

Implementation and Validation of Aeroelastic Functionality during Wing Design

Qian XIANG

Numerical Simulation Center(NSC) Chinese Aeronautical Establishment(CAE) Beijing, CHINA

Sep 11th-Sep 13th, Moscow

1.Background

2. Aeroelastic method

3. HIRENASD

4. Conclusion

1.Background

2. Aeroelastic method

3. HIRENASD

4. Conclusion

AePW(Aeroelastic Prediction Workshop)

Website https://c3.ndc.nasa.gov/dashlink/projects/47/

→ Rectangular Supercritical Wing

→Benchmark Supercritical Wing

→HIRENASD Wing

Background

AePW(Aeroelastic Prediction Workshop)

→16 analysis teams providing data for workshop

Industry	University	Government
5	6	5

→25 total analyses committed for workshop

RSW	BSCW	HIRENASD
6	6	13

→9 nations represented

from Mar 10th, 2011.

updated April 16th, 2012.

Background

HIRENASD AePW-1(April 21th,2012 — April 22th,2012)

-High Reynolds Number Aerostructural Dynamics

HIRENASD Talks

- 1. Daniel Steiling; RUAG
- 2. Bart Eussen; NLR
- 3. Dimitri Mavriplis; University of Wyoming
- 4. Markus Ritter; DLR
- 5. Thorsten Hansen; Ansys
- 6. Mats Dalenbring; FOI
- 7. Pawel Chwalowski; NASA Langley
- 8. Jean Pierre Grisval; ONERA

BREAK

- 1. Daniella Raveh, Technion University
- 2. Melike Nikbay/Z. Zhang, Istanbul TU/Zona
- 3. Sergio Ricci, Politecnico di Milano
- 4. Singh and Castro; CFD++/MSC Nastran
- 5. Alan Mueller/Sergey Zhelzov, CD Adapco
- 6. Larry Brase, Boeing

Background

AePW-1 Organizing Committee Roster

		Affiliation
	Bhatia, Kumar	Boeing Commercial Aircraft
	Ballmann, Josef	Aachen University
	Blades, Eric	ATA Engineering, Inc.
e L	Boucke, Alexander	Aachen University
St	Chwalowski, Pawel	NASA
ž	Dietz, Guido	European Transonic Windtunnel (ETW)
ee	Dowell, Earl	Duke University
Ë	Florance, Jennifer	NASA
E	Hansen, Thorsten	ANSYS Germany GmbH
õ	Heeg, Jennifer	NASA
О БО	Mani, Mori	Boeing Research & Technology
Ĩ	Mavriplis, Dimitri	University of Wyoming
c	Perry, Boyd	NASA
ga	Ritter, Markus	Deutsches Zentrum für Luft- und Raumfahrt (DLR)
ō	Schuster, David	NASA
	Smith, Marilyn	Georgia Institute of Technology
	Taylor, Paul	Gulfstream Aerospace
	Whiting, Brent	Boeing Research & Technology
	Wieseman, Carol	NASA

Acknowledgments

Workshop sponsorship and organization AIAA Structural Dynamics Technical Committee AIAA Structural Dynamics Conference Team Product managers K.C Niedermeyr and Elizabeth Carter Event planner Cathy Chenevey NASA Engineering & Safety Center

Funding of NASA participation, geometry generation & workshop organization NASA Subsonic Fixed Wing Program

HIRENASD Research Project Aachen University

HIRENASD Project Funding German Research Foundation (DFG)

Grid Generation Ansys, ATA, Georgia Tech, Technion University, ISCFDC, NASA

1.Background

2. Aeroelastic method

3. HIRENASD

4. Conclusion

Aeroelastic method

CFD/CSD Coupling Method

AVICFD-X Solver (via an exchange of instantaneous load and

displacement data)

1.Background

2. Aeroelastic method

3. HIRENASD

4. Conclusion

3-D aeroelastic wing with generic fuselage model

Only excited at natural frequencies

→ Grid

→ Test Case

→ Result

HIRENASD Reference quantities

		HIRENASD	
Reference chord	c _{ref}	0.3445 m	
Model span	b	1.28571 m	
Area	А	$0.3926\mathrm{m}^2$	
Moment reference point,	х	0.252 m	
	У	-0.610 m	
system defns	Z	0	
Transfer function	reference	Vertical	
quantity		displacement	
		(at y=1.24521m,	
		x=0.87303m)	

available on website

	GRID TYPE																	
	Unstructured												Str	ructu	red	0	Overset	
Configuration			Nod	e Bas	ed			(Cell Co	enter	ed			Hex				
		Mixed	b	Tet	rahed	ral		Mixe	b	Tetr	ahed	ral	Multiblock					
	С	М	F	С	М	F	С	М	F	С	М	F	С	М	F	С	М	F
HIRENASD	v	V	V	٧	v	٧	٧	٧	V	V	٧	V	v	0	0	V	•	o
\vee = Complete \odot = In process \circ = Desired																		

Grid

initial spacing normal to all walls ($Re_c = 23.5M$ based on $c_{ref} = 0.3445$ m)

	Coarse	Coarse Medium				
У+	1.0	2/3	4/9			
dy	4.40961e-7	2.93973e-7	1.95982e-7			

Grid

Centaur-Coarse

VGRID-Coarse

Test Case

Test Case

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10
							TET modelcart with	Tet with MC, instr,		
	Experimental	Experimental			IEI no	IEI madalaart	Instrumen	disconnect	add bolt	projected
	- Artemis	- analyzer	HEX 20	HEX 8	modelcart	modelcart	tation	bottom of U	RBES	OML
1B	26.015	26.250	26.541	26.534	26.249	26.217	25.618	25.604	25.542	25.550
2B	78.635	78.203	86.019	85.932	82.881	82.257	80.812	80.688	80.199	80.245
1FA			156.938	157.237	117.465	110.904	108.626	106.998	106.242	106.193
3B	166.250	166.250	189.311	189.434	170.083	163.745	161.770	161.441	160.381	160.349
4B	245.002	245.000	321.774	321.985	259.317	244.899	242.520	242.364	241.942	241.995
1T	265.855	265.781	272.859	273.443	275.120	273.055	272.295	272.182	271.718	271.844
2T			450.506	451.811	448.517	443.496	442.291	441.178	437.122	437.830
5B			496.680	497.795	380.224	360.338	356.863	356.332	354.341	354.155
2FA			422.976	423.259	280.260	256.158	252.790	252.651	252.361	252.225
3T			622.407	625.227						569.737
3FA					499.387	454.750	450.171	446.396	444.318	443.805
6B										497.802
3T										569.737
7TB										643.234

Test Case

Comparison of 2B frequencies

The first 2 columns show the experimental data; the last column shows the current finite element model frequency

(Ste

Chinese Aeronautical Establishment

Comparison of Modal frequencies

Test Case

Amplitude of excitations for 2nd bending modes for each of the 3 unsteady cases are extracted from the experimental data

	Case1 Case2		Case3	
EXP Test Points	159	271	155	
Mach	0.8	0.8	0.7	
Re	7M	23.5M	7M	
Attack angle	1.5	-1.34	1.5	
Amplitude (mm)	2.4	0.90	2.0	
Excitation Frequency(Hz)	78.9	80.4	79.3	

Test Case

Parameter	S	Un	uits	C	Configuration				
		English	SI	HIR ENASD (SI units)	HIR ENASD (SI units)	HIR ENASD (SI units)			
Mach number	М			0.8005	0.8	0.7			
Reynoldsnumber (based on ref chord)	Rec			6999999	23486600	6997830			
Reynoldsnumber per unit	Re/ unit	Re/ft	Re/m	2.032e+07	6.8176e+07	2.031e+07			
Dynamic pressure	P	psf	Pa	40055.4	88696.9	36177.3			
Velocity	v	ft/s	m/s	256.5	219.5	227.0			
Speed of sound	a	ft/s	m/s	S 20.S	274.8	S24.S			
Static temperature	Tsta t	deg F	degK	246.9	181.8	253.1			
Density	ρ	slug/ft^3	kg/m ³	1.22	\$.70	1.41			
Ratio of specific heats	γ								
Dynamic viscosity	μ	slug/ft-s							
Prandtl number	Pr			0.72	0.72	0.72			
Test medium				Nitrogen	Nitrogen	Nitrogen			
Total pressure	н	psf	Pa	136180	301915	146355			
Static pressure	Р	psf	Pa	89289	198115	105529			
Purity	х	%							
Total temperature	Т	deg F	degK	278.5	205.0	277.9			

Ster C

Computational Method

AVICFD-X

Dual time step

∆t=0.0001980355s, Frequency=78.9Hz 64 steps/T

RANS

Spalart-Allmaras one-eq model

Pressure Coefficient (Case1)

Pressure Coefficient (Case1)

Eta=0.66

Pressure Coefficient (Case2)

Pressure Coefficient (Case3)

Pressure Coefficient (Case1) (to be continued)

Pressure Coefficient (Case2) (to be continued)

(A

Pressure Coefficient (Case3) (to be continued)

1.Background

2. Aeroelastic method

3. HIRENASD

4. Conclusion

Results of the steady simulations agree with experimental data

More work should be done in the future

- Mesh quality will be improved to reach more accurate results
- More cases at different Mach number should be tested
- The unsteady aeroelastic analyses of HIRENASD wing should be

performed in the future

Chinese Aeronautical Establishment

THANKS