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The Immune System

Physical
.Transport Immunoglobulin
(1% of cells traverse the whole lymphoid ;{ }‘ A

system per hour)
+Diffusion .—: | .

Chemical ,{ }‘ \

« Ligand-receptor

« Signal transduction

* Peptide synthesis

Biological

*Gene regulation

*Generation of antigen
receptor diversity

«Cell division (~6 hrs)

«Cell differentiation

B lymphocyte T lymphocyte

18) The Lymph Node

2)
. Sources of heterogeneity:
1 Physical compartments (lymph node, spleen, blood, etc.)
2) Distinct cell populations (e.g. lymphocytes, Macrophages)
3) Heterogeneity w.r.t. the expression of specific markers

(CCR5) or fluorescent labels (CFSE, BrdU)
4)

The fundamental challenge to applied mathematicians is to understand immunology in new
ways by using models, computational techniques & algorithms



Challenges in understanding the IS

“...The many immunological observations and results from in vitro or in vivo experiments
vary and their interpretations differ enormously. A major problem is that within a normal
distribution of biological phenomena that are measurable with many methods virtually

anything can be shown or is possible..” R. M. Zinkernagel. Inmunity Against Infections & Vaccines:
Credo 2004. Scand J Immunol. 2004, 60: 9-13
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* |Infectious disease model: key components

* Antiviral immune response: kinetic regulation

* Optimal model structure: information-theoretic criteria

* Cell growth analysis: asymmetric division




Pathogen load

Dynamic patterns of infectious diseases
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infection
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time
Chronic persistence: Objective:
. to stimulate the
Why? How to cure it? specific immune response
=> Exacerbation




* Infectious disease model: key components




The ,,numbers game” perspective:
virus & host factors in the outcome of infection

Virus
Replication

The clinician‘s perspective:

« Cytopathicity of virus

e Latency

* Persistence

* Replication rate

« Tropism

* Immunopathology

* Health condition of the infected individual

Immune
Response

The mathematical view:

SV =(8-7 FOIVEO

SR =p-CO-17 FOVO- 4 -FO

S =m-av (t-0)-Ft-0-p ()

%m(t) =V () - -M(t)

V(t0)=VO, F(to):Fo' C(t0)=CO, m(to)zmo’
V(t)=0, F(t)=F npnte[to—z',to)



Modelling in immunology:
Experimental and Mathematical Approaches
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~The outcome of infection results from the “numbers games™ between
infectious agent and the immune system.”



Replication rate in virus persistence:
&

Immune
Response

Virus
Replication

Experimental studies with LCMV infection in mice: a faster speed of virus replication is

an advantage for a virus in overcoming the immune system control and establishing the
persistent infection — the tolerance by exhaustion (Moskophidis et al., Nature (1993) 362:

758-761)
Theoretical study of virus infection model: a slow virus replication favors the long-term
persistence (Marchuk and Belykh, 1980)




Mathematical immunology and the nuclear chain reaction
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Guri Ivanovich Marchuk
8.06.1925-24.03.2013

Leningrad University (Mathematics/mechanics) — 1949

*  “Nuclear Reactor Theory” - 1970 *  “Numerical Methods in the Analysis of the Nuclear
Reactors” — M. 1959

Mathematical modeling in immunology - 1975

e  Quantitative models in immunology - 1970

 Theoretical Biology & Biophysics. Los Alamos
NL-1974 * Institute of Numerical Mathematics, Academy of
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Basic scheme of an infectious disease

G.1. Bell: G.l. Marchuk:
Predator-prey equations g/llgetgseenz%lgz)l model of infectious
simulating an immune (1973) System of delay differential
« Population dynamics of Replicating equations

antigens and Antibodies « Target organ damage
« Lotka-Volterra-type of ODEs » Negative feedback of the organ

damage on the immune system

Pathogen

- Target organ




Basic model of the infectious disease (1975)

State space variable System of Delay-Differential Equations
1. Pathogen population %V(t)=(ﬂ—7 F()-V ()
2. Antibodies %F(t) = p-CM) =7 FO)NV(O)— 1, - F(0)
3. Plasma cells %C(t) = E&(m)-aV(t-7)-F(t-r)-u, -(C-C)

4. Tissue damage dim(t) =V (8) - gt -M(t)
t

Initial data

V(t0)=V0, F(to)zFO’ C(to)=C0, m(t0)=m0,
V(t)=0, F(t)=F, for telt,—rt,)
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Fundamental modelling issues

« The immune system can be considered as an ensemble of individual cells, which differ
in a number of physiologically relevant traits: the spatial position (z), the receptors’
specificity (s), the number of specific receptors (r), etc. => Heterogeneity

* One can describe the immune system by a state vector listing the number of individual
cells of each “type” n(t,Z,s,r,...) depending on a number of continuous as well as
discrete variables

» Using conservation principle the equation for the density function n(t, x) with x
standing for the vector of traits can be written as

0 0 0
ox, OX,  OX )

g—? + V(vn) = Birth — Death + Migration + Reactions, V = (

» “Typical” equation for population dynamics:

%(Pop ulation size) = f(growth, death, migration,...)



Maximum likelihood parameter estimation

%Y(t) :f(y(t),y(t_f),p), te[t,T], >0

yeR™, peR™
y(t) = (), telty—7.1].

-Observation data {t Y }';:1

Likelihood function
Yi ~N(y(tj),2j)
Hlysip)=

[Y(t,-)—yj]Tz}l[Y(t,-)—yj]}

1 { 1

expl—=

J@r)" dets 2
£(p)=ﬁﬂ(y,-;p)

p’ =argmax £(p)



* Antiviral immune response: kinetic regulation




Experimental System:

Lymphocytic choriomeningitis virus (LCMV) infection
of C57BL/6 mice

Family: arenaviruses

Strains: Docile, Traub, WE, Aggressive, Armstrong, Clone 13
 Host: mice, hamsters
(Humans: acute hemorrhagic fevers — Lassa fever)

* Target cells: primarily infects & replicates in macrophages,
lymphocytes

e Cytopathicity in vivo: non-cytopathic RNA virus

 CTLresponses play a dominant role in virus clearance: appear
early and high

* Neutralizing antibody response: appear only late after infection
 Immunopathology: spleen, liver, central nervous system, etc.

LCMV infection of mice: a “Gold Standard” of experimental immunology



Abundance

Abundance

Relevant patterns of LCMV infection dynamics

The kinetics of the T cell response falls in between two extremes
expansion=>contraction=>

memory persistence (1)

CTL

|

clonal deletion (2)
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Phenomenology of the LCMV-host interaction

Phenotypes of “virus-host” relationships:

1. acute infection followed by LCMV clearance in two weeks
2. temporary persistence up to 2 or 3 months

3. life-long persistence

Final stages of antiviral CTL responses:
1. Creation of the CTL memory

2. Almost complete loss of the entire LCMV-specific precursor
CTRL repertoire

3. Complete exhaustion of precursor CTLs

Persistence:
depends on particular combination of virus & host parameters




Mechanistic view of the LCMV infection fate decision

Apoptosis
Induction

y
e I}
Activation
for division \

Precursor
CTLs



Time-dependent variables of the DDE model

V(t) — virus titer in spleen at time t (pfu/ml)
E,(t) — number of virus-specific precursor CTLs in spleen at time t (cell/ml)

E(t) — number of virus-specific effector CTLs in spleen at time t (cell/ml)
W(t) — cumulative virus antigen load in spleen at time t

Replication Elimination

[ : | [ : \
d V(t)
370 =0 (1-72) v ) —

\
d [ \
—Ep(t) = a5, (Ey — Ey(1)) +bogo(W)V (¢ — D)Ey(t = 1) aap¥ (t — 1a) V (D, (1),
d Homéostasis Clonal exansion
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Modelling the Dynamics of LCMYV Infection in Mice: Conventional and

Exhaustive CTL Responses

G. A. Bocuarov*



Virus growth rate and CTL expansion

Fig. Clonal expansion of gp-33 specific CTL after i.v. infection

with 200 pfu of LCMV-WE versus LCMV-Armstrong
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Underwhelming the Immune Response: Effect of Slow Virus Growth

on CD8"-T-Lymphocyte Responses

irkhard Ludewig,*t* Antonio Bertoletti,* Paul Klenerman,” Tobias Junt.*
Tatyana Luzyanina.® Cristophe Fraser,' and Roy M. Anderson'

Gennady Bocharov,'
Philippe Krebs,




Published clinical observations: the effect of

the virus growth rate
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a)

A reduction in virus growth rate between
Infected subjects is associated with a
spectrum of disease outcomes:

efulminant hepatitis  (7,~ 2.1 to 6.2 days)
eacute resolving hepatitis (7,~ 2.3 to 10 days)
echronic progressing hepatitis (7,~ 4 to 615 days)

b)

The genomic analysis of iImmune response in
chimpanzees infected with HCV virus showed
that HCV replication below a threshold
level required for activation of genes involved
In antigen presentation results in virus

persistence (Su etal. PNAS USA (2002): 99:
15669-15674)

Webster et al. Hepatology (2000) 32: 1117-1124



Slowly does it...
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Slowly does it...

A new study published in the Journal
of Virology shows that viruses that
replicate slowly invoke a weak adaptive
immune response, specifically a weak
cytotoxic T-lymphocyte response,
which could contribute to virus
persistence and chronic disease.

Two facets of the CTL response
can affect virus clearance. Specific
CTL clones are amplified in
response to antigen stimulation
the magnitude of amplification of
CTLs increases with increasing anti-
gen concentrations. Viruses that
replicate rapidly produce large
amounts of antigen, which can over-
whelm the specific CTL response.
This physical deletion of CTLs —
known as exhaustion — results in
virus persistence.
ng lymphocytic choriomen-
ingitis virus (LCMV) infection of
mice as a model, the amplification
of CTLs in response to LCMV
strains that have different replication
rates was assessed. A bell-shaped
response was found: both slow and

fast replicating virus strains pro-
duced weaker CD8" T-cell responses
compared with a strain that had an
intermediate replication rate.

What about hepatitis C virus,
which replicates more slowly than
LCMV? Available data sets were
analysed, and slower virus replication
correlated with virus persistence.
For hepatitis B virus, one well-
documented study of virus kinetics
and CTL response has been analysed.
A predator-prey model was con:
structed by Bocharov et al. — with

the CTLs as predators, and the virus
as prey — and calibrated using this
available HBV data set.

The model was used to predict
the effect of changes in virus replica-
tion kinetics on the CTL response.
Reducing the virus replication rate
led to a weaker CTL response, which
could result in virus persistence.
Certain individuals — ‘high-
responders’ — have a more efficient
CTL response, presumably through
genetic variation. Even with a simu-
lated high-responder, a slowly repli-
cating virus strain elicited only a
weak and transient CTL response.
This model predicts that the transi-
tion from acute to chronic HBV
infection could result from a decrease
in the replication rate of the virus.

The mathematical model used is
reductionist and cannot take into

account every aspect of the complex
interactions between the virus and
the immune system. However, mod-
els are useful for predicting and plan
ning experimental work, and this
modelling approach could be imple
mented for other important viruses,
such as HIV or cytomegalovirus. This
report clearly indicates that the kinet
ics of virus replication could be
important for the outcome of the
infection. Slow viruses could sneak
past immune surveillance and estab-
lish persistence, and therapies that
downregulate virus replication could
also result in virus persistence and
chronic disease

Susan Jones
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Integration of mathematical modelling into

the immunological mainstream

William E. Paul (June 12, 1936 — September 18, 2015)

Feedback regulation of proliferation vs.
differentiation rates explains the dependence
of CD4 T-cell expansion on precursor number
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Gennady Bocharov®'?, Juan Quiel®, Tatyana Luzyanina®, Hagit Alon¢, Egor Chigli /°, Valery Ch
Martin Meier-Schellersheim®, William E. Paul®?, and Zvi Grossman®%'?
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Contributed by William E. Paul, January 7, 2011 (sent for review November 16, 2010)

Antigen-stimulated CD4 T-cell expansion is inversely
and log-linearly related to precursor number

Juan Quiel®, Stephane Caucheteux?, Arian Laurence®, Nevil J. Singh®, Gennady Bocharov?, Shlomo Z. Ben-Sasson?,
Zvi Grossman®, and William E. Paul®’
Laboratories of “immunology and “Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health,
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of Health, Bethesda, MD 20892; and “Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow 119333, Russia
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Contributed by William E. Paul, January 7, 2011 (sent for review November 11, 2010)

Thus, the immune system offers challenges sufficient to test the growing power of mathematical attack
on a biological problem. It is to the quantitative prediction of the outcome of given perturbations in the
immune system that we envisage our mathematical/ modeling colleagues will apply themselves. There is
a richness of opportunities and a myriad of challenges. Good luck!!!!! Math. Model. Nat. Phenom.

Vol. 7, No. 5, 2012, pp. 46



* Optimal model structure: information-
theoretic criteria




Fundamental modelling issues

* “Typical” equation for population dynamics:
AN

e f(growth, death, migration,...)

General problem: various functional forms can be suggested for
the same process...

* Which model is better: that having the fewer

parameters or that based more closely on the
biology of the system?

Is it possible to distinguish between the important
and the unimportant assumptions in a model?



Virus - CTL dynamics: typical kinetics
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Complexity

Hierarchy of models for LCMV-CTL data

5 parameters

6 parameters

7 parameters

8 parameters

9 parameters
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Model selection: accuracy & parsimony

Given a set of related models — how to rank them by giving each a score?

ethe goodness of fit — the size of the minimized least squares

(or maximized likelihood) function

ethe principle parsimony — a proper balance between under-fitting and over-fitting

General principle:

A model should be “as simple as possible yet as complex as necessary” (Denis Noble et
al. 2005) with respect to the included variables, model structure and the number of
parameters for adequate representation of the data

Bias, @ Variance

Few &lumber of parameters (L)



Criteria for discriminating between models — model selection

» Kullback-Leibler information distance between models f and g is defined as the

multidimensional integral:
I(f,0)= jf(x)log[ ﬂ;j

«Akaike (1973) found a rigorous way to estimate the Kullback-Leibler directed
distance of the candidate model g to the truth f model based on the empirical log-
likelihood function L(p) at its maximum point £L.=L(p.)

*The Akaike’s Information Criterion makes use of an estimate of the expected,
relative distance between the fitted model and the unknown true mechanism that
actually generated the observed data (n,.)

Hac = Nyps In(L(p*))+ 2(np +1)

*The Kolomogorov complexity — Minimum Description Length principle by Jorma
Rissanen “Modelling by the Shortest Data Description” (1978)

MDL =—In(£(p"))+0.5-n, -In(nyy, /(27)) +In [, AJdet(1(p))dp



Model Ranking
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Bias ,U

| /nformation
"

7.8x101

Model 2

Model 3 | 1.6x1012

Model 1 | 6.5x1012

Model 4 | 1.6x1012

Model 5 | 1.6x1012

Ranking: M2>M3>M1>M4>M5
=> The best model is Model 2




Uncertainty in parameter estimates:
95% Confidence Intervals

Parameter Model 1 Model 2
[95%CI]
Virus growth rate 4.61le 4.51e
constant [3.7, 6.5] [4.2, 4.8]
CTL activation 9.2x10”/ 1.42¢
rate constant [6.8107,1.4+106] [1.36, 1.48]
CTL death rate 0.093¢ 0.2¢
constant [10-10, 0.2] [0.15, 0.26]




The ‘best” model for the given data

B=451 K=4.69-10° »=8-10"
b, =1.42; 6, =3.23-10"°~0; . =0.2

d Computational approaches to parameter estimation and model

selection in immunology
V (t) — ﬁ ’V (t) ¢ (1 _V (t) / K ) - 7/ 'V (t) ¢ E (t) C.TH. Baker"™*, G.A., Boch:r:"‘llll,u.:\/[.ll::rd“, PM. Lumb®, §.J. Norton",

gt A
d V (t)
—E()=b E(t)— o -E(t
- (1) =b, 0. +V (D (t) — o - E(1)
Therefore, the equation for CTL dynamics H
can be reduced to N
1
. * |
t v’

where H(-) is the Heaviside's step function with
V™ assuming the value ~ 6.,




* Cell growth analysis: asymmetric division
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CFSE Proliferation Assay:

010* 10° 10* 10°

analysis of antigen specific and non-specific T cell proliferation.

010° 10° 10* 10°

010 10° 10* 10°
CFSE
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010® 10° 10* 10°

010% 10° 10* 10°

010% 10° 10* 10°

>

From: Quah et al., Nat Protoc.2007;2:2049

http://www.biochemmack.ru/product/citometry/cytomet
r/CellLabQuantaSC/.

* Major assumption: cell division is symmetric, i.e. the label is halved in the two daughter cells

Cell biology axiom: a random and uneven partition of mass between the sister cells

R. Sennerstam, partition of (mass) protein to sister cell pairs at mitosis:
a re-evaluation. J Cell Sci 1988, 90:301

Does this matter?


http://www.biochemmack.ru/product/citometry/cytometr/CellLabQuantaSC/
http://www.biochemmack.ru/product/citometry/cytometr/CellLabQuantaSC/

Symmetric ce
division:

0% vs 50%

irent | N MINI REVIEW ARTICLE
IMMUNOLOGY published: 02 September 2013

doi 10.3389immu 2013.00264 B8

Asymmetry of cell division in CFSE-based lymphocyte
proliferation analysis

Counts
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Low asymmetry of the
division: 46% vs 54%




Higher asymmetry of
division:
42% vs 58%




Ssoftware for CFSE histogram
decomposition

Flow]o is a product of Tree Star, Inc. /\ A /\ Oh

www. flowjo.com
1-541-201-0022

flowjola treestar.com
TN Proliferation. 20100424 /J\/\/\ A 48 h
8 AAX ANAX

‘

Extent of asymmetry

Counts

Consistency

>
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Raw data

010* 10° 10* 10°

010° 10° 10* 10°

010* 10° 10* 10°

010 10° 10* 10°

100 4 100 4
80 801 80 1
60 601 60
401 401 40 7
207 201 20 7

—— 0 e Tt rmr—rrrrrrt oo Tl
010 10° 10* 10° 010® 10° 10* 10° 010% 10° 10* 10° 010% 10° 10*

CFSE

10°

Flow]o is a product of Tree Star, Inc.
www. flowjo.com

1-541-201-0022
Howjol@treestar.com

TN Proliferation. 20100424

Quabh et al., Nat Protoc.2007;2:2049

Be sure to click the Calculate button after
each change to Options.

Click the Create Gates button to add
children to this population for each
generation.

Constraining the Fixed Ratio will adjust the
ratio of fluorescence between adjacent peaks.
Ideally, this value should be just less than 0.5.

Increasing or decreasing Peaks will adjust

the total number of proliferations expected or

previously established. ~.

Fixed Coefficient of Variance (CV) will
ensure the width of each peak is constant.

—

5] 2 st

beads.fcs: blasting cells/Pr

-&Qgﬂp

Setting a Fixed Background will adjust for the

known autofluorescence level of the cells. ===

Constrain Fix Peak 0 to make the undivided
population start at a specified value. This is
useful when few cells are left undivided.

<)

RMS: 3.87
#Pesis: 8.00
Peak ov: 408
Pesk ratio - 0.514
Undiv. Mean : 274
Div. Index : 0.965
Prol. Index: 2.24

7

e e

Peak Coefficient of

/ Variance

N

The number of
events in each
generation.

Problem: an interpretation of flow cytometry data
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Proliferation of retrogenic CD8+ T cells
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Division- and CFSE-label structured

mathematical model

Time
<
n, (t+7,xm), n., (t+7,,xm) n; (t,x)
Daughter cells with Proliferating cells n; (¢,x), n; (t,x)
lower CSFE content e SR
lose divided i times
<
kx
‘\ml Cell cyc_le < Activation
progression a,
Asymmetric T
Z iV mitosis,/’l2 !
Apoptosis .
t; o) CFSE lﬂ,-
Resting cells loss e
Apoptosis
ﬂ i+1
Apoptosis
Daughter cells with
higher CSFE content b,
n.,(t+7,,xm,), n;, (t+7,,xm,) Apoptosis
5

Log CFSE (UI)



Delay-hPDE model with asymmetric division

61007 Mathematical Biology

n.(t,x)=n/(t,x)+n’(t,x), i=01.., ip -1, P e e

nl r (t’ X) — nl: (t’ X) Ezz::::};z::::: « Jovana Cupovic - Burkhard Ludewig -
O ot ka(ft )=—( n: (t
_no( X)) —K— Xno( X)) =~ a, + f3, no( , X),
ot OX
0 0
7 (t, %) =k — (xn! (8, x) )= —(a; + B! (t, x) +
ot OX

(1 . X 1 . X ) )
+o £ —n" (t—7_,e )+ n,(t—z_,e"——)i=12,.,i,
m, m- 1-m 1-m,

%nf (t,x) -k ;(xnf(t, X))=a (n{ (t,x) —e“in/ (t—7;,e" x)), i=01,...,i —1,
X

n (s,x) =0, s € [~z,,0); nj (0, %) = n°(x);
n (s,x)=0,se[-7,0],i =1,2,...,i;
n'(s,x)=0,se[-7,0],i=01,...,i -1,

n'(t,x..)=n(t,x )=01t>0;
v(0)n/' (t,0) =v(0)n’(t,x0)=0,t>0;

max



Label- and division- structured delay model

for an asymmetric cell division

4

x 10° x 10
3 ' ' ' ' 10 T
> t=0 hours t=36 hours
B 2t
o
S 5
° 1
O
0 L —L 0 A
1 2 3 4 5 1 2 3 4 5
x 10* x 10*
10 . . . . 10 T
= t=48 hours t=60 hours
-
8 5 - 5t
©
[5)
0 0
1 2 3 4 5 1 2 3 4 5
x 10* x 10*
B8 ' ' ' ' 2 T
> t=72 hours t=96 hours
& 4
5 -
S 1
= 2}
©
15}
0 0
1 2 3 4 5 1 2 3 4 5

Iogm CFSE intensity Iog10 CFSE intensity



Label- and division- structured

symmetric cell division
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number of cell division

Generations overlap

N Wk~ 0 0 N

J. Math. Biol. (2014) 69:1547-1583

] DOI 10.1007/500285-013-0741- Mathematical BiOIOgy

Mathematical models for CFSE labelled lymphocyte
dynamics: asymmetry and time-lag in division
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3

10°
CFSE intensity
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Embedding the cell population dynamics models into

the spatial contexts of the lymphoid organs

Mesoscopic imaging Single&cohort cell analysis
: integrated B o | |

LN model
“ ’:'_;i’,‘_ ‘:_z‘,.‘ 7" ‘1
ODE 3
PDE 0% B \‘;!e > " 4

/ Cellular dynamics J
m

3D mes
RDCC
PDE

L& 3D cellular positioning %‘

&differentiation

[ 4D cellular dynamics =

ABM
CPM

Cellular function ‘ﬁl

CPM -

PDE

“

Intravital imaging

Burkhard Ludewig et al. DOI: 10.1002/¢ji.201242508 Eur. J. Immunol. 2012. 42: 3116-3125

A global “imaging” view on systems approaches
in immunology




“Space” is the current frontier in Systems

Immunology

Analyses of the dynamic cell behavior to predict the immune function in health and disease

Technologies to observe and understand cells in motion (Tang et al., 2013, EJI):
» Data capturing and processing: new computational tools to deal with the vast amount
of data generated by imaging

Capturing the structure-function relationship in a computationally efficient manner is
the key to successful systems immunology

* Requires anatomically based mathematical models integrating the interaction processes
across multinle scales (multi-nhysics):

> Tissue properties

» Blood and lymph flow patterns
» Fluid-tissue interactions

» Systemic cell re-circulation

» Within organs cell migration

(From: Kumar et al, 2008 EJI)




3D modelling of the lymph node structure
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