High resolution human body computational models

Alexander Danilov

Institute of Numerical Mathematics, Russian Academy of Sciences Moscow, Russia

Mathematical and Computational Modelling in Cardiovascular Problems

< ロ > < 同 > < 三 > < 三

Bioimpedance measurements

- Impedance is measured
- Several electric frequencies
- Local and segmental electrode schemes
- Hydration estimation, fat-free mass, muscle mass, etc.

Image: A matrix

Noninvasive, efficient, portable, simple and convenient

Research project at INM RAS, Moscow, Russia 2010 – present

Alexander Danilov, INM RAS Victoria Salamatova, MIPT Yuri Vassilevski, INM RAS

Alexander Danilov (INM RAS)

Human body models

- A E N A E N

Bioimpedance measurements

- Impedance is measured
- Several electric frequencies
- Local and segmental electrode schemes
- Hydration estimation, fat-free mass, muscle mass, etc.

Noninvasive, efficient, portable, simple and convenient

- Finite element method and adaptive tetrahedral grids for bioimpedance measurements modelling
- High-resolution multimaterial 3D models based on real human anatomy
- Sensitivity analysis for tetrapolar electrode schemes

S.Grimnes, O.G.Martinsen. Bioimpedance and Bioelectricity Basics. Elsevier, Amsterdam, 2008

Alexander Danilov (INM RAS)

Human body models

Mathematical model

$$\begin{split} \operatorname{liv}(\mathbf{C}\nabla U) &= 0 & \text{in } \Omega \\ \mathbf{J}_n &= \pm I_0 / S_{\pm} & \text{on } \Gamma_{\pm} \\ \mathbf{J}_n &= 0 & \text{on } \partial\Omega \setminus \Gamma_{\pm} \end{split}$$

- U potential field
- C conductivity tensor
- $\mathbf{E} = \nabla U$ intensity field
- $\boldsymbol{\mathsf{J}}=\boldsymbol{\mathsf{C}}~\boldsymbol{\mathsf{E}}$ current density field
- I_0 current injection
- S_{\pm} contact surface of electrodes

C

Bioelectrical conductivity

Typical conductivity parameters @ 50kHz (S/m)

Blood	0.7	+	0.02 <i>·j</i>
Muscles	0.36	+	0.035 <i>·j</i>
Fat	0.0435	+	0.001· <i>j</i>
Bones	0.021	+	0.001· <i>j</i>
Skin	0.03	+	0.06· <i>j</i>
Heart	0.19	+	0.045· <i>j</i>
Lungs	0.27	+	0.025 <i>·j</i>

Gabriel S., Lau R.W., Gabriel C. The dielectric properties of biological tissue: III. Parametric models for the dielectric spectrum of tissues. // Phys.Med.Biol. 1996. V.41(11). P.2271-2293.

Simple geometrical model

AniAFT + AniMBA (Ani3D package, sf.net/projects/ani3d)

Alexander Danilov (INM RAS)

Human body models

< □ > < 同 > < 回 > < Ξ > < Ξ

Anisotropic conductivity coefficients

skin – 1 mm

Alexander Danilov (INM RAS)

Convergence analysis

Series of unstructured meshes

Alexander Danilov (INM RAS)

Human body models

Cardiovascular Problems 7

Series of hierarchically refined meshes

N _V	N _T	Memory, Mb	N _{it}	Time, s	L ₂ -norm
2032	9359	7.16	13	0.02	1.24E-03
14221	74872	37.3	23	0.18	9.31E-04
106509	598976	299.1	58	3.70	5.07E-04
824777	4791808	2437.5	127	68.55	1.53E-04
6492497	38334464	20015.3	353	2634.15	-

Asymptotically second order convergence

Modeling technology

A. A. Danilov, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova and Yu. V. Vassilevski, Modelling of bioimpedance measurements: unstructured mesh application to real human anatomy. *Russ. J. Numer. Anal. Math. Modelling* (2012) 27, No 5, 431–440

Alexander Danilov (INM RAS)

Human body models

Cardiovascular Problems 8 / 20

Visible Human Project

Visible Human Project U.S. National Library of Medicine www.nlm.nih.gov/research/visible

A (10) × (10) × (10)

ITK-SNAP software

Manual and semi-automatic tissue segmentation

ITK-SNAP (www.itksnap.org) Free software for Visualization and Segmentation

Alexander Danilov (INM RAS)

Human body models

High resolution segmented model of VHP torso

 $\begin{array}{l} 567\times 305\times 843 \text{ voxels} \\ 1\times 1\times 1 \text{ mm} \\ 26 \text{ organs and tissues} \end{array}$

Total 146m voxels, 68m material voxels

A (10) A (10) A (10)

Unstructured tetrahedral meshes

CGAL Mesh (www.cgal.org) - Delaunay mesh generation Ani3D (sf.net/projects/ani3d) - mesh cosmetics

413 508 vertices, 2 315 329 tetraedra, 84 430 boundary faces

< 回 ト < 三 ト < 三 ト

Full body male and female models

3m tetrahedra effective resolution: $1 \times 1 \times 1$ mm 30 tissues 13 / 20

Alexander Danilov (INM RAS)

Human body models

Cardiovascular Problems

Numerical solution

P1 FEM by Ani3D package (GMRes + ILU2 solver)

Alexander Danilov (INM RAS)	Human body models	Cardiovascular Problems	14 / 20

Sensitivity field

current lines for current-carrying electrodes – ${\boldsymbol{J}}_{\rm cc}$

current lines of reciprocal lead field for pick-up electrodes – $\boldsymbol{J}_{\rm reci}$

sensitivity function $S = \mathbf{J}_{reci} \cdot \mathbf{J}_{cc}$ $Z_t = \int_V S(x, y, z) \rho(x, y, z) dv$

Alexander Danilov (INM RAS)

Human body models

Cardiovascular Problems 15 / 20

(日) (同) (三) (三)

Ten-electrode configuration

Sensitivity analysis

- Conventional scheme (I₂-I₃, U₂-U₃)
- \bullet Hands (I_2-I_1, U_2-U_3) and (I_5-I_1, U_5-U_4)
- \bullet Legs (I_3-I_2, U_3-U_4) and (I_4-I_5, U_4-U_3)
- \bullet Torso (I_5-I_3, U_2-U_4) and (I_5-I_4, U_2-U_3)
- Head (I_1-I_2, U_1-U_5)
- Head+Torso (I₁-I₃, U₁-U₄)

A. A. Danilov, V. K. Kramarenko, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova, A. V. Smirnov and Yu. V. Vassilevski, Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy. J. Phys.: Conf. Ser. (2013) 434, 012001, doi: 10.1088/1742-6596/434/1/012001.

A D N A B N A B N

Patient position adaptation

Arms position does affect the measurements

reference model

adapted model

Alexander Danilov (INM RAS)

Human body models

Cardiovascular Problems 1

17 / 20

Future work – patient specific models

First step – anthropometric adaptation

Simple fitting of the model

Human body models

Control points adaptation

Piecewise affine mapping on control plane

Alexander Danilov (INM RAS)

Human body models

- Developed numerical scheme for modelling bioimpedance measurements
- Created high-resolution 3D segmented and FEM models of male and female bodies
- Demonstrated high sensitivity of standard electrode schemes
- Models will be used for developing new schemes of bioimpedance measurements
- Models may be used for other FEM analysis of human body
- Current work patient specific models

イモトイモト