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Processing and analysis of digital information

How to analyse and compare digital data?
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Definitions

Introduce the following notation:
X — topological space,
f : X 7→ R — continuous mapping
Xa = {p ∈ X | f (p) 6 a} ∀a ∈ R
Ca = C (Xa) ∀a ∈ R — set of components of connectivity Xa ⊂ X

f ba : Ca → Cb — mapping of the sets, induced by embedding Xa ⊂ Xb

∀a < b.
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Critical values

Value a ∈ R is called critical for function f , if for any sufficiently small
ε > 0 the mapping f a+εa−ε : Ca−ε → Ca+ε is not bijection.
Let a1, . . . , an be all critical values of function f .
Denote by Ci = Cai a set of connectivity components, i = 1, . . . , n
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Merge tree

Construct graph Γ in the following way.
1 Set of vertices is ∪ni=1Ci .
2 Connect every vertex c ∈ Ci with an edge to vertex

d = fi (c) = f
ai+1
ai (c).

Graph Γ is a tree, which we call a merge tree.
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Barcode. Persistent diagram

For every Y ∈ Ci we define f (Y ) = ai and w(Y ) = infp∈Y f (p).
Construct a graph Γ′ from graph Γ in the following way.

1 Let d ∈ Ci+1 be a vertex of Γ and f −1i (d) = {c1, c2, . . . , ck} ⊂ Ci .
2 Renumber vertices cj , j = 1, . . . , k such that

w(c1) ≥ w(c2) ≥ . . . ≥ w(ck).
3 Disjoin every edge cjd , j = 2, . . . , k from graph Γ, and add a new

vertex dj , which will be the end of that edge.
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Definition

A set B of all such intervals [c , d) is called barcode of function f on X .

Persistent diagram of function f is a set D(f ) of points
(c , d) ∈ R2, [c , d) ∈ B , united with the set of diagonal points
∆ = {(x , x)|x ∈ R}.
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Stability

Define a distance between two sets D1 and D2:

dB(D1,D2) = inf
γ

sup
p∈D1

‖p − γ(p)‖∞, γ : D1 → D2 — bijection.

Theorem
Let X be a topological space, f , g : X → R. Then

dB(D(f ),D(g)) 6 ‖f − g‖∞.

Thus, persistent diagram D(f ) is stable with respect to pertubations of the
function f .

[ D. Cohen-Steiner, H. Edelsbrunner, J. Harer, 2007 ]
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Stability

When the function f with diagram D(f ) is pertubed:
1 some points move over a short distance;
2 a number of points close to diagonal, moves onto the diagonal;
3 a part of points comes out from the diagonal.
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Endo-PAT2000
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Endo-PAT2000 data
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Endo-PAT2000 data
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Wavelet scalograms
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Wavelet scalograms
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Barcodes
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Barcodes. Distribution
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Endovascular measurements
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Measurement data
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Data analysis
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Persistent diagram: Pressure
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Persistent diagram: Velocity
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Persistent diagram: Systemic pressure
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Summary

Methods of persistent diagrams were applied to medical data,
obtained during examinations.
Comparison of different study cases shows that barcodes and
persistent diagrams can be used for data analysis.
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