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The Immune System 

The fundamental challenge to applied mathematicians is to understand immunology in new 
ways by using models, computational techniques & algorithms 

• Sources of heterogeneity: 

 

1) Physical compartments (lymph node, spleen, blood, etc.)  
2) Distinct cell populations (e.g. lymphocytes, Macrophages) 
3) Heterogeneity w.r.t. the expression of specific markers 

(CCR5) or  fluorescent labels (CFSE, BrdU) 
4) … 

1) 

2) 

3) 

Physical 

•Transport  

(1% of cells traverse the whole lymphoid 

system per hour) 

•Diffusion  

Chemical 

• Ligand-receptor 

• Signal transduction 

• Peptide synthesis 

Biological 

•Gene regulation 

•Generation of antigen 

  receptor diversity 

•Cell division (~6 hrs) 

•Cell differentiation  



Challenges in understanding the IS  

• Infectious disease model: key components 

• Antiviral immune response: kinetic regulation  

• Optimal model structure: information-theoretic criteria 

• Cell growth analysis: asymmetric division 

“…The many immunological observations and results from in vitro or in vivo experiments 
vary and their interpretations differ enormously. A major problem is that within a normal 
distribution of biological phenomena that are measurable with many methods virtually 
anything can be shown or is possible..” R. M. Zinkernagel. Immunity Against Infections & Vaccines: 
Credo 2004. Scand J Immunol. 2004, 60: 9–13 

Understanding the 
Immune System 

Structure Dynamics Design  
principles Regulation: 



Dynamic patterns of infectious diseases 

Chronic infection 

Acute  
infection 

Sub-clinical infection 

Lethal infection 
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Chronic persistence: 

Why? How to cure it?  

Objective:  
to stimulate the  
specific immune response 
=> Exacerbation  



Topics  

• Infectious disease model: key components 

• Antiviral immune response: kinetic regulation  

• Optimal model structure: information-
theoretic criteria 

• Cell growth analysis: asymmetric division 



The „numbers game“ perspective:  
virus & host factors in the outcome of infection  

Virus  
Replication 

Immune  
Response 

The clinician‘s perspective:                                        The mathematical view: 

 

• Cytopathicity of virus 

• Latency  

• Persistence  

• Replication rate 
• Tropism 

• Immunopathology 

• Health condition of the infected individual  
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Modelling in immunology: 
Experimental and Mathematical Approaches 

Nobel Prize Laureate 
Rolf M. Zinkernagel 

Academician  
Guri I. Marchuk 

„The outcome of infection results from the ´numbers games´ between 
infectious agent and the immune system.“  



Virus  
Replication 

Immune  
Response 

• Experimental studies with LCMV infection in mice: a faster speed of virus replication is 

an advantage for a virus in overcoming the immune system control and establishing the 

persistent infection – the tolerance by exhaustion (Moskophidis et al., Nature (1993) 362: 

758-761) 

• Theoretical study of virus infection model: a slow virus replication favors the long-term 

persistence (Marchuk and Belykh, 1980) 

Replication rate in virus persistence:  
pro & contra 



Mathematical immunology and the nuclear chain reaction 

George Irving Bell  
4.08.1926-28.05.2000 

• Harvard University (Physics)  - 1947 

• Division “T” Los Alamos Scientific Laboratory  
- 1947 

• “Nuclear Reactor Theory” - 1970 

• Quantitative models in immunology - 1970  

• Theoretical Biology & Biophysics. Los Alamos 
NL - 1974 

• Humane genome Project – 1988 

 

 

 

 

Guri Ivanovich Marchuk 
8.06.1925-24.03.2013 

• Leningrad University (Mathematics/mechanics) – 1949  

• Division ”В” Nuclear Power Plant Ceneter - 1953 

• “Numerical Methods in the Analysis of the Nuclear 
Reactors” – М. 1959 

• Mathematical modeling in immunology - 1975 

• Institute of Numerical Mathematics, Academy of 
Sciences (1980) 

 

 

http://www.google.ru/url?sa=i&rct=j&q=Nuclear+chain+reaction&source=images&cd=&cad=rja&docid=1nIDs2Njh6UwBM&tbnid=jGnVKwji7Se9hM:&ved=&url=http://www.atomicarchive.com/Fission/Fission2.shtml&ei=gdZrUYeLDqOM4ASLroDYCQ&bvm=bv.45175338,d.bGE&psig=AFQjCNEqiMXGg4QAO-yvSQ53-ixT4TGaRg&ust=1366108161483490


Basic  scheme of an infectious disease 

G.I. Marchuk:  
Mathematical model of  infectious 
disease (1974) 

• System of delay differential 
equations 

• Target organ damage 

• Negative feedback of the organ  
damage on the immune system 

G.I. Bell:  

Predator-prey equations 
simulating an immune (1973) 

• Population dynamics of Replicating 
antigens and Antibodies 

• Lotka-Volterra-type of ODEs 

Pathogen 

Immune 
system 

+ 

- 

Target organ 
- 



Basic model of the infectious disease (1975) 

 

 

 000

00000000

*

, for)(,0)(

,)(,)(,)(,)(

 

)()()(

)()()()(

)()()()()(

)()()(

tttFtFtV

mtmCtCFtFVtV

tmtVtm
dt

d

CCtFtVmtC
dt

d

tFtVtFtCtF
dt

d

tVtFtV
dt

d

m

f

f





















1. Pathogen population 

2. Antibodies 

3. Plasma cells 

4. Tissue damage 

 System of Delay-Differential Equations State space variable 

Initial data 

via exacerbation of the chronic infection  

Passive therapy 

Immunostimulating therapy 



Fundamental modelling issues  

• “Typical” equation for population dynamics: 
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• The immune system can be considered as an ensemble of individual cells, which differ 

in a number of physiologically relevant  traits: the spatial position (z), the receptors’ 

specificity (s), the number of specific receptors (r), etc. => Heterogeneity 

 

• One can describe the immune system by a state vector listing the number of individual 

cells of each “type” n(t,Z,s,r,…) depending on a number of continuous  as well as 

discrete variables 

 

• Using conservation principle the equation for the density function n(t, x) with x 

standing for the vector of traits can be written as  



Maximum likelihood parameter estimation 
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Topic   

• Infectious disease model: key components 

• Antiviral immune response: kinetic regulation  

• Optimal model structure: information-
theoretic criteria 

• Cell growth analysis: asymmetric division 



• Family: arenaviruses 

• Strains: Docile, Traub, WE, Aggressive, Armstrong, Clone 13 

• Host: mice, hamsters 

    (Humans: acute hemorrhagic fevers – Lassa fever) 

• Target cells: primarily infects & replicates in macrophages, 
lymphocytes 

• Cytopathicity in vivo: non-cytopathic RNA virus 

• CTL responses play a dominant role in virus clearance: appear 
early and high 

• Neutralizing antibody response: appear only late after infection 

• Immunopathology: spleen, liver, central nervous system, etc.  

Experimental System:  
Lymphocytic choriomeningitis virus (LCMV) infection  

of C57BL/6 mice  

LCMV infection of mice: a “Gold Standard” of experimental immunology 



Relevant patterns of LCMV infection dynamics 

The kinetics of the T cell response falls in between two extremes  
expansion=>contraction=>     

                             memory persistence (1)  

  

 

 

 

 

 

                              clonal deletion (2) 
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Phenomenology of the LCMV-host interaction 

Phenotypes of “virus-host” relationships:  
1. acute infection followed by LCMV clearance in two weeks 

2. temporary persistence up to 2 or 3 months 

3. life-long persistence 

 

Final stages of antiviral CTL responses:  
1. Creation of the CTL memory 

2. Almost complete loss of the entire LCMV-specific precursor 
CTRL repertoire 

3. Complete exhaustion of precursor CTLs 

 
Persistence:   
depends on particular combination of virus & host parameters 



Mechanistic view of the LCMV infection fate decision 

Viruses 

Effector 

CTLs  

Precursor  

CTLs 

Replication 

Cumulative 

viral 

load 

Activation  

for division 

Anergy 

induction 

Proliferation 

Differentiation 

Virus  

elimination 

 Death 

 Death 

Apoptosis 

induction  



Time-dependent variables of the DDE model 

V(t) – virus titer in spleen at time t (pfu/ml) 

Ep(t) – number of virus-specific precursor CTLs in spleen  at time t (cell/ml) 

E(t) – number of virus-specific effector CTLs in spleen  at time t (cell/ml) 

W(t) – cumulative virus antigen load in spleen at time t 

AICD - Apoptosis 

Anergy 

AICD - Apoptosis 

Replication Elimination 

Clonal expansion Homeostasis 



Model calibration 



Fig.    Clonal expansion of gp-33 specific CTL after i.v. infection 
with 200 pfu of LCMV-WE versus LCMV-Armstrong
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Outcomes of hepatitis B and C virus infections

acute HBV fulminant HCV resolving HCV progressing HCV
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ACUTE
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CHRONIC

Published clinical observations: the effect of  
the virus growth rate 

Farci et al. Science (2000) 288: 339-344 

Webster et al. Hepatology (2000) 32: 1117-1124 

The genomic analysis of immune response in  

chimpanzees infected with HCV virus showed 

that HCV replication below a threshold 

level required for activation of genes involved 

in antigen presentation  results in virus 

persistence  (Su et al. PNAS USA (2002): 99: 

15669-15674) 

A reduction in virus growth rate between 

infected subjects is associated with  a 
spectrum of disease outcomes:  
•fulminant hepatitis      (2~ 2.1 to 6.2 days)  
•acute resolving hepatitis (2~ 2.3 to 10 days) 
•chronic progressing hepatitis (2~ 4  to 615 days) 



Slowly does it… 

 
• Viruses that replicate slowly invoke a 

weak adaptive immune response 
 

• A bell-shaped relationship between 
the virus growth rate and the peak T 
cell response 
 

• Speed of viral replication represents an 
important ‘kinetic’ mechanism 
influencing the pathogenesis and 
duration of virus persistence within the 
human host 

 

CTL response 

Virus growth rate 

+ - 



 Integration of mathematical modelling into 
the immunological mainstream 

William E. Paul (June 12, 1936 – September 18, 2015) 



Topic  

• Infectious disease model: key components 

• Antiviral immune response: kinetic regulation  

• Optimal model structure: information-
theoretic criteria 

• Cell growth analysis: asymmetric division 



Fundamental modelling issues  

• Which model is better: that having the fewer 

parameters or that based more closely on the 

biology of the system? 

• Is it possible to distinguish between the important 

and the unimportant assumptions in a model? 

• “Typical” equation for population dynamics: 

  

 
General problem: various functional forms can be suggested for 

the same process… 
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Fig. 1 Absolute numbers versus means of the log's 
Data versus Model (2) Prediction (true best-fit)
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Hierarchy of models for LCMV-CTL data  
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5 parameters 

6 parameters 

7 parameters 

8 parameters 

9 parameters 

Predator-Prey 

PP+Holling type II 
response 

…+ time lag in the  
CTL division 

…+ CTL  
homeostasis  

…+ CTL memory  
population  



Model selection: accuracy & parsimony 
Given a set of related models – how to rank them by giving each a score? 

•the goodness of fit – the size of the minimized least squares  

                                          (or maximized likelihood) function 

•the principle parsimony – a proper balance between under-fitting and over-fitting 

General principle:  

A model should be “as simple as possible yet as complex as necessary” (Denis Noble et 

al. 2005) with respect to the included variables, model structure and the number of 
parameters for adequate representation of the data  

Number of parameters  (L) 

Variance Bias,  

Few Many 



Criteria for discriminating between models – model selection 

•Akaike (1973) found a rigorous way to estimate the Kullback-Leibler directed 

distance of the candidate model g to the truth f model  based on the empirical log-

likelihood function L(p) at its maximum point L*=L(p*)  
 
•The Akaike’s Information Criterion makes use of an estimate of the expected, 

relative distance between the fitted model and the unknown true mechanism that 

actually generated the observed data (nobs)    

• Kullback-Leibler information distance between models f  and g  is defined as the  

multidimensional integral:  
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•The Kolomogorov complexity – Minimum Description Length principle by Jorma 

Rissanen “Modelling by the Shortest Data Description” (1978) 
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Model  Ranking  
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Model 2 7.8x1011 440 

Model 3 1.6x1012 461 

Model 1 6.5x1012 465 

Model 4 1.6x1012 475 

Model 5 1.6x1012 531 

 *
pOLS



=> The best model is Model 2 

Ranking: M2>M3>M1>M4>M5 

Information 
loss 

Bias 



Uncertainty in parameter estimates:  
95% Confidence Intervals 

Parameter 

[95%CI] 

Model 1 

 

Model 2 

 

Virus growth rate 
constant 

4.61 

[3.7, 6.5] 

4.51 

[4.2, 4.8] 

CTL activation 
rate constant 

9.2x10-7 

[6.8•10-7,1.4•10-6] 

1.42 

[1.36, 1.48] 

CTL death rate 

constant 

0.093 

[10-10, 0.2] 

0.2 

[0.15, 0.26] 



The ‘best’ model for the given data 
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Therefore, the equation for CTL dynamics  

can be reduced to  
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Topic  

• Infectious disease model: key components 

• Antiviral immune response: kinetic regulation  

• Optimal model structure: information-
theoretic criteria 

• Cell growth analysis: asymmetric division 



CFSE Proliferation Assay: 
analysis of antigen specific and non-specific T cell proliferation.  

http://www.biochemmack.ru/product/citometry/cytomet

r/CellLabQuantaSC/.  

From: Quah et al., Nat Protoc.2007;2:2049 

• Major assumption: cell division is symmetric, i.e. the label is halved in the two daughter cells 

• Cell biology axiom: a random and uneven partition of mass between the sister cells 

R. Sennerstam, partition of (mass) protein to sister cell pairs at mitosis:  
a re-evaluation. J Cell Sci  1988, 90:301   

• Does this matter? 

http://www.biochemmack.ru/product/citometry/cytometr/CellLabQuantaSC/
http://www.biochemmack.ru/product/citometry/cytometr/CellLabQuantaSC/


Symmetric cell 
division: 

50% vs 50% 



Low asymmetry of the 
division: 46% vs 54% 



Higher asymmetry of 
division: 

42% vs 58% 



Ssoftware for CFSE histogram 
decomposition 
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Extent of asymmetry 



Quah et al., Nat Protoc.2007;2:2049 

Raw data 

Problem: an interpretation of flow cytometry data 
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Evolution of histograms of  
CFSE-labeled PHA-stimulated 

peripheral blood mononuclear cells 
generated by flow cytometry 

Data from S. Ehl (Children’s Hospital, Freiburg University) 
Request: to characterize the individual’s immune responsiveness 

6 

7 



Proliferation of retrogenic CD8+ T cells 
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CFSE data
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CFSE data

WF Interpolant

60 

Tim
e (h

o
u

rs) 

0 1 2 3 4 5 6
-5

0

5

10

15

20

25

30

35

40

45
36 hours

 

 

CFSE data

WF Interpolant
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Division- and CFSE-label structured 
mathematical model 



Delay-hPDE model with asymmetric division 
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Label- and division- structured delay model 
for an asymmetric cell division 



Label- and division- structured  
symmetric cell division 



Generations overlap 



Embedding the cell population dynamics models into 
the spatial contexts of the lymphoid organs 



“Space” is the current frontier in Systems 
Immunology 

Analyses of the dynamic cell behavior to predict the immune function in health and disease  

Technologies to observe and understand cells in motion (Tang et al., 2013, EJI):  

• Data capturing and processing: new computational tools to deal with the vast amount  

      of data generated by imaging 

 
 
 
 
• Requires anatomically based mathematical models integrating the interaction processes  
     across multiple scales (multi-physics): 

 Tissue properties 
 Blood and lymph flow patterns  
 Fluid-tissue interactions 
 Systemic cell re-circulation 
 Within organs cell migration 

Capturing the structure-function relationship in a computationally efficient manner is 
the key to successful systems immunology 

(From: Kumar et al, 2008 EJI) 



3D modelling of the lymph node structure 
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