{3}^{2} \mathbf{u}_{t}+\nabla p_{t}+u_{k} \mathbf{u}_{t x_{k}}+u_{k t} \mathbf{u}_{x_{k}}=0 \\
& \operatorname{div} \mathbf{u}_{t}=0
\end{aligned}
$$

Take now a scalar product of the first equation (7) and \mathbf{u}_{t} :

$$
\frac{1}{2} \frac{d}{d t}\left\|\mathbf{u}_{t}\right\|^{2}+\nu\left\|\mathbf{u}_{t x^{\prime}}\right\|^{2}+\mu\left\|\mathbf{u}_{t z}\right\|^{2}+\left(u_{k t} \mathbf{u}_{x_{k}}, \mathbf{u}_{t}\right)=0
$$

(8)

Estimating the scalar product in (8) with the help of Hölder inequality and (6), we have

$$
\begin{aligned}
& \left|\left(u_{k t} \mathbf{u}_{x_{k}}, \mathbf{u}_{t}\right)\right|=\left|\left(u_{k t} \mathbf{u}, \mathbf{u}_{t x_{k}}\right)\right| \\
& \quad \leq c\left\|\mathbf{u}_{t x}\right\|^{7 / 4}\left\|\mathbf{u}_{t}\right\|^{1 / 4}\left\|\mathbf{u}_{x_{1}}\right\|^{1 / 4}\left\|\mathbf{u}_{x_{2}}\right\|^{1 / 4}\left\|\mathbf{u}_{z}\right\|^{1 / 4}\|\mathbf{u}\|^{1 / 4}
\end{aligned}
$$

$$
\leq c\left(\frac{M^{3}}{\nu^{2} \mu}\right)^{1 / 8}\left\|\mathbf{u}_{t x}\right\|^{7 / 4}\left\|\mathbf{u}_{t}\right\|^{5 / 8}
$$

$$
\begin{equation*}
\leq \frac{\nu}{2}\left\|\mathbf{u}_{t x}\right\|^{2}+\frac{c M^{3}}{\nu^{9} \mu}\left\|\mathbf{u}_{t}\right\|^{5} \tag{9}
\end{equation*}
$$

Substitute (9) into (8):

$$
\frac{d}{d t}\left\|\mathbf{u}_{t}\right\|^{2}+\nu\left\|\mathbf{u}_{t x^{\prime}}\right\|^{2}+\mu\left\|\mathbf{u}_{t z}\right\|^{2}-\frac{c M^{3}}{\nu^{9} \mu}\left\|\mathbf{u}_{t}\right\|^{5} \leq 0
$$

from what follows

$$
\begin{equation*}
\frac{d}{d t}\left\|\mathbf{u}_{t}\right\|^{2}+\nu\left\|\mathbf{u}_{t x^{\prime}}\right\|^{2}+\left(\mu-\frac{c M^{3}}{\nu^{9} \mu}\left\|\mathbf{u}_{t}\right\|^{3}\right)\left\|\mathbf{u}_{t z}\right\|^{2} \leq 0 \tag{10}
\end{equation*}
$$

It is obvious that the norm $\left\|\mathbf{u}_{t}(0)\right\|$ depends on the norm $\left\|\mathbf{u}_{0}\right\|_{\mathbf{H}^{2}}$. Now from (10) it follows that for any $\nu>0$ and arbitrary $\left\|\mathbf{u}_{t}(0)\right\|$ depending on the norm of initial condition $\left\|\mathbf{u}_{0}\right\|_{\mathbf{H}^{2}}$ there exists $\mu>0$ such that $\mu-\frac{c M^{3}}{\nu^{9} \mu}\left\|\mathbf{u}_{t}(0)\right\|^{3}>$ 0 . Then from (10) we conclude that the norm $\left\|\mathbf{u}_{t}(t)\right\|$ satisfies the inequality

$$
\begin{equation*}
\left\|\mathbf{u}_{t}(t)\right\| \leq\left\|\mathbf{u}_{t}(0)\right\| \quad \forall t>0 \tag{11}
\end{equation*}
$$

The proof of existence and uniqueness of a solution "in the large" with the help of estimate (11) may be obtained in the same way as in [?]. The proof is completed.

Consider anisotropic modification of (1): $u_{t}^{i}-\nu \operatorname{div}\left(1+\varepsilon\left|u_{x}^{i}\right|^{2}\right) \nabla u^{i}+p_{x_{i}}+u^{k} u_{x_{k}}^{i}=0, i=1,2$,
$u_{t}^{3}-\nu \Delta u^{3}+p_{x_{3}}+u^{k} u_{x_{k}}^{3}=0$,
$\operatorname{div} \mathbf{u}=0$.

Let us obtain a proper a priori estimate for a solution to (12).

1. Take a scalar product of (12) and \mathbf{u} :

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\mathbf{u}\|^{2}+\nu\left\|\mathbf{u}_{x}\right\|^{2}+\nu \varepsilon \sum_{i=1}^{2}\left\|u_{x}^{i}\right\|^{2}=0 \tag{13}
\end{equation*}
$$

Integration in t gives

$$
\begin{gather*}
\max _{t}\|\mathbf{u}(t)\| \leq\left\|\mathbf{u}_{0}\right\|=M \tag{14}\\
\nu \int_{0}^{\infty}\left(\left\|\mathbf{u}_{x}\right\|^{2}+\varepsilon \sum_{i=1}^{2}\left\|u_{x}^{i}\right\|_{4}^{4}\right) d t \leq M^{2} . \tag{15}
\end{gather*}
$$

2. Take a scalar product of (12) and \mathbf{u}_{t} :

$$
\begin{align*}
& \left\|\mathbf{u}_{t}\right\|^{2}+\frac{\nu}{2} \frac{d}{d t}\left\|\mathbf{u}_{x}\right\|^{2}+\frac{\nu \varepsilon}{2} \sum_{i=1}^{2}\left\|u_{x}^{i}\right\|_{4}^{4} \tag{16}\\
& +\sum_{i=1}^{2}\left(u_{k} u_{x_{k}}^{i}, u_{t}^{i}\right)+\left(u_{k} u_{x_{k}}^{3}, u_{t}^{3}\right)=0
\end{align*}
$$

Estimate scalar products from (16) using the Hölder and Ladyzhenskaya inequalities:

$$
\begin{aligned}
& \left|\left(u_{k} u_{x_{k}}^{i}, u_{t}^{i}\right)\right| \leq\{4,4,2\} \leq\left\|u_{k}\right\|_{4}\left\|u_{x}^{i}\right\|_{4}\left\|u_{t}^{i}\right\| \\
& \quad \leq \frac{1}{4}\left\|u_{t}^{i}\right\|^{2}+c\left\|u_{x}^{i}\right\|_{4}^{4} \\
& \left|\left(u_{3} u_{x_{3}}^{3}, u_{t}^{3}\right)\right| \leq\{4,4,2\} \leq\left\|u_{3}\right\|_{4}\left\|u_{z}^{3}\right\|_{4}\left\|u_{t}^{3}\right\| \\
& \quad \leq \frac{1}{4}\left\|u_{t}^{i}\right\|^{2}+c\left\|u_{x}^{i}\right\|_{4}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\left(u_{i} u_{x_{i}}^{3}, u_{t}^{3}\right)\right| \leq \max \left|u_{i}\right| \cdot\left\|u_{x}^{3}\right\|\left\|u_{t}^{3}\right\| \\
& \leq\left\|u_{x}^{i}\right\|_{4}\left\|u_{x}^{3}\right\|\left\|u_{t}^{3}\right\| \leq \frac{1}{4}\left\|u_{t}^{3}\right\|^{2}+c\left\|u_{x}^{i}\right\|_{4}^{2}\left\|u_{x}^{3}\right\|^{2}
\end{aligned}
$$

Then from (16) one obtains

$$
\begin{aligned}
& \left\|\mathbf{u}_{t}\right\|^{2}+\frac{d}{d t}\left\|\mathbf{u}_{x}\right\|^{2}+\sum_{i=1}^{2} \frac{d}{d t}\left\|u_{x}^{i}\right\|_{4}^{4} \\
& \quad \leq \sum_{i=1}^{2}\left\|u_{x}^{i}\right\|_{4}^{4}+\sum_{i=1}^{2}\left\|u_{x}^{i}\right\|_{4}^{2}\left\|u_{x}^{3}\right\|^{2} .
\end{aligned}
$$

Using the Gronwall inequality, from the last relation we get

$$
\begin{equation*}
\int_{0}^{T}\left\|\mathbf{u}_{t}\right\|^{2} d t+\max _{0 \leq t \leq T}\left\|\mathbf{u}_{x}\right\|^{2} \leq C_{T} \tag{17}
\end{equation*}
$$

where the constant C_{T} depends on initial data of the problem. Estimate (17) provides the proof of existence and uniqueness of a solution to modified equations (12) "in the large".

